JPS63294644A - Surface treatment method for electrode parts of cathode-ray tube - Google Patents

Surface treatment method for electrode parts of cathode-ray tube

Info

Publication number
JPS63294644A
JPS63294644A JP62134272A JP13427287A JPS63294644A JP S63294644 A JPS63294644 A JP S63294644A JP 62134272 A JP62134272 A JP 62134272A JP 13427287 A JP13427287 A JP 13427287A JP S63294644 A JPS63294644 A JP S63294644A
Authority
JP
Japan
Prior art keywords
case
electrode parts
oxidizing atmosphere
surface treatment
shadow mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62134272A
Other languages
Japanese (ja)
Inventor
Tetsuya Watanabe
徹也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62134272A priority Critical patent/JPS63294644A/en
Publication of JPS63294644A publication Critical patent/JPS63294644A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain oxidated films having desired radiation factors for both cases of Fe material and Ni-Fe material subjected to surface treatment by means of the same treatment furnace by setting the grade of replacing the oxidating environment in the case of Fe material smaller than that in the case of Ni-Fe material. CONSTITUTION:A flat mask formed with Fe material and another flat mask formed with Ni-Fe material are annealed at about 900 deg.C and about 1000 deg.C respectively and press-molded after being subjected to straightening and then, a blackening process for forming black rust is applied to the surfaces of those formed shadow masks 6. For instance, if steam is fed in a furnace 1 at about 0.14m<3>/min flow rate and maintained at about 560 deg.C for 30 minutes after the inner pressure of the furnace 1 is set to about 200mmAq, black rust with 0.75 radiation factor can be obtained in the case of Fe material. If the inner pressure inside a container 2 is set lower than that in the case of Fe material, so as to set a higher grade of replacement of the oxidating environment inside the container 2, in the case of Ni-Fe material, an oxidated film with the desired radiation factor 0.33 or more can be obtained. Thus, oxidated films having desired radiation factors can be obtained when oxidated films are formed on both Fe material and Ni-Fe material by means of the same treatment furnace.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、陰極線管の電極部品の表面処理方法に関し
、特に、陰極線管の内部に組込まれる電極部品、たとえ
ばシャドウマスクや電子銃を構成する電極などの熱放散
を良くするための表面処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for surface treatment of electrode parts of a cathode ray tube, and in particular, to a method for surface treatment of electrode parts of a cathode ray tube, such as a shadow mask or an electron gun. This invention relates to a surface treatment method for improving heat dissipation of electrodes, etc.

[従来の技術] 以下、シャドウマスクを例に、従来の技術を説明する。[Conventional technology] The conventional technique will be described below using a shadow mask as an example.

シャドウマスクの製造方法については、株式会社[1(
7)II子I学1964年Vo114/NO,9゜36
頁および39〜40頁に示され、また、日経エレクトロ
ニクス1984,1.2 84〜85頁に示されている
For details on the manufacturing method of shadow masks, please refer to Co., Ltd. [1(
7) II Ko I Gaku 1964 Vo114/NO, 9゜36
and pages 39-40, and Nikkei Electronics 1984, 1.2, pages 84-85.

ところで、陰極線管は、第5図に示すように、皿状のガ
ラス容器であるパネル10と、電子ビームを発射する電
子銃11を内蔵しているロート状のファンネル12とか
らなり、パネル10とファンネル12との間にシャドウ
マスク6が介在され、パネル10に支持部によって保持
されている。
By the way, as shown in FIG. 5, a cathode ray tube consists of a panel 10 that is a dish-shaped glass container, and a funnel-shaped funnel 12 that houses an electron gun 11 that emits an electron beam. A shadow mask 6 is interposed between the funnel 12 and the panel 10 and is held by a support section.

このシャドウマスク6は第6図に示すように、0.15
〜0.25m5純鉄板(以下、rFe材」という)の基
体14に、丸形もしくは長方形の電子ビーム通過孔15
を形成したもので、平坦な形状であるフラットマスクを
前処I!p(水素雰囲気中で700〜920℃)し、歪
取りしてからパネル10の内面に沿う球面形状にプレス
加工し、洗浄した後、その表面に、7%11 (Fe 
、、O,)の被膜を形成するための黒化処理が施される
。この黒化処理は、まずプレス加工時に付着した油の脱
脂を完全に行なった債、硫化ニッケルにより黒化する方
法、アルカリ溶融塩に浸漬して黒化する方法、重クロム
酸塩溶液を用いる方法、あるいは水蒸気もしくは、炭酸
ガス雰囲気中で加熱して黒化する方法等がある。この黒
化処理で得られる黒錆皮膜16は、第6図に示すように
、シャドウマスク基体14および電子ビーム通過孔15
の表面を覆っており、カラー陰極線管を製造する工程中
において、空気中の雰囲気で400℃前後の濃度で加熱
されるときに、シャドウマスク基体14が酸化して赤錆
が発生するのを防止するとともに、シャドウマスクの表
面の輻射率を大きくして、熱変形を小さくする作用があ
り、さらに、シャドウマスク6による光の散乱を少なく
し、パネル10の内面に螢光体絵素を形成するとき、光
の散乱を少なくして、絵素の輪郭が鮮明に形成されるよ
うにする作用がある。
As shown in FIG. 6, this shadow mask 6 is 0.15
A round or rectangular electron beam passage hole 15 is formed in the base 14 of ~0.25 m5 pure iron plate (hereinafter referred to as "rFe material").
A flat mask with a flat shape is used as a pretreatment I! p (at 700 to 920°C in a hydrogen atmosphere), and after removing the strain, the panel 10 is pressed into a spherical shape along the inner surface. After cleaning, the surface is coated with 7% 11 (Fe
, , O, ) is subjected to a blackening process to form a coating. This blackening treatment involves first completely degreasing the oil that adhered during press working, blackening with nickel sulfide, blackening by immersing in alkaline molten salt, and using dichromate solution. Alternatively, there are methods of blackening by heating in a steam or carbon dioxide atmosphere. As shown in FIG.
It covers the surface of the shadow mask base 14 to prevent the formation of red rust due to oxidation when the shadow mask base 14 is heated at a concentration of around 400° C. in an air atmosphere during the process of manufacturing color cathode ray tubes. At the same time, it has the effect of increasing the emissivity of the surface of the shadow mask and reducing thermal deformation.Furthermore, it reduces the scattering of light by the shadow mask 6, and when forming phosphor pixels on the inner surface of the panel 10. , which has the effect of reducing the scattering of light so that the outline of the picture element is clearly formed.

このうち、熱変形の抑制について、詳細に説明すると、
カラー陰tita管の動作中は、電子銃11から発射さ
れた電子ビームの8割近くが、シャドウマスク6に射突
し、電子ビームの運動エネルギが然エネルギに変換され
て吸収され、シャドウマスク6の温度は80℃前優に上
昇し、ドーミング現象が生じて色純度が低下する。シャ
ドウマスク6の表面に黒錆を形成すると、輻射率が0.
75前猾と大きいので、シャドウマスクの熱放散が良く
なり、温度上昇が低くなるのでドーミングTiA象の発
生が抑制される。
Of these, the suppression of thermal deformation will be explained in detail.
During operation of the color negative Tita tube, nearly 80% of the electron beam emitted from the electron gun 11 hits the shadow mask 6, and the kinetic energy of the electron beam is converted into energy and absorbed, and the shadow mask 6 The temperature rises to well over 80° C., causing a doming phenomenon and a decrease in color purity. When black rust is formed on the surface of the shadow mask 6, the emissivity decreases to 0.
Since the shadow mask has a large diameter of 75 mm, heat dissipation from the shadow mask is improved and the temperature rise is reduced, thereby suppressing the occurrence of the doming TiA phenomenon.

ちなみに、黒錆の有無による熱放散量の差異を計算、す
ると 無限に広い平行平面間における放射熱流速qはq=σ。
By the way, if we calculate the difference in heat dissipation due to the presence or absence of black rust, the radiant heat flow rate q between infinitely wide parallel planes is q = σ.

(T、’  T2 ’ )/ (1/ε、+1/ε2−
1) ここで、 σ。:ステフアン・ボルツマン定数−4,88xlQ8
 kcal/m ’ −h やに’ε、:シャドウマス
クの表面(面1)の輻射率ε2:パネル内面(面2)の
輻射率 ■、:面1のケルどン温度 T2:面2のケルビン温度 である。
(T, 'T2') / (1/ε, +1/ε2-
1) Here, σ. : Stefan-Boltzmann constant -4,88xlQ8
kcal/m' -h Yani'ε,: Emissivity of the surface of the shadow mask (Surface 1) ε2: Emissivity of the inner surface of the panel (Surface 2) ■,: Kelvin temperature of Surface 1 T2: Kelvin of Surface 2 It's temperature.

今、ε2はアルミニウムで、0.O5、表面が鉄(Fe
)、黒錆(Fe s as )、酸化ニッケル(NiO
)である場合のε、がεl  (Fe )−0,3、ε
1  (Fe $ 04 ) −0,75、ε、(Ni
 0)−0,90、T、−273+80−353 (K
) 、T2−2黒錆をシャドウマスクの表面(面1)に
設けると、黒錆を形成していない場合に比べて熱放散が
10〜11%良くなり、シャドウマスク6の弄瀾を低く
抑える効果がある。
Now, ε2 is aluminum and 0. O5, the surface is iron (Fe
), black rust (Fe s as ), nickel oxide (NiO
), then ε is εl (Fe )−0,3,ε
1 (Fe $ 04 ) −0,75, ε, (Ni
0) -0,90, T, -273+80-353 (K
) When T2-2 black rust is provided on the surface (surface 1) of the shadow mask, heat dissipation is improved by 10 to 11% compared to the case where no black rust is formed, and the disturbance of the shadow mask 6 is kept low. effective.

以上はシャドウマスクを例に説明したが、他の電極部品
、たとえば電子銃のm極についても電子ビームの射突に
よる温度上昇を低く抑える必要があり、黒化処理が施さ
れている。
Although the above explanation has been given using a shadow mask as an example, other electrode parts, such as the m-pole of an electron gun, are also subjected to blackening treatment because it is necessary to suppress the temperature rise due to the impact of the electron beam.

[発明が解決しようとする問題点コ 陰極線管は近年、ディスプレイとして用いられ、見やす
く、明るい映像、鮮明な映像の再環が要求されている。
[Problems to be Solved by the Invention] In recent years, cathode ray tubes have been used as displays, and there is a demand for easy-to-see, bright, and clear images.

このため、陰極線管の表示面は、より平坦に形成するこ
とにより外光の反射光がディスプレイ操作者の目に入ら
ないようにする対策や、シせドウマスク材や電極材に熱
膨張係数の小さいアンバ材(以下、rNi−Fe材」と
いう。)を用いて熱変形を小さくする試みがなされてい
る。
For this reason, the display surface of cathode ray tubes must be made flatter to prevent reflected external light from entering the eyes of the display operator, and the screen mask material and electrode materials must have a low coefficient of thermal expansion. Attempts have been made to reduce thermal deformation using Invar material (hereinafter referred to as rNi-Fe material).

しかし、Fe材の「黒化処理」は、第7図に示されるよ
うな範囲で黒錆(Fe@04)が安定であるので、水蒸
気雰囲気中においては580℃に加熱することにより、
またC O2ガス雰囲気中においては630℃に加熱す
ることにより、輻射率0.75程度の黒錆が形成できる
のに対し、N1−Fe材は酸化しにくいため、上記のよ
うな処理条件ではほとんど黒錆が形成されない。このよ
うな黒化処理の困難性を改善するため、Ni −Fe材
に、池の元素を添加する試みがなされているが、未だ実
用に適したNi−1−e材は実現されていない。
However, in the "blackening treatment" of Fe material, black rust (Fe@04) is stable within the range shown in Figure 7, so by heating it to 580°C in a steam atmosphere,
In addition, black rust with an emissivity of about 0.75 can be formed by heating to 630°C in a CO2 gas atmosphere, whereas N1-Fe material is difficult to oxidize, so it is almost impossible to form black rust under the above treatment conditions. No black rust is formed. In order to improve the difficulty of such blackening treatment, attempts have been made to add a pond element to the Ni-Fe material, but a Ni-1-e material suitable for practical use has not yet been realized.

さらに、表示面の平坦化に伴ない、シャドウマスクの球
面半径も大ぎくなり、板厚0.1〜0゜211のNl−
Fe材を用いたシャドウマスクでは、「黒化処理」温度
は、最高800℃がシャドウマスクの球面に変形を生じ
ない限度となる。
Furthermore, with the flattening of the display surface, the spherical radius of the shadow mask also becomes larger, and Nl-
For a shadow mask using an Fe material, the maximum temperature for the "blackening treatment" is 800° C., which is the limit at which the spherical surface of the shadow mask is not deformed.

しかるに、従来のC02ガス雰囲気中で加熱する「黒化
処理」では、N1−f−etlの輻射率を、陰極線管の
性能改善に寄与できる0、33以上にするためには、8
30℃以上に加熱する必要があり、また、球面の曲率半
径が170CIlのシャドウマスクでは、球面の変形が
生じるので適用できないという@照点があった。
However, in the conventional "blackening treatment" performed by heating in a CO2 gas atmosphere, in order to increase the emissivity of N1-f-etl to 0.33 or higher, which can contribute to improving the performance of cathode ray tubes, it is necessary to
It is necessary to heat the shadow mask to a temperature of 30° C. or higher, and a shadow mask with a spherical radius of curvature of 170 CIl causes deformation of the spherical surface, so there was an illumination point.

また、Fe材とNi−Fe材とを同一の処理炉を用いて
、同一の処理条件で表面処理する場合に、Ni−Fe材
の表面に所望の輻射率をもつ酸化膜を形成しようとする
とFe材では酸化膜が厚くなり、剥離しやすくなるとい
う問題点があった。
In addition, when surface-treating Fe material and Ni-Fe material using the same processing furnace and under the same processing conditions, it is difficult to form an oxide film with a desired emissivity on the surface of the Ni-Fe material. Fe materials have a problem in that the oxide film becomes thick and easily peels off.

そこで、この発明は、このような問題点を解決するため
になされたもので、f−e材とNi −Fe材とを同一
の処理炉を用いて表面処理しても両者とも所望の輻射率
を有する酸化膜を得ることができる、陰極線管の電極部
品の表面処理方法を提供することを目的とする。
Therefore, this invention was made to solve these problems, and even if the fe material and the Ni-Fe material are surface-treated using the same processing furnace, the desired emissivity can be achieved for both. It is an object of the present invention to provide a surface treatment method for electrode parts of a cathode ray tube, which can obtain an oxide film having the following properties.

[問題点を解決するための手段] この発明に従った陰極線管の電極部品の表面処理方法は
、Fe材で形成されている陰極線管の電極部品、および
N1−Fe材で形成されている陰極線管の電極部品とを
それぞれ別々に同一処理炉を用いて処理し、酸化性雰囲
気内でその表面に酸化膜を形成する処理方法において、
酸化性雰囲気の置換をFe材の場合にはNi−Fe材の
場合よりも小さくすることを特徴とするものである。
[Means for Solving the Problems] A method for surface treatment of cathode ray tube electrode parts according to the present invention is applicable to cathode ray tube electrode parts made of Fe material and cathode ray tube electrode parts made of N1-Fe material. In a treatment method in which the electrode parts of the tube are treated separately using the same treatment furnace and an oxide film is formed on the surface in an oxidizing atmosphere,
It is characterized in that the displacement of the oxidizing atmosphere is smaller in the case of Fe material than in the case of Ni--Fe material.

[作用] Fe材からなる電極部品とN1−Fe材からなる電極部
品とをそれぞれ別々に同一処理炉を用いて、酸化性雰囲
気内で酸化膜を形成する処理方法において、両者とも所
定のl1lfI4率を有する酸化膜を得るには、Fe材
とNi −Fe材とでは炉内における酸化性雰囲気の条
件をj%ならせる必要がある9、それは、l”a材とr
l −Fe材とを別々に、酸化性雰囲気が同一の条件で
酸化膜を形成すると、Fe材の方が酸化膜が形成されや
すいからである。
[Function] In a processing method in which an electrode part made of Fe material and an electrode part made of N1-Fe material are separately used in the same processing furnace to form oxide films in an oxidizing atmosphere, both of them have a predetermined l1lfI4 rate. In order to obtain an oxide film having
This is because if an oxide film is formed separately on the l -Fe material under the same oxidizing atmosphere conditions, the oxide film is more easily formed on the Fe material.

そこで、)−e材の場合にはNi −Fe材の場合より
も酸化性雰囲気の置換を小さくすると、未反応酸化性ガ
スの供給が抑えられ得る。一方、Ni −Fe材の場合
にはFe材の場合よりも酸化性雰囲気の置換を大きくす
ると、未反応酸化性ガスの供給が十分行なわれ、酸化反
応が促進され得る。したがって、Fe材とNi−1:e
材とを同一の処理炉で表面処理を行なうとき、Fe材の
場合に酸化性雰囲気の置換を小さくすれば酸化膜が厚く
なり、剥離することもない。
Therefore, in the case of the )-e material, if the displacement of the oxidizing atmosphere is made smaller than in the case of the Ni--Fe material, the supply of unreacted oxidizing gas can be suppressed. On the other hand, in the case of a Ni--Fe material, if the replacement of the oxidizing atmosphere is made larger than in the case of a Fe material, the unreacted oxidizing gas can be sufficiently supplied and the oxidation reaction can be promoted. Therefore, Fe material and Ni-1:e
When performing surface treatment on Fe materials in the same processing furnace, if the displacement of the oxidizing atmosphere is reduced in the case of Fe materials, the oxide film will become thicker and will not peel off.

[実施例] 以下、この発明の一実施例を説明する。[Example] An embodiment of this invention will be described below.

Fe材で形成したフラットマスクとNi −Fe材で形
成したフラットマスクとをそれぞれ約900℃、約10
00℃で焼鈍し、歪取りをした模所定の形状にプレス成
形する。この成形されたシャドウマスクの表面に付着し
ている油等の汚れを洗浄除去した後、黒錆を表面に形成
するための黒化処理を施す。この実施例では、流速的0
.141” /sin (5ft” /sin ) t
’水蒸気ヲ炉内ニ供給し、炉内圧を約200mmAaに
した後約560℃で30分間保持することにより、Fe
材の場合は輻射率0.75の黒錆が得られる。
A flat mask made of Fe material and a flat mask made of Ni-Fe material were heated at about 900°C for about 10
It is annealed at 00°C and press-formed into a predetermined shape with strain relief. After cleaning and removing dirt such as oil adhering to the surface of this molded shadow mask, a blackening treatment is performed to form black rust on the surface. In this example, the flow velocity is 0
.. 141”/sin (5ft”/sin)t
'By supplying steam into the furnace and increasing the furnace pressure to approximately 200 mmAa, the Fe
In the case of wood, black rust with an emissivity of 0.75 is obtained.

第1図は、本発明によるシャドウマスクを処理する炉の
構成を概略説明する図である。1は処理炉、2はその中
に加熱される雰囲気を有する容器部である。3は黒化処
理される酸化性雰囲気を形成するために水蒸気を炉内へ
導入するパイプであり、容器部2の底部から約100℃
の水蒸気を容器部2の内部に放出している。4は水蒸気
の供給量を制御する減圧制御弁で、5は減圧I制御弁4
で制御された圧力値を示す計器である。6は処理対象物
であるシャドウマスク、7は処理治具、8は蓋であり、
II8には容器部2内を拡散するファン9が取付けられ
、19はその動力源であるモータである。20は容器部
2内の内圧値を示す内圧計器である。21は容器部2内
の雰囲気ガスの排出をi制御する排出制御弁である。な
お、22は密閉するために容器部2と蓋8との間に入れ
られるバッキングである。減圧制御弁4を調整すること
によって水蒸気の供給量を設定する。図には示されてい
ないが、処理時に容器部2内の温度が375℃以上にな
れば水蒸気を供給するバルブが開き、その後温度575
℃で30分間の熱処理が完了すればバルブが閉じ、水蒸
気の供給が止められ、加熱源であるヒータが止められる
FIG. 1 is a diagram schematically explaining the configuration of a furnace for processing a shadow mask according to the present invention. 1 is a processing furnace, and 2 is a container having a heated atmosphere therein. 3 is a pipe that introduces water vapor into the furnace to form an oxidizing atmosphere for blackening treatment, and the temperature is approximately 100°C from the bottom of the container part 2.
of water vapor is released into the interior of the container section 2. 4 is a pressure reduction control valve that controls the amount of water vapor supplied, and 5 is a pressure reduction I control valve 4.
This is an instrument that shows the pressure value controlled by 6 is a shadow mask which is the object to be processed, 7 is a processing jig, 8 is a lid,
A fan 9 for diffusing the inside of the container portion 2 is attached to II8, and 19 is a motor that is the power source thereof. Reference numeral 20 denotes an internal pressure meter that indicates the internal pressure value within the container section 2. Reference numeral 21 denotes an exhaust control valve that controls the exhaust of atmospheric gas within the container section 2. Note that 22 is a backing that is inserted between the container part 2 and the lid 8 for sealing. The amount of water vapor supplied is set by adjusting the pressure reduction control valve 4. Although not shown in the figure, when the temperature inside the container section 2 reaches 375°C or higher during processing, a valve for supplying water vapor opens, and then the temperature reaches 575°C.
When the heat treatment for 30 minutes at °C is completed, the valve is closed, the supply of steam is stopped, and the heater as the heat source is stopped.

処理対象物がFe材のシャドウマスクであるとき、容器
部2内の内圧が内圧計器20で約20011A Qを示
し、排出制御弁21は処理中間の状態にある。この条件
で処理されたFe材のシャドウマスクの輻射率は、容器
部2内の内圧と輻射率との関係で示される第2図におい
て0印で示されるように0.75である。ここで容器部
2内に入れられている処理対象物であるシャドウマスク
の総表面積(−2)はく )内数値で示されている。
When the object to be processed is a shadow mask made of Fe material, the internal pressure in the container section 2 indicates approximately 20011AQ on the internal pressure gauge 20, and the discharge control valve 21 is in the intermediate state of processing. The emissivity of the Fe material shadow mask processed under these conditions is 0.75, as indicated by the 0 mark in FIG. 2, which shows the relationship between the internal pressure in the container 2 and the emissivity. Here, the total surface area (-2) of the shadow mask, which is the object to be processed, placed in the container section 2 is indicated by the numerical value in parentheses.

上記と同じ条件で、Nl −Fe材のシャドウマスクを
処理した場合、第2図において・印で示されるように輻
射率は0.3である。このとき、処理対象物であるNi
−Fe材のシャドウマスクの総表面積は10−2である
When a shadow mask made of Nl--Fe material is processed under the same conditions as above, the emissivity is 0.3, as indicated by the * mark in FIG. At this time, Ni which is the object to be treated
-The total surface area of the shadow mask made of Fe material is 10-2.

次に、Ni−Fe材のシャドウマスクの総表面積すなわ
ち積載量を同一にして、水蒸気の供給量を一定にし、酸
化処理中(375〜575℃)において、第7図に示さ
れるようにFe5O4が安定に存在する範囲内で排出制
御弁21の開放量を調節し、内圧計器20において内圧
を120園−Aqにする。この条件で処理するとNi−
Fe材の輻射率は、第2図に示すように0.4である。
Next, the total surface area of the Ni-Fe shadow mask, that is, the loading amount, was made the same, the amount of water vapor supplied was kept constant, and during the oxidation treatment (375 to 575°C), Fe5O4 was The opening amount of the discharge control valve 21 is adjusted within a stable range, and the internal pressure at the internal pressure meter 20 is set to 120 Aq. When processed under these conditions, Ni-
The emissivity of the Fe material is 0.4 as shown in FIG.

また、内圧1201@AQの条件でNi−Fe材のシャ
ドウマスクの総表面積を倍にした場合(2〇−2)、輻
射率が0.3のものが得られる。これらの関係は第3図
および第4図で示される。
Furthermore, when the total surface area of the Ni--Fe shadow mask is doubled under the condition of an internal pressure of 1201@AQ (20-2), an emissivity of 0.3 is obtained. These relationships are shown in FIGS. 3 and 4.

第3図はNi−1:e材を内圧12011AQで処理し
たときの輻射率とシャドウマスクの総表面積(12)と
の関係を示す図で、第4図はl −Fe材のシャドウマ
スクの総表面積を10−2としたときの輻射率と内圧(
aaAQ)との関係を示す図である。第3図を参照して
、内圧が12C)esAqのとき、シャドウマスクの総
表面積を減らすことにより、すなわち容器部内に積載さ
れるシャドウマスクの数を減らすことにより、輻射率を
高めることができる。また、第4図を参照して、シャド
ウマスクの総表面積を10■2と一定にした場合、内圧
を下げると輻射、率は増加する傾向がある。
Figure 3 shows the relationship between the emissivity and the total surface area (12) of the shadow mask when Ni-1:e material is treated at an internal pressure of 12011AQ, and Figure 4 shows the total surface area (12) of the shadow mask of l -Fe material. Emissivity and internal pressure when the surface area is 10-2 (
It is a figure showing the relationship with aaAQ). Referring to FIG. 3, when the internal pressure is 12C)esAq, the emissivity can be increased by reducing the total surface area of the shadow masks, that is, by reducing the number of shadow masks loaded in the container. Further, referring to FIG. 4, when the total surface area of the shadow mask is kept constant at 10.times.2, the radiation rate tends to increase as the internal pressure is lowered.

したがって、Ni−Fe材の場合には、Fe材の場合よ
りも容器部内の内圧が低くなるように制御することによ
って容!1部内の酸化性雰囲気の置換を大きくすれば、
所定の輻射率0.33以上の酸化膜を得ることができる
。この実施例では、酸化性ガスである水蒸気の供給量を
一定にし、酸化性雰囲気内のガスを炉外へ排出すること
によって、内圧がNi−Fe材の場合にはFe材の場合
よりも低くなるように制御されて酸化性雰囲気の置換を
大きくしている。しか1ノ、酸化性ガスの供給量をNi
−Fe材の場合にはf−e材の場合よりも多くし、内圧
が低くなるように酸化性雰囲気の置換を大きくしてもよ
い。
Therefore, in the case of Ni-Fe material, the internal pressure inside the container is controlled to be lower than that in the case of Fe material. If the displacement of the oxidizing atmosphere in one part is increased,
An oxide film having a predetermined emissivity of 0.33 or more can be obtained. In this example, by keeping the supply amount of water vapor, which is an oxidizing gas, constant and discharging the gas in the oxidizing atmosphere to the outside of the furnace, the internal pressure is lower in the case of Ni-Fe material than in the case of Fe material. The displacement of the oxidizing atmosphere is increased. However, the amount of oxidizing gas supplied is
In the case of -Fe material, the amount may be increased more than in the case of fe material, and the displacement of the oxidizing atmosphere may be increased so that the internal pressure is lowered.

なお、排出11J御弁21を調節して内圧を12011
AQにした条件でFe材を処理すると酸化膜が厚くなり
、処理前の表面状態によっては一部剥離が発生する。こ
れは、Fe材とNi−Fe材とではFe材の方が酸化さ
れやすいため容易に酸化膜が形成されるからである。一
方、N1−Fe材は酸化サレニクク、3Fe +4@2
0−Fe s 04+4H2の反応においてH2の発生
がf−e@04の生成に還元作用として働くことによる
と考えられる。そのため、酸化性雰囲気の置換を大きく
し−て新鮮な未反応の水蒸気が十分に供給されると、上
記のようなH2の発生にもかかわらず、酸化反応による
Fe5O4の生成が促進するものと考えられる。
In addition, adjust the discharge 11J control valve 21 to adjust the internal pressure to 12011
When an Fe material is processed under AQ conditions, the oxide film becomes thick, and some peeling may occur depending on the surface condition before processing. This is because the Fe material is more easily oxidized and an oxide film is easily formed between the Fe material and the Ni--Fe material. On the other hand, the N1-Fe material is oxidized, 3Fe +4@2
It is thought that this is because the generation of H2 in the reaction of 0-Fe s 04+4H2 acts as a reducing effect on the production of fe@04. Therefore, it is thought that if the replacement of the oxidizing atmosphere is increased and fresh unreacted water vapor is supplied sufficiently, the formation of Fe5O4 by the oxidation reaction will be promoted despite the generation of H2 as described above. It will be done.

なお、電極部品の黒化処理は板材に黒化処理を施した棲
、電極部品に加工するより、電極部品の最終形状に加工
したものに黒化処理を施すのが望ましい。これは、加工
中に黒錆である酸化膜が剥離したり、剥離しやすくなっ
て模工、程中において脱落することがあるからである。
It should be noted that it is preferable to perform the blackening treatment on an electrode component that has been processed into the final shape of the electrode component, rather than processing the plate material into an electrode component using the blackening treatment. This is because the oxide film, which is black rust, may peel off during processing, or it may peel off easily and fall off during the imitation process.

[発明の効果] 以上のようにこの発明によれば、Fe材とNi−Fe材
のように酸化されやすい材料と酸化されにくい材料とを
同一処理炉でその表面に酸化膜を形成する場合、酸化反
応が行なわれる酸化性雰囲気のR換を調節することによ
り所定の輻射率を有する酸化膜を得ることを可能にする
[Effects of the Invention] As described above, according to the present invention, when forming an oxide film on the surfaces of materials that are easily oxidized and materials that are difficult to oxidize, such as Fe material and Ni-Fe material, in the same processing furnace, By adjusting the R exchange of the oxidizing atmosphere in which the oxidation reaction is carried out, it is possible to obtain an oxide film having a predetermined emissivity.

4、図面のll!JIINな説明 第1図は本発明に用いられる処理炉とその処理の概略を
示す説明図、第2図は内圧と輻射率の関係を示す図、第
3図は内圧を一定にしたときのシャドウマスクの総表面
積と輻射率との関係を示す図、第4図はシャドウマスク
の総表面積を一定にしたときの内圧と輻射率との関係を
示す図、第5図はカラー陰極細管の構造を示す分解斜視
図、第6図はシャドウマスクの一部拡大断面図、第7図
はFe −0系平衡状!g図である。
4. Drawing ll! JIIN explanation Figure 1 is an explanatory diagram showing the outline of the processing furnace used in the present invention and its processing, Figure 2 is a diagram showing the relationship between internal pressure and emissivity, and Figure 3 is a shadow when the internal pressure is kept constant. Figure 4 shows the relationship between the total surface area of the mask and the emissivity. Figure 4 shows the relationship between the internal pressure and the emissivity when the total surface area of the shadow mask is held constant. Figure 5 shows the structure of the color cathode capillary. 6 is a partially enlarged sectional view of the shadow mask, and FIG. 7 is an equilibrium state of Fe-0 system! This is a diagram g.

図において、1は処理炉、2は容器部、3はバイブ、4
は減圧制御弁、5は計器、6は陰極線管の電極部品であ
るシャドウマスク、16は酸化膜であるia被被膜20
は内圧計器、21は排出制御弁である。
In the figure, 1 is a processing furnace, 2 is a container part, 3 is a vibrator, and 4
5 is a pressure reduction control valve, 5 is an instrument, 6 is a shadow mask which is an electrode part of a cathode ray tube, and 16 is an IA coating 20 which is an oxide film.
2 is an internal pressure gauge, and 21 is a discharge control valve.

なお、各図中同一符号は同一または相当部分を示す。Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)Fe材で形成されている陰極、管の電極部品、お
よびNi−Fe材で形成されている陰極線管の電極部品
とをそれぞれ別々に同一処理炉を用いて処理し、酸化性
雰囲気内でその表面に酸化膜を形成する処理方法におい
て、 前記酸化性雰囲気の置換をFe材の場合にはNi−Fe
材の場合よりも小さくすることを特徴とする、陰極線管
の電極部品の表面処理方法。
(1) The cathode and tube electrode parts made of Fe material, and the cathode ray tube electrode parts made of Ni-Fe material are each treated separately in the same processing furnace and placed in an oxidizing atmosphere. In the treatment method for forming an oxide film on the surface of the Fe material, the oxidizing atmosphere is replaced with Ni-Fe.
A method for surface treatment of electrode parts of cathode ray tubes, which is characterized by making the electrode parts smaller than that of materials.
(2)前記酸化性雰囲気の置換は、前記酸化性雰囲気を
形成するための酸化性ガスの前記処理炉内への供給量を
一定にし、かつ、前記酸化性雰囲気内のガスを前記処理
炉外へ排出することによって、前記処理炉内の内圧がF
e材の場合にはNi−Fe材の場合よりも高くなるよう
に制御されて行なわれる、特許請求の範囲第1項記載の
陰極線管の電極部品の表面処理方法。
(2) The replacement of the oxidizing atmosphere involves keeping the amount of oxidizing gas supplied into the processing furnace constant to form the oxidizing atmosphere, and removing the gas in the oxidizing atmosphere from outside the processing furnace. By discharging to F, the internal pressure in the processing furnace becomes F.
2. The method for surface treatment of electrode parts of a cathode ray tube according to claim 1, wherein the surface treatment is carried out in a controlled manner so that the surface treatment is higher in the case of e-material than in the case of Ni--Fe material.
(3)前記酸化性雰囲気の置換は、前記酸化性雰囲気を
形成するための酸化性ガスの前記処理炉内への供給量を
Fe材の場合にはNi−Fe材の場合よりも少なくし、
前記処理炉内の内圧がFe材の場合にはNi−Fe材の
場合よりも高くなるように制御されて行なわれる、特許
請求の範囲第1項記載の陰極線管の電極部品の表面処理
方法。
(3) The replacement of the oxidizing atmosphere involves reducing the amount of oxidizing gas supplied into the processing furnace for forming the oxidizing atmosphere in the case of Fe material than in the case of Ni-Fe material;
2. The method for surface treatment of electrode parts of a cathode ray tube according to claim 1, wherein the internal pressure in the treatment furnace is controlled to be higher in the case of Fe material than in the case of Ni-Fe material.
JP62134272A 1987-05-27 1987-05-27 Surface treatment method for electrode parts of cathode-ray tube Pending JPS63294644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134272A JPS63294644A (en) 1987-05-27 1987-05-27 Surface treatment method for electrode parts of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134272A JPS63294644A (en) 1987-05-27 1987-05-27 Surface treatment method for electrode parts of cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS63294644A true JPS63294644A (en) 1988-12-01

Family

ID=15124408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134272A Pending JPS63294644A (en) 1987-05-27 1987-05-27 Surface treatment method for electrode parts of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS63294644A (en)

Similar Documents

Publication Publication Date Title
JP2590182B2 (en) Blackening furnace and method of manufacturing shadow mask using this blackening furnace
US3345218A (en) Preoxidation of stainless steel for glass-to-metal sealing
JPH01201457A (en) Method for providing thermal black surface to metal constitutional member
US4596943A (en) Shadow mask for a color picture tube
JPS63294644A (en) Surface treatment method for electrode parts of cathode-ray tube
US6060112A (en) Color cathode ray tube and method of manufacturing the same
JPS55125267A (en) Surface treating method of improving abrasion resistance and corrosion resistance of iron and steel
JPS63277749A (en) Surface treatment of electrode part for cathode-ray tube
US1854926A (en) Process for carbon-coating electrodes
JPH07111871B2 (en) Shadow mask manufacturing method
JPS63294643A (en) Surface treatment method for electrode parts of cathode-ray tube
JPS63285841A (en) Surface treatment for electrode part of cathode-ray tube
EP0088122A4 (en) Large metal cone cathode ray tubes, and envelopes therefor.
JPS61211932A (en) Manufacture of indirectly-heated cathode
KR0164903B1 (en) Cathode ray tube
JPS6142838A (en) Color picture tube
JPS59105243A (en) Manufacture of shadow mask
JP2003073797A (en) Oxidation treatment method for shadow mask
JP2000017393A (en) Shadow mask for color cathode-ray tube
JPS6215733A (en) Manufacture of color picture tube
JPH11106893A (en) Blackening treatment of shadow mask
JPS6210841A (en) Color cathode-ray tube
KR100269364B1 (en) Bird Cage Mask of Color CRT
JPS59166682A (en) Intra-tube part
KR930007092B1 (en) Method of making a shadow mask