JPS6329453A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6329453A
JPS6329453A JP61174135A JP17413586A JPS6329453A JP S6329453 A JPS6329453 A JP S6329453A JP 61174135 A JP61174135 A JP 61174135A JP 17413586 A JP17413586 A JP 17413586A JP S6329453 A JPS6329453 A JP S6329453A
Authority
JP
Japan
Prior art keywords
base material
electrode base
fuel cell
anode electrode
undulations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61174135A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61174135A priority Critical patent/JPS6329453A/en
Publication of JPS6329453A publication Critical patent/JPS6329453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the output density without expanding the area of the fuel cell, by arranging to oppose each other the projections of the uneven surface of a cathode base material and the recesses of the uneven surface of an anode base material, and, the recesses of the former and the projections of the latter respectively. CONSTITUTION:The projections 3a of the uneven surface of a cathode base material 3 and the recesses 5b of the uneven surface of an anode base material 5 are arranged to oppose each other, while the recesses 3b of the cathode base material 3 and the projections 5a of the anode base material 5 are opposed each other. In such a composition, the length L2 to show the effective area is expanded about two times the standard length L1 to show the actual size of the fuel cell. Therefore, the output density can be increased up to two times without expanding the area of the cell, and a compact size can be realized.

Description

【発明の詳細な説明】 この発明は燃料電池の構造に関し、特に電池のコンパク
ト化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a fuel cell, and particularly to making the cell more compact.

〔従来の技術〕[Conventional technology]

周知の通り、燃料電池は対向して配置された燃料電極と
酸化剤電極の間に電解質を保持した電解質マトリックス
を介在させ、燃料電極および酸化剤電極にそれぞれ燃料
および酸化剤を供給して運転される一種の発電装置であ
る。
As is well known, a fuel cell is operated by interposing an electrolyte matrix holding an electrolyte between a fuel electrode and an oxidizer electrode arranged opposite each other, and supplying fuel and oxidizer to the fuel electrode and the oxidizer electrode, respectively. It is a type of power generation device.

燃料電池には、■カルノーサイクルの制約がなく高い効
率が期待できる、■電池作動温度に近い比較的高lユの
有効利用が容易な廃熱が1)られる、■出力を変えても
効率はあまり変わらない、■負荷変動に対する応答性に
すぐれているなどの利点があり、都市内もしくは都市近
郊に配電用変電所の規模で分散配置する、あるいは火力
発電所の代替発電装置とするへどの利用形態が考えられ
ている。
Fuel cells can be expected to have high efficiency because they do not have the constraints of the Carnot cycle; ■ generate waste heat that is relatively high and easy to use effectively, close to the cell operating temperature; and ■ have low efficiency even when the output is changed. It has the advantages of not changing much, ■ excellent responsiveness to load fluctuations, and can be used to distribute electricity within or near cities on the scale of distribution substations, or as an alternative power generation device to thermal power plants. The form is being considered.

燃ネ4電池は用いられる電解質の種類によってアルカリ
型、リン酸型、溶融炭酸塩型などに分類されるが、この
うちリン酸型は第一世代と呼ばれ最も開発が進んでおり
、すでに実用規模での試運転が行なわれている。
Fuel 4 batteries are classified into alkaline type, phosphoric acid type, molten carbonate type, etc. depending on the type of electrolyte used, but among these, the phosphoric acid type is called the first generation and is the most developed and is already in practical use. A large-scale trial run is underway.

燃料電池の構成については、特開昭59−184466
号公報などに記載されており、第5図に示す従来例が一
般的である。
Regarding the structure of the fuel cell, see Japanese Patent Application Laid-Open No. 59-184466.
The conventional example shown in FIG. 5 is common.

第5図において、(1)は電解質マトリックス、(2)
はカソード触媒層、(3)はカソード電極基材、(4)
はアノード触媒層、(5)はアノード電極基材、(6)
〜(7)はガス分離板、(8)はガス分M板に形成され
た酸化剤すなわち空気流路、(9)はガス分離仮に形成
された燃料流路である。
In Figure 5, (1) is an electrolyte matrix, (2)
is a cathode catalyst layer, (3) is a cathode electrode base material, and (4) is a cathode catalyst layer.
is an anode catalyst layer, (5) is an anode electrode base material, (6)
- (7) are gas separation plates, (8) is an oxidizing agent, that is, an air passage formed in the gas portion M plate, and (9) is a fuel passage temporarily formed for gas separation.

また図中り、 は任意の基準の距離を示し、L2はこれ
に対応する反応面の長さを示している。燃料電池の動作
原理については例えば雑誌(J、Electroche
m、Soc、、Vol 127 P1433〜P144
0(1980)”Voltage  Losses i
n Fuel Ce1l Cathode”R,P、[
czkoWski and M、B、Cutlip) 
に詳しく説明されているが、電池の出力としてはほぼ反
応面積に対応した出力が得られる。従って面を線で考え
てL2の長さについていえばL2の長さに対応した出力
が得られることになる。そして出力を太き(する為には
L2を大きくしなければならないが、L、とL2が一対
−で対応しているので燃料電池全体の大きさもこれに応
じて大きくしなければならない。
Further, in the figure, indicates an arbitrary reference distance, and L2 indicates the corresponding length of the reaction surface. Regarding the operating principle of fuel cells, for example, the magazine (J, Electroche
m, Soc,, Vol 127 P1433-P144
0 (1980)”Voltage Losses i
n Fuel Ce1l Cathode"R, P, [
czkoWski and M.B.Cutlip)
As explained in detail in , the output of the battery roughly corresponds to the reaction area. Therefore, considering the surface as a line and talking about the length of L2, an output corresponding to the length of L2 will be obtained. In order to increase the output, L2 must be increased, but since L and L2 correspond to each other, the overall size of the fuel cell must be increased accordingly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の燃料電池は以上のように構成されているので、燃
料電池全体の面積よりも反応面積を大きくすることはで
きず、従って出力密度を上げコンパクト化することが困
難であった。
Since conventional fuel cells are configured as described above, it is not possible to make the reaction area larger than the area of the entire fuel cell, and therefore it is difficult to increase the output density and make the fuel cell compact.

この発明は上記のような問題点を解消する為になされた
もので、燃料電池全体の面積を拡大することなく反応面
積を大きくし出力密度を高めてコンパクト化の可能な燃
料電池を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to obtain a fuel cell that can be made more compact by increasing the reaction area and increasing the output density without increasing the overall area of the fuel cell. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池は、カソード電極基材およびア
ノード電極基材の電解質マトリックス対向面にそれぞれ
起伏を設け、上記カソード電極基材の起伏の山部と上記
アノード電極基材の起伏の谷部および上記カソード電極
基材の起伏の谷部と上記アノード電極基材の起伏の山部
をそれぞれ対峙して配置したものである。
In the fuel cell according to the present invention, the surfaces of the cathode electrode base material and the anode electrode base material facing the electrolyte matrix are each provided with undulations, and the peaks of the undulations of the cathode electrode base material, the troughs of the undulations of the anode electrode base material, and The valleys of the undulations of the cathode electrode base material and the peaks of the undulations of the anode electrode base material are arranged to face each other.

〔作用〕[Effect]

この発明におけるカソード電極基材及びアノード電極基
材における起伏は反応面積を増大させる為、燃料電池全
体の面積よりも大きな反応面積が得られる。
In this invention, the undulations in the cathode electrode base material and the anode electrode base material increase the reaction area, so that a reaction area larger than the area of the entire fuel cell can be obtained.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による燃料電池を示す断面図で
あり、(3a)はカソード電極基材の起伏の山部、(3
b)はカソード電極基材の起伏の谷部、(5a)はアノ
ード電極基材の起伏の山部、(5b)はアノード電極基
材の起伏の谷部であり、図がら明らかなようにカソード
電極基材の起伏の山部(3a)とアノード電極基材の起
伏の谷部(5b)およびカソード電極基材の起伏の谷部
(3b)とアノード電極基材の起伏の山部(5a)とが
それぞれ対峙(対向)して配置されている。第1図の実
施例では電池の大きさを示す基準長さであるLlに対し
て、電池の有効面積を示す長さL2が2倍程度にまで拡
大されている。従って電池の面積を拡大することなく出
力密度を2倍にまで高めることができコンパクト化でき
る。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view showing a fuel cell according to an embodiment of the present invention, in which (3a) shows the undulating peaks of the cathode electrode base material, (3a)
b) is the valley of the undulations of the cathode electrode base material, (5a) is the peak of the undulation of the anode electrode base material, and (5b) is the valley of the undulations of the anode electrode base material. The undulating peaks (3a) of the electrode base material, the undulating valleys (5b) of the anode electrode base material, the undulating valleys (3b) of the cathode electrode base material, and the undulating peaks (5a) of the anode electrode base material are placed facing each other. In the embodiment shown in FIG. 1, the length L2, which indicates the effective area of the battery, is approximately twice as large as the standard length Ll, which indicates the size of the battery. Therefore, the output density can be doubled without increasing the area of the battery, and the battery can be made more compact.

第1図で示した起伏は線状(−次元的)にも面状(二次
元的)にも展開できる。第2図は起伏を8!伏に展開し
た実施例によるカソード電極基材を示す斜視図であり、
第3図は起伏を面状に展開した実施例によるカソード電
極基材を示す斜視図である。第3図のように起伏を面状
に展開した場合には、第2図のように線状に展開した場
合よりも有効面積はさらに拡大され、出力密度も増す。
The undulations shown in FIG. 1 can be developed linearly (-dimensionally) or planarly (two-dimensionally). Figure 2 has undulations of 8! FIG. 2 is a perspective view showing a cathode electrode base material according to an embodiment unfolded upside down;
FIG. 3 is a perspective view showing a cathode electrode base material according to an embodiment in which undulations are developed into a planar shape. When the undulations are developed into a planar shape as shown in FIG. 3, the effective area is further expanded and the output density is also increased compared to when the undulations are developed into a linear shape as shown in FIG.

なお、基材の起伏が面状に展開されている場合には、触
媒層および電解質マトリックスは上記基材へ塗布するこ
とにより形成されるのが好ましく、基材の起伏が線伏に
展開されている場合には、シート状の触媒層および電解
質マトリックスをも用いることができる。
In addition, when the undulations of the base material are developed in a planar shape, it is preferable that the catalyst layer and the electrolyte matrix are formed by coating on the above-mentioned base material, and the undulations of the base material are developed in a line shape. In some cases, sheet catalyst layers and electrolyte matrices can also be used.

さて、燃料電池の電池内部の重要な機能として”リザー
ブ機能゛がある。この機能については例えば特開昭53
−30747号公報に詳しく記載されているが、要する
に電解質の体積変化を基材の空孔で吸収するというもの
で、第1図の燃料電池についていえばアノード電極基材
(5)がカソード電極基材(3)あるいはその両方に1
0水処理を行なわないだけでこの゛リザーブi能”を付
加できるが、基材にリザーブされた電解質が反応ガスの
拡散を阻害する程度がカソード側の方が大きいのでリザ
ーブ機能はアノード側に付加するのが望ましい。また、
第4図に示すようにアノード電極基材の谷部(5b)に
おいてアノード触媒層(4)を欠如させ、代わりに例え
ば電解質マトリックス(11と同し材質などの親水性部
材O1を配設すれば電解質マトリックスfilとアノー
ド電極基材(5)との間での電解質のやりとりがよりス
ムーズになりリザーブ機能のa脂性をさらに高めること
ができる。
Now, an important function inside a fuel cell is the "reserve function".
This is described in detail in Publication No. 30747, but in short, the volume change of the electrolyte is absorbed by the pores of the base material.In the fuel cell shown in Figure 1, the anode electrode base material (5) is the cathode electrode base material. 1 for material (3) or both
This "reserve function" can be added just by not performing water treatment, but the electrolyte reserved in the base material inhibits the diffusion of the reaction gas to a greater degree on the cathode side, so the reserve function is added on the anode side. It is desirable to do so.Also,
As shown in FIG. 4, if the anode catalyst layer (4) is omitted in the valley (5b) of the anode electrode base material and a hydrophilic member O1, such as an electrolyte matrix (11) made of the same material, is provided instead. The exchange of electrolyte between the electrolyte matrix fil and the anode electrode base material (5) becomes smoother, and the a-lipidity of the reserve function can be further enhanced.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、カソード電極基材お
よびアノード電極基材の電解質マ) IJワックス向面
にそれぞれ起伏を設け、上記カソード電極基材の起伏の
山部と上記アノード電極基材の起伏の谷部および上記カ
ソード電極基材の起伏の谷部と上記アノード電酒基材の
起伏の山部をそれぞれ対峙して配置したので、燃料電池
全体の面積を拡大することなく反応面積を大きくでき、
電池の出力密度が高められる効果がある。
As described above, according to the present invention, undulations are provided on the electrolyte matrix of the cathode electrode base material and the anode electrode base material, respectively, and the peaks of the undulations of the cathode electrode base material and the anode electrode base material are formed. The valleys of the undulations, the valleys of the undulations of the cathode electrode base material, and the peaks of the undulations of the anode base material are arranged to face each other, so that the reaction area can be increased without increasing the overall area of the fuel cell. Can be made larger,
This has the effect of increasing the output density of the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による燃料電池を示す断面
図、第2図、第3図はそれぞれ第1図に示すカソード電
極基材の起伏の例を示す斜視図、第4図はこの発明の他
の実施例による燃料電池を示す断面図、第5図は従来の
燃料電池を示す断面図である。 図において、(1+は電解質マトリックス、(2)はカ
ソード触媒層、(3)はカソード電極基材、(3a)は
カソード電極基材の起伏の山部、(3b)はカソード電
極基材の起伏の谷部、(4)はアノード触媒層、(5)
はアノード電8ii基材、(5a)はアノード電極基材
の起伏の山部、(5b)はアノード電極基材の起伏の谷
部、(6)、(7)はガス分離板、(8)は酸化剤流路
、(9)は燃料流路である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。 代理人     大  岩  増  雄、ひっ
FIG. 1 is a sectional view showing a fuel cell according to an embodiment of the present invention, FIGS. 2 and 3 are perspective views showing an example of the undulations of the cathode electrode base material shown in FIG. 1, and FIG. FIG. 5 is a sectional view showing a fuel cell according to another embodiment of the invention, and FIG. 5 is a sectional view showing a conventional fuel cell. In the figure, (1+ is the electrolyte matrix, (2) is the cathode catalyst layer, (3) is the cathode electrode base material, (3a) is the peak of the undulations of the cathode electrode base material, and (3b) is the undulation of the cathode electrode base material. valley, (4) is the anode catalyst layer, (5)
is the anode electrode 8ii base material, (5a) is the undulating peak part of the anode electrode base material, (5b) is the undulating valley part of the anode electrode base material, (6), (7) is the gas separation plate, (8) (9) is an oxidant flow path, and (9) is a fuel flow path. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa, Hi

Claims (3)

【特許請求の範囲】[Claims] (1)電極基材とこれに設けた触媒層とを有するカソー
ド電極およびアノード電極を、電解質マトリックスを介
在し、上記触媒層同士を対向させて配置する単電池と、
上記カソード電極に対設する酸化剤流路および上記アノ
ード電極に対設する燃料流路を有するガス分離板とを備
える燃料電池において、上記カソード電極基材およびア
ノード電極基材の上記電解質マトリックス対向面にそれ
ぞれ起伏を設け、上記カソード電極基材の起伏の山部と
上記アノード電極基材の起伏の谷部および上記カソード
電極基材の起伏の谷部と上記アノード電極基材の起伏の
山部をそれぞれ対峙して配置したことを特徴とする燃料
電池。
(1) A unit cell in which a cathode electrode and an anode electrode each having an electrode base material and a catalyst layer provided thereon are arranged with an electrolyte matrix interposed therebetween and the catalyst layers facing each other;
In a fuel cell comprising a gas separation plate having an oxidant flow path facing the cathode electrode and a fuel flow path facing the anode electrode, the surfaces of the cathode electrode base material and the anode electrode base material facing the electrolyte matrix undulations are provided in each of the undulating peaks of the cathode electrode base material, the undulating troughs of the anode electrode base material, and the undulating troughs of the cathode electrode base material and the undulating peaks of the anode electrode base material. A fuel cell characterized by being arranged facing each other.
(2)アノード電極基材は撥水処理が施されていないも
のである特許請求の範囲第1項記載の燃料電池。
(2) The fuel cell according to claim 1, wherein the anode electrode base material is not subjected to water repellent treatment.
(3)アノード電極基材の起伏の谷部ではアノード触媒
層の代わりに親水性部材を配設した特許請求の範囲第1
項または第2項記載の燃料電池。
(3) A hydrophilic member is provided in place of the anode catalyst layer in the valleys of the undulations of the anode electrode base material.
2. The fuel cell according to item 1 or 2.
JP61174135A 1986-07-22 1986-07-22 Fuel cell Pending JPS6329453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174135A JPS6329453A (en) 1986-07-22 1986-07-22 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174135A JPS6329453A (en) 1986-07-22 1986-07-22 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6329453A true JPS6329453A (en) 1988-02-08

Family

ID=15973269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174135A Pending JPS6329453A (en) 1986-07-22 1986-07-22 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6329453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162653A (en) * 1988-12-14 1990-06-22 Mitsubishi Electric Corp Electrochemical unit cell and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162653A (en) * 1988-12-14 1990-06-22 Mitsubishi Electric Corp Electrochemical unit cell and manufacture thereof

Similar Documents

Publication Publication Date Title
JP2777287B2 (en) Electrochemical fuel cell using ambient air as oxidant and coolant
US20070248867A1 (en) Etched interconnect for fuel cell elements
CA2142757A1 (en) Solid oxide fuel cell stack
DK0749171T3 (en) High temperature fuel cell
WO2001039311A8 (en) Planar fuel cell utilizing nail current collectors for increased active surface area
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
JPH07254424A (en) Collector plate for molten carbonate fuel cell
CN109830732B (en) Pile structure of asymmetric flat plate structure high-temperature solid fuel cell
JPH06251790A (en) Fuel cell
JPH08203546A (en) Manufacture of fuel cell and flow path formation member used for it
JPS6329453A (en) Fuel cell
JP4344513B2 (en) Fuel cell
JP3378079B2 (en) Fuel cell
JP3280819B2 (en) Internal reforming molten carbonate fuel cell
JPH0521083A (en) Fuel cell
JPH09320616A (en) High output type solid oxide fuel cell having roughened interface between electrolytic film and electrode closely attached to the electrolytic film
JP3981578B2 (en) Fuel cell
JPS6343263A (en) Fuel cell
JP3153901B2 (en) Disc-stacked solid electrolyte fuel cell
JPH06140056A (en) Solid electrolytic fuel cell having inside manifold structure to increase current collecting rate
JPS6329454A (en) Fuel cell
JPH0418965U (en)
JPH09115528A (en) Flat solid electrolytic fuel cell with relaxed w-plane temperature distribution
JP2000067885A (en) Fuel cell