JPS63293321A - Vibration-proof bearing used in vibrational circumstance - Google Patents

Vibration-proof bearing used in vibrational circumstance

Info

Publication number
JPS63293321A
JPS63293321A JP12858187A JP12858187A JPS63293321A JP S63293321 A JPS63293321 A JP S63293321A JP 12858187 A JP12858187 A JP 12858187A JP 12858187 A JP12858187 A JP 12858187A JP S63293321 A JPS63293321 A JP S63293321A
Authority
JP
Japan
Prior art keywords
vibration
bearing
outer ring
inner ring
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12858187A
Other languages
Japanese (ja)
Inventor
Masamichi Takeuchi
竹内 正道
Masamichi Shibata
正道 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP12858187A priority Critical patent/JPS63293321A/en
Publication of JPS63293321A publication Critical patent/JPS63293321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To reduce the vibration and noise by making at least an inner ring, an outer ring, or a roller with a martensite type stainless steel which consists of Cr 12 to 18 wt% and C 0.6 to 1.0 wt%. CONSTITUTION:A bearing 11 consists of an inner ring 12, an outer ring 13, a conical roller 14, and a holder 15. At least for one of the inner ring 12, the outer ring 13, and the conical roller 14, preferably for both the inner ring 12 and the outer ring 13, a martensite type stainless steel which consists of Cr 12 to 18 wt% and C 0.6 to 1.0 wt% is used.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、振動環境下で用いられる制振軸受、さらに
詳しくは、たとえば自動車のトランスミッションなどの
歯車装置などに用いられる制振軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vibration damping bearing used in a vibration environment, and more particularly to a vibration damping bearing used in a gear device such as an automobile transmission.

従来の技術とその問題点 歯車装置においては、歯車の噛合い誤差などに起因する
振動や騒音が歯車を支持する軸受を通じてケースに伝わ
り、これが外部に放散されて問題となることが多い。
Conventional technology and its problems In gear devices, vibrations and noise caused by gear meshing errors are transmitted to the case through the bearings that support the gears, and are often radiated to the outside, causing problems.

たとえば自動車などのトランスミッションは、近年、軽
量化を目的としてアルミニウム合金でダイカストにより
作られており、アルミニウム合金は振動伝達性が高く、
制振性がないため、振動や騒音の外部への放散が大きい
という問題がある。また、高速回転化と環境の静粛性に
対する要求が高まっており、上記のような振動および騒
音を低減する必要性がより高くなっている。
For example, in recent years, transmissions for automobiles and other vehicles have been made by die-casting from aluminum alloys to reduce weight, and aluminum alloys have high vibration transmission properties.
Since it does not have vibration damping properties, there is a problem in that vibration and noise are largely dissipated to the outside. In addition, there are increasing demands for higher rotation speeds and quieter environments, and there is an increasing need to reduce the above-mentioned vibrations and noise.

一般的な制振方法として、軸受外輪とハウジングの間、
軸受内輪と軸の間または歯車と軸の間の少なくとも1箇
所に、たとえばシリコーンゴムなどの高分子材料、Cu
−Mn合金や12%Cr−Fe合金などの制振合金など
のような減衰性が高い材料で作ったライナを装着するの
が有効であることが知られている。
As a general vibration damping method, between the bearing outer ring and the housing,
At least one place between the bearing inner ring and the shaft or between the gear and the shaft is coated with a polymer material such as silicone rubber
It is known to be effective to install a liner made of a highly damping material such as a damping alloy such as a -Mn alloy or a 12% Cr-Fe alloy.

ところが、この方法には次のような問題がある。すなわ
ち、軸受外輪にライナを装着する場合は、軸受まわりが
大形化する。軸受内輪または歯車にライナを装着する場
合は、軸受もしくは歯車が大形化するかまたは軸径が小
さくなり軸強度が低下する。また、いずれの場合も、部
品点数および組立工数が増加し、費用の増大、精度の低
下を招く。
However, this method has the following problems. That is, when the liner is attached to the outer ring of the bearing, the area around the bearing becomes larger. When a liner is attached to a bearing inner ring or a gear, the bearing or gear becomes larger or the shaft diameter becomes smaller, resulting in a decrease in shaft strength. Furthermore, in either case, the number of parts and assembly man-hours increase, resulting in increased costs and decreased accuracy.

他の制振方法として、歯車や軸受内輪そのものを制振合
金で作ることも知られている。
Another known damping method is to make the gears and bearing inner rings themselves from damping alloys.

ところが、この方法には次のような問題がある。すなわ
ち、自動車などのトランスミッションに用いられる歯車
や軸受は接触面圧が200kgf/a+a+2あるいは
それ以上の高荷重を受けるため、その荷重に耐えて圧痕
を生じないようにあるいはころがり寿命を確保するよう
に、高炭素クロム軸受鋼(SUJ2など)を焼入れ、焼
戻ししたり、機械構造用合金肌焼鋼(SCr420など
)を浸炭焼入れ、焼戻しして表面部の硬さをHRC58
以上あるいは引張強さを約200 kgf / a+m
2として、十分な強度を与えるようにしている。これに
対し、従来の制振合金では、最も強度が高い種類の12
%Cr−Fe合金でも、硬さがHRB80 (HRC換
算不能)程度、引張強さが50kg1/1112程度と
強度が低く、自動車などのトランスミッションの歯車や
軸受には使用できない。
However, this method has the following problems. In other words, gears and bearings used in automobile transmissions are subjected to high loads with a contact surface pressure of 200 kgf/a+a+2 or more, so in order to withstand that load and not cause impressions or to ensure a long rolling life. Harden and temper high carbon chromium bearing steel (SUJ2, etc.), or carburize and temper alloy case hardened steel for machine structures (SCr420, etc.) to achieve surface hardness of HRC58.
or tensile strength of approximately 200 kgf/a+m
2, it is designed to provide sufficient strength. In contrast, conventional damping alloys have the highest strength, 12
Even %Cr-Fe alloy has low strength, with a hardness of about HRB80 (HRC cannot be converted) and a tensile strength of about 50 kg 1/1112, so it cannot be used for gears and bearings in transmissions of automobiles.

この発明の目的は、上記の問題を解決し、ライナなどの
制振部材を別に設ける必要がなく、しかも強度の高い振
動環境下で用いられる制振軸受を提供することにある。
An object of the present invention is to solve the above problems and provide a vibration damping bearing that does not require a separate vibration damping member such as a liner and can be used in a highly intense vibration environment.

問題点を解決するための手段 本発明者らは、制振合金の各種類の中で強度向上の可能
性が考えられるものとして、強磁性型のものに着目した
。強磁性型制振合金は、ひずみ振幅が大きくなるときま
たは静的応力負荷状態では振動減衰能が低下することが
知られているが、トランスミッションに用いられる軸受
では回転時の転勤繰返しにより生じる振動が問題で、静
的応力は問題にならず、ひずみ振幅も小さいことから、
実用の可能性が考えられた。
Means for Solving the Problems The present inventors have focused on ferromagnetic type damping alloys, as they have the potential to improve strength among various types of damping alloys. It is known that the vibration damping ability of ferromagnetic vibration damping alloys decreases when the strain amplitude increases or when static stress is applied. In the problem, static stress is not a problem and the strain amplitude is small, so
The possibility of practical use was considered.

そして、強磁性型制振合金としてCr−Fe合金を想定
し、軸受部品として必要な制振効果および強度を付与す
るためにCrおよびCの含有量について検討を重ねた結
果、この発明を完成した。
Assuming a Cr-Fe alloy as a ferromagnetic vibration damping alloy, the inventors completed this invention as a result of repeated studies on the content of Cr and C in order to provide the vibration damping effect and strength necessary for bearing parts. .

すなわち、この発明による振動環境下で用いられる制振
軸受は、内輪、外輪または転動体の少なくともいずれか
が、C「が12〜18重】%でCが0.6〜1.0重量
%であるマルテンサイト系ステンレス鋼よりなるもので
ある。
That is, in the vibration-damping bearing according to the present invention used in a vibration environment, at least one of the inner ring, outer ring, or rolling element contains 12 to 18% by weight of C and 0.6 to 1.0% by weight. It is made of a certain martensitic stainless steel.

CrおよびCを上記の範囲としたのは、次のような理由
による。Crが12%以下では制振効果が充分でなく、
18%以上では巨大炭化物が生じる。また、Cが0.6
%以下では硬さが不足し、1,0%以上としても効果が
ないばかりか巨大炭化物が生じる。
The reasons for setting Cr and C within the above ranges are as follows. If the Cr content is less than 12%, the damping effect will not be sufficient;
If it exceeds 18%, giant carbides are formed. Also, C is 0.6
If it is less than 1.0%, the hardness will be insufficient, and if it is more than 1.0%, not only will it be ineffective, but also giant carbides will be formed.

発明の作用および効果 この発明による振動環境下で用いられる制振軸受は、内
輪、外輪または転動体の少なくともいずれかが、C「が
12〜18重量%でCが0゜6〜1.0重量%であるマ
ルテンサイト系ステンレス鋼よりなるので、制振効果が
高く、強度も高い。したがって、この発明を適用した軸
受を用いれば、強度や転勤耐久性を減することなく、振
動、騒音を低減することができ、しかもライナなどの制
振部材を別に設ける必要がない。
Functions and Effects of the Invention In the vibration damping bearing used in a vibration environment according to the present invention, at least one of the inner ring, the outer ring, and the rolling elements has a C content of 12 to 18% by weight and a C content of 0°6 to 1.0% by weight. % martensitic stainless steel, it has a high vibration damping effect and high strength.Therefore, by using a bearing to which this invention is applied, vibration and noise can be reduced without reducing strength or transfer durability. Moreover, there is no need to separately provide a damping member such as a liner.

このため、部品点数が増加することがなく、軸受や軸受
まわりが大形化したり軸強度が低下するようなこともな
い。
Therefore, the number of parts does not increase, the bearing and its surroundings do not increase in size, and the shaft strength does not decrease.

実施例 次に、上記効果を実証するために、この発明の実施例を
例示する。
Examples Next, examples of the present invention will be illustrated in order to demonstrate the above effects.

第1図は、自動車のオートマチックトランスミッション
の中間軸(lO)を支持する円錐ころ軸受(11)にこ
の発明を適用した1例を示す。
FIG. 1 shows an example in which the present invention is applied to a tapered roller bearing (11) that supports an intermediate shaft (lO) of an automatic transmission of an automobile.

この軸受(11)は、内輪(12)、外輪(13)、円
錐ころ(14)および保持器(15)よりなる。内輪(
12)は、軸(10)に固定された歯車(1B)のボス
部(1θa)の外周にはめ止められている。外輪(13
)はトランスミッションケース(17)の軸受支持筒部
(1B)の内周にはめ止められている。軸受(11)の
内輪(12)、外輪(13)またはころ(14)の少な
くともいずれか好ましくは内輪(12)と外輪(13)
の両方にC「が12〜18重量%でCが0.6〜1゜0
重量%であるマルテンサイト系ステンレス鋼が使用され
る。
This bearing (11) consists of an inner ring (12), an outer ring (13), tapered rollers (14), and a cage (15). Inner circle (
12) is fitted onto the outer periphery of the boss portion (1θa) of the gear (1B) fixed to the shaft (10). Outer ring (13
) is fitted onto the inner periphery of the bearing support cylinder portion (1B) of the transmission case (17). At least one of the inner ring (12), outer ring (13), and rollers (14) of the bearing (11), preferably the inner ring (12) and the outer ring (13)
12 to 18% by weight of C and 0.6 to 1°0 of C.
% martensitic stainless steel is used.

この発明の効果を確認するため、内輪および外輪が浸炭
鋼(SAE5120)よりなる現状の円錐ころがり軸受
(比較例)と、内輪および外輪がCo、68%、Cr1
3%、SLo、31%、Mn0.69%、残部Feおよ
び不可避不純物のマルテンサイト系ステンレス鋼よりな
る同型の円錐ころ軸受(実施例)を作った。
In order to confirm the effects of this invention, we examined a current conical rolling bearing (comparative example) whose inner and outer rings are made of carburized steel (SAE5120) and an inner and outer ring made of Co, 68%, Cr1.
A tapered roller bearing of the same type (Example) was made of martensitic stainless steel containing 3% SLo, 31% Mn, 0.69% Mn, the balance Fe and unavoidable impurities.

そして、まず、台に固定した円筒状の実験用ケースに軸
を通し、ケースの一端部と軸の間に比較例と同様の補助
の軸受を装着するとともに、ケースの他端部と軸の間に
比較例と実施例を取替えて装着し、軸をモータにより回
転させた。
First, the shaft was passed through a cylindrical experimental case fixed on a stand, and an auxiliary bearing similar to the comparative example was installed between one end of the case and the shaft. The comparative example and the example were replaced and installed on the holder, and the shaft was rotated by a motor.

そして、比較例または実施例の外輪を受ける鋼製ハウジ
ング部に軸方向および径方向の振動ピックアップを取付
け、比較例または実施例の内輪と軸の間に設けた鋼製ス
リーブをインパルスハンマにより径方向に打振し、この
ときの入力振動に対し比較例または実施例を介して伝達
される外輪ハウジング部での出力振動の割合を伝達関数
として測定した。
Then, axial and radial vibration pickups were attached to the steel housing part that received the outer ring of the comparative example or example, and the steel sleeve provided between the inner ring and the shaft of the comparative example or example was moved in the radial direction using an impulse hammer. The ratio of the output vibration at the outer ring housing portion transmitted through the comparative example or the example to the input vibration at this time was measured as a transfer function.

その結果を第2図に示す。同図は、比較例および実施例
の予圧が16kgf−cm、軸の回転数が1000 r
pa+のときの軸方向振動に関するものである。
The results are shown in FIG. The figure shows that the preload of the comparative example and the example was 16 kgf-cm, and the shaft rotation speed was 1000 r.
This relates to axial vibration when pa+.

第2図の結果より、実施例の場合、比較例に比べ、約1
〜4KHzの周波数域にわたり、最大6 dBの減衰効
果が認められた。
From the results shown in Figure 2, in the case of the example, compared to the comparative example, it is found that approximately 1
A maximum attenuation effect of 6 dB was observed over the frequency range of ~4 KHz.

次に、200OCCクラスの乗用車の実機オートマチッ
クトランスミッションの中間軸の被駆動歯車側に比較例
と実施例を取替えて装着し、他の軸受は現状のままとし
て、これを運転した。
Next, the comparative example and the example were replaced and installed on the driven gear side of the intermediate shaft of an actual automatic transmission of a 200 OCC class passenger car, and the other bearings were left as they were and the vehicle was operated.

そして、トランスミッションケースに振動ピックアップ
を取付け、比較例または実施例を介してその近傍のトラ
ンスミッションケースに伝達される振動レベルを測定し
た。
Then, a vibration pickup was attached to the transmission case, and the vibration level transmitted to the nearby transmission case via the comparative example or the example was measured.

その結果を第3図に示す。同図(a)は入力トルク18
.0kg−mの加速時、同図(b)は入力トルク−3,
0kg−a+の減速時の結果を示す。
The results are shown in FIG. In the same figure (a), the input torque is 18
.. At the time of acceleration of 0 kg-m, the input torque is -3,
The results are shown when decelerating at 0 kg-a+.

第3図の結果より、ギヤノイズとして運転者にとって耳
障りな1〜3KHzの周波数域(車速としては30〜9
01v/hの多用速度域)において、実施例の場合、比
較例に比べて、とくに減速時では最大10dB程度の減
衰効果が認められた。
From the results shown in Figure 3, the frequency range of 1 to 3 KHz (vehicle speed of 30 to 9 KHz) is annoying to drivers as gear noise.
In the frequently used speed range of 0.01 v/h), in the case of the example, a maximum attenuation effect of about 10 dB was observed compared to the comparative example, especially during deceleration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の1実施例を示す円゛錐ころ軸受の主
要部の縦断面図、第2図は比較例と実施例のモデルによ
る試験結果を示すグラフ、第3図は同じく実機による試
験結果を示すグラフである。 (11)・・・円錐ころ軸受、(12)・・・内輪、(
13)・・・外輪、(14)・・・ころ。 以上 特許出願人  光洋精工株式会社 第1図
Fig. 1 is a vertical cross-sectional view of the main part of a tapered roller bearing showing one embodiment of the present invention, Fig. 2 is a graph showing test results using models of a comparative example and an example, and Fig. 3 is also based on an actual machine. It is a graph showing test results. (11)...Tapered roller bearing, (12)...Inner ring, (
13)...Outer ring, (14)...Roller. Patent applicant: Koyo Seiko Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 内輪、外輪または転動体の少なくともいずれかが、Cr
が12〜18重量%でCが0.6〜1.0重量%である
マルテンサイト系ステンレス鋼よりなる振動環境下で用
いられる制振軸受。
At least one of the inner ring, outer ring, or rolling element is made of Cr.
A vibration damping bearing used in a vibration environment, made of martensitic stainless steel containing 12 to 18% by weight of C and 0.6 to 1.0% by weight of C.
JP12858187A 1987-05-26 1987-05-26 Vibration-proof bearing used in vibrational circumstance Pending JPS63293321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12858187A JPS63293321A (en) 1987-05-26 1987-05-26 Vibration-proof bearing used in vibrational circumstance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12858187A JPS63293321A (en) 1987-05-26 1987-05-26 Vibration-proof bearing used in vibrational circumstance

Publications (1)

Publication Number Publication Date
JPS63293321A true JPS63293321A (en) 1988-11-30

Family

ID=14988291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12858187A Pending JPS63293321A (en) 1987-05-26 1987-05-26 Vibration-proof bearing used in vibrational circumstance

Country Status (1)

Country Link
JP (1) JPS63293321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207438A (en) * 2004-01-20 2005-08-04 Koyo Seiko Co Ltd Bearing device
JP2007024243A (en) * 2005-07-20 2007-02-01 Jtekt Corp Bearing device
JP2007309480A (en) * 2006-05-22 2007-11-29 Jtekt Corp Rolling bearing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207438A (en) * 2004-01-20 2005-08-04 Koyo Seiko Co Ltd Bearing device
JP2007024243A (en) * 2005-07-20 2007-02-01 Jtekt Corp Bearing device
JP4715354B2 (en) * 2005-07-20 2011-07-06 株式会社ジェイテクト Bearing device
JP2007309480A (en) * 2006-05-22 2007-11-29 Jtekt Corp Rolling bearing device
JP4650341B2 (en) * 2006-05-22 2011-03-16 株式会社ジェイテクト Rolling bearing device

Similar Documents

Publication Publication Date Title
KR100260570B1 (en) Differential gearing for automotive vehicle
WO2016056646A1 (en) Wheel bearing device
JP2002004003A (en) Rolling shaft
EP0462739A1 (en) Bearing isolator
US7758432B2 (en) Exterior joint part comprising a supporting disc
EP1939471A1 (en) Bearing device for wheel
EP3222884A1 (en) Gear and electric actuator provided with same
US7125173B2 (en) Bearing device
JPH11101247A (en) Rolling bearing part
JP2011220357A (en) Planetary gear device
WO2008059617A1 (en) Bearing device for wheel
JPS63293321A (en) Vibration-proof bearing used in vibrational circumstance
US7435008B2 (en) Vehicle pinion shaft support system
US6267511B1 (en) Rolling bearing
JPH05255809A (en) Bearing steel
JP2005138653A (en) Bearing device for wheel
EP1357308A3 (en) Rolling element bearing with ring or rolling elements made of chromium steel
JP3391345B2 (en) Rolling bearing
JP2005299837A (en) Rolling bearing device
JP2002070882A (en) Bearing device for driving wheel
JP2023037318A (en) Wheel bearing device
JP2005023997A (en) Roller and roller bearing
JP4872371B2 (en) Pinion shaft for planetary gear mechanism
JP2000074082A (en) Constant velocity joint
JP4320825B2 (en) Rolling bearing