JPS6329316A - Floating type magnetic head - Google Patents

Floating type magnetic head

Info

Publication number
JPS6329316A
JPS6329316A JP17298386A JP17298386A JPS6329316A JP S6329316 A JPS6329316 A JP S6329316A JP 17298386 A JP17298386 A JP 17298386A JP 17298386 A JP17298386 A JP 17298386A JP S6329316 A JPS6329316 A JP S6329316A
Authority
JP
Japan
Prior art keywords
chip
glass
magnetic head
air bearing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17298386A
Other languages
Japanese (ja)
Inventor
Hitoshi Iwata
仁志 岩田
Kazumi Noguchi
野口 一美
Shunichi Nishiyama
俊一 西山
Hajime Shinohara
篠原 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP17298386A priority Critical patent/JPS6329316A/en
Publication of JPS6329316A publication Critical patent/JPS6329316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PURPOSE:To attain the stable floating by injecting glass or resin into both sides of a magnetic chip. CONSTITUTION:A part of CaTiO3 to form an air bearing surface out of the surface to press a chip 8 is notched, the same glass is used to heat it to 450 deg.C and the glass is injected to the notched part. A notched part 18 is made parallel to the chip, and the clearance of the chip and an upper part 19 of the CaTiO3 to form the air bearing surface is made into 20mum. At the time of positioning of the chip, since a clearance is not provided between a lower part 0 of the CaTiO3 and the chip, no hindrance is caused to positioning, glass is heated in an electric furnace, the condition after the heated glass is injected is observed by a microscope, and it can be confirmed that the glass is injected the cutting- out part 18. Consequently, for the magnetic head, flatness of the air bearing surface after grinding and working are applied is satisfactory, and a stable floating can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置に係わり、記録媒体表面より
ごく僅か浮上させて用いる浮上型磁気ヘッドの平面度の
改良を目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to magnetic disk drives, and is aimed at improving the flatness of a flying magnetic head that is used in a way that is floated slightly above the surface of a recording medium.

〔従来の技術〕[Conventional technology]

磁気ディスク装置での情報の曹き込み2読み出しに用い
られる磁気ヘッドとしては例えばUSP−382341
6、%公昭57−569号に示されている様な、いわゆ
るウィンチェスタ型と呼ばれる浮上型磁気ヘッドが多く
使用されている。この浮上型磁気ヘッドにおいてはスラ
イダーの後端部に磁気変換ギャップを設け、全体は高透
磁率の酸化物磁性材料で構成されている。浮上型磁気ヘ
ッドは、磁気ディスクが静止している時にはスプリング
の力で軽く磁気ディスクに接触している。また磁気ディ
スクが回転している時には、磁気ディスク表面の空気が
動いてスライダー下面を持ち上げる力が作用する。その
ため磁気ヘッドは回転中は浮上し磁気ディスクから離れ
ている。この離れた間隔は浮上量と呼ばれる。磁気ディ
スク装置の高密度化のため浮上量は年々低下しており、
Dataquest社発行のComputer Str
age Industr)’ Seruice(Rig
id Disk Drive編)1984年版2.2−
6頁記載によると浮上量は10マイクロインチ(0,2
5μffりに迄なっている0かかるサブミクロンの浮上
量を磁気ディスクの回転中安定して保つためには、特K
ffl気ヘッドの空気ベアリング面の平面度を良好に保
つ必要がある0磁気ヘツドの浮上は、磁気ヘッドの浮上
面と媒体との極めて僅かの間隙に流れ込む空気流により
達成されるのであるから、浮上面の平面度が悪いと安定
した浮上を実現し得なくなるからである。上記US P
−3825416号に記載されたごとき磁気ヘッドの浮
上を司どる空気ベアリング面は、Ni −Znあるいは
Mn −Znフェライトの様な単一部材で形成されてお
り、良好な平面度を容易に得ることが出米九〇一方磁気
記録の高圧良化に伴ない、上記磁気ヘッドに代り、低イ
ンダクタンスおよび狭トラツク幅が得られる第10図に
示した様な、いわゆるコンボジフト型と呼ばれる浮上型
磁気ヘッドが注目されている0この磁気ヘッドはCaT
iOsの様な非磁性スライダー2中に設けたスリット6
に磁気ヘッドチップ3を埋設しガラスで溶着した構成よ
りなる。この磁気ヘッドの場合重要なことは、空気ベア
リング面の1万4(あるいは5)の端部に磁気ヘッドチ
ップ3が埋設されている事である。従って磁気へラドチ
ップの埋設されている部分も非磁性スライダー面と同様
に空気ベアリング部として作用するので、この部分の平
面度が良好な事が重要である。
For example, USP-382341 is a magnetic head used for reading information in a magnetic disk device.
A so-called Winchester-type flying magnetic head, as shown in 6.% Publication No. 57-569, is often used. In this floating magnetic head, a magnetic conversion gap is provided at the rear end of the slider, and the entire head is made of an oxide magnetic material with high magnetic permeability. A floating magnetic head lightly contacts the magnetic disk due to the force of a spring when the magnetic disk is stationary. Furthermore, when the magnetic disk is rotating, the air on the surface of the magnetic disk moves and exerts a force that lifts the bottom surface of the slider. Therefore, the magnetic head floats and is away from the magnetic disk during rotation. This separation is called the flying height. The flying height is decreasing year by year due to the increasing density of magnetic disk drives.
Computer Str published by Dataquest
age Industry)' Seruice(Rig
id Disk Drive edition) 1984 edition 2.2-
According to the description on page 6, the flying height is 10 microinches (0.2
In order to keep the submicron flying height, which has reached 5 μff, stable during the rotation of the magnetic disk, special K.
It is necessary to maintain good flatness of the air bearing surface of the magnetic head.The levitation of the magnetic head is achieved by the air flow flowing into the extremely small gap between the air bearing surface of the magnetic head and the medium. This is because if the flatness of the surface is poor, stable levitation cannot be achieved. Above USP
The air bearing surface that controls the flying of the magnetic head as described in No. 3825416 is formed of a single member such as Ni-Zn or Mn-Zn ferrite, and it is easy to obtain good flatness. On the other hand, with the improvement of high-pressure magnetic recording, a floating magnetic head called a so-called combo lift type, as shown in Fig. 10, which can obtain low inductance and narrow track width, has replaced the above-mentioned magnetic head. This magnetic head is attracting attention and is made of CaT.
A slit 6 provided in a non-magnetic slider 2 such as iOs
The magnetic head chip 3 is embedded in the magnetic head and welded with glass. What is important in this magnetic head is that the magnetic head chip 3 is embedded in the 14 (or 5) end of the air bearing surface. Therefore, since the part where the magnetic herad tip is buried also acts as an air bearing part in the same way as the non-magnetic slider surface, it is important that this part has good flatness.

第10図のごとき磁気ヘッドの従来の製造方法では、後
に詳述する様に磁気ヘッドチップの埋設されている部分
の平面度が悪いという欠点があった。
The conventional method for manufacturing a magnetic head as shown in FIG. 10 has a drawback in that the flatness of the portion where the magnetic head chip is buried is poor, as will be described in detail later.

〔発明が解決しようとする間肪点〕[The gap that the invention attempts to solve]

本発明は非磁性スライダーの空気ベアリング面の一端に
設けたスリット中に磁気ヘッドチップを埋設着定してな
る磁気ヘッドにおいて、ヘッドチップの埋設されている
部分の平面度が悪いという従来の欠点を解消し、安定に
浮上させることの出来る磁気ヘッドを得んとするもので
ある。
The present invention solves the conventional drawback of a magnetic head in which a magnetic head chip is embedded and fixed in a slit provided at one end of the air bearing surface of a non-magnetic slider, in which the flatness of the part where the head chip is embedded is poor. The objective is to solve this problem and to obtain a magnetic head that can be stably floated.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため従来技術の欠点の原因を種々検
討した結果、磁気へラドチップを埋設固着する除用いる
ガラスが、磁気ヘッドチップの両側に流入していない事
が原因であることが判明した。従って本発明では、この
ヘッドチップの両側に埋設固着用ガラス(あるいは樹脂
)を流入させる事を特徴とするものである0以下に実施
例を示し詳述する。
In order to achieve the above object, various causes of the shortcomings of the prior art were investigated, and it was found that the cause was that the glass used to embed and fix the magnetic head chip did not flow into both sides of the magnetic head chip. Therefore, the present invention is characterized in that glass (or resin) for embedding and fixing is flowed into both sides of the head chip.Examples will be described below in detail.

実り例に先立ち従来の技術に関し詳述する。第一  7
図は、第10図に示した磁気ヘッドを第10図中の矢印
Aの方向から眺めた側面図である。7は空気ベアリング
面で8が磁気ヘッドチップであυCaTiOxの(熱膨
張係数110x10−’deg−’ ) スライダーの
一端に押しつけられている。スリット9には斜線部とし
て示した様にガラスが充填されチップを固着している。
Prior to practical examples, the conventional technology will be explained in detail. 1st 7
10 is a side view of the magnetic head shown in FIG. 10, viewed from the direction of arrow A in FIG. 7 is an air bearing surface, and 8 is a magnetic head chip which is pressed against one end of a slider made of υCaTiOx (thermal expansion coefficient: 110x10-'deg-'). The slit 9 is filled with glass, as shown by the hatched area, to fix the chip.

10は磁気変換ギャップであり、15は巻線を施すため
の窓である。磁気へラドチップの埋設固着に際しては磁
気変換ギャップ10を所足の位置となる様に配置せねば
ならない為、チップ8は空気ベアリング面7の一端側へ
押し付けられ固着されるので、チップ8と空気ベアリン
グ面7との間には、ガラスが流入していない部分11が
存在する。かかる第7図に示した構成の磁気ヘッドを得
るには第8図に模式的に示した方法によυ作成される。
10 is a magnetic conversion gap, and 15 is a window for winding. When embedding and fixing the magnetic herad chip, the magnetic transducer gap 10 must be placed in the required position, so the chip 8 is pressed against one end of the air bearing surface 7 and fixed, so that the chip 8 and the air bearing There is a portion 11 between the surface 7 and the surface 7 into which no glass flows. In order to obtain the magnetic head having the structure shown in FIG. 7, υ is manufactured by the method schematically shown in FIG.

第8図においてチップ8は空気ベアリング部7の一端へ
押しつけ位置決めされた状態で、例えば位(脂17を用
いて仮固定される。
In FIG. 8, the chip 8 is pressed and positioned against one end of the air bearing portion 7, and is temporarily fixed using, for example, lubricant 17.

この後スリット9へ流入させるためのガラス16ヲ匝き
電気炉中にて加熱することによりガラス16はスリット
の間隙に流入し固着を終了する。かかるガラスとしては
、熱膨張係数90 X 10−’ deg−’軟化点4
50℃のものを用い540℃で流入させるのが望ましい
。固層後不要な分のガラスは除去され空気ベアリング面
の平面度を良好にするだめの研摩仕上げ加工が施され磁
気ヘッドが完成する。しかしながらこの従来技術では平
面度が良好でない。
Thereafter, the glass 16 to be flowed into the slit 9 is placed and heated in an electric furnace, whereby the glass 16 flows into the gap between the slits and finishes fixing. Such glass has a coefficient of thermal expansion of 90 x 10 degrees and a softening point of 4 degrees.
It is preferable to use one at 50°C and to flow in at 540°C. After solidification, unnecessary glass is removed and the air bearing surface is polished to a good level of flatness to complete the magnetic head. However, this conventional technique does not have good flatness.

第9図は第7図中12−15の線に沿って研摩加工を施
した後の平面度を触針式面粗さ計を用い測定した結果で
ある。第9図中左側の空気ベアリング面(CaTiOx
 )より右に向って面も粗くなく良好な平面度を示す。
FIG. 9 shows the results of measuring the flatness after polishing along the line 12-15 in FIG. 7 using a stylus type surface roughness meter. Air bearing surface on the left side in Fig. 9 (CaTiOx
) toward the right, the surface is not rough and exhibits good flatness.

しかし、ガラスの流入していないチップとCa Ti 
Osの境界部を境として図中右側のCaTiOsはこれ
より三個と平行でなく急激に平面度が悪くなっている。
However, chips without glass inflow and CaTi
The CaTiOs on the right side of the figure, with the Os boundary as a boundary, is not parallel to the three CaTiOs, and its flatness is rapidly worsening.

この原因について種々検討の結果発明者はチップの両側
にガラスを流入させれば解消出来る事を見い出した。以
下に実施例金示す0 〔実施例1〕 第1図は本発明の一実施例を示す図でろ9チツプ8を押
しつける面の内、空気ベアリング匍を形成するCa T
i O3の一部を切り欠き第8図に示した方法で同一ガ
ラスを用い450℃に加熱しガラスを流入させた。本実
施例では切υ欠き部18はチップと平行にしそのチップ
と空気ベアリング面を形成するCa Ti Osの上部
19との間隙を20μmとした。この方法によればチッ
プの位置決めに際しては、Ca Ti Osの下部20
とチップの間には間隙を設けないので位置決めKは何ら
支障をきたさない0電気炉中にて、加熱しガラスを流入
させた後の状態を顕微鏡観察した所、該切り欠き部18
にガラスが流入している事が確認された。この試料を研
摩後第7図12−13の線に沿って同様に面粗さを測定
した結果を第2図に示す。第2図中18ij切り欠いた
部分に流入したガラス部であり、左右のCaTiOs部
およびガラスIs i 8 、19さらKはチップ部全
体が極めて良好な平面度を示している。
As a result of various studies on the cause of this problem, the inventor found that it could be solved by flowing glass into both sides of the chip. Examples are shown below. [Example 1] Figure 1 is a diagram showing an example of the present invention. Among the surfaces against which the chip 8 is pressed, Ca T forming the air bearing hole is shown.
A part of iO3 was cut out and the same glass was heated to 450° C. and the glass was introduced in the manner shown in FIG. In this embodiment, the notch 18 is parallel to the chip, and the gap between the chip and the upper part 19 of CaTiOs forming the air bearing surface is 20 μm. According to this method, when positioning the chip, the lower part 20 of CaTiOs
Since there is no gap between the chip and the chip, there is no problem with the positioning K. When the glass was heated and introduced into the electric furnace, the state was observed under a microscope and the notch 18 was observed.
It was confirmed that glass was flowing into the area. After polishing this sample, the surface roughness was similarly measured along the line shown in FIG. 7, 12-13, and the results are shown in FIG. This is the glass portion that has flowed into the notched portion 18ij in FIG. 2, and the left and right CaTiOs portions and the glasses Is i 8 and 19K show extremely good flatness throughout the chip portion.

〔実施例2〕 第6図は、第1〆1と同様にチップの押しつけられるC
a Ti Os面の上部19とテップ8との闇に切り欠
きを設けるに当υ、チップと平行でなくチップとCa 
Ti Osの下部端22とは接触させ上部に向うに従っ
て間隙を連続的に大きくしたものであり、記録媒体に対
応する浮上面部でのチップとCa Ti Osとの間1
!J23を80μmとした。実施例1と同一ガラスを用
い同一温度で流入させた後観察すると斜めの切υ欠き部
21にガラスが流入していることが確認された。第4図
はこの様にしてガラスを流入させた後研摩加工を施し面
粗さを測定した結果である。この結果から容易に兄れる
様に、従来技術による結果である第9図に比べ極めて著
しい平面度の改良が図られている。
[Example 2] FIG. 6 shows C where the chip is pressed in the same way as in the first
a In order to make a notch between the upper part 19 of the TiOs surface and the tip 8, it is necessary to make the notch not parallel to the chip but between the chip and Ca.
The lower end 22 of the TiOs is in contact with the CaTiOs, and the gap is continuously increased toward the top, and the gap between the chip and the CaTiOs at the air bearing surface corresponding to the recording medium is 1.
! J23 was set to 80 μm. When the same glass as in Example 1 was used and observed after flowing at the same temperature, it was confirmed that the glass was flowing into the diagonal notch 21. FIG. 4 shows the results of measuring the surface roughness after glass was introduced in this manner and then polished. As can be easily seen from this result, the flatness has been significantly improved compared to the results of the prior art shown in FIG.

〔実施例3〕 本発明の要点は、ガラスを流入させチップをスライダー
に固着させるに当シ、チップの両側にガラスを流入させ
ることKある。実施例1,2ではスライダーに切り欠き
を設けチップの両側にガラスを流入させたが、かかる状
態はチップに切り欠きを設ける事によっても容易に実現
し得る。第5図はチップに切り欠きを設けた場合のガラ
スの流入状態を模式的に示したものであ)、チップ8が
(a Ti Osスライダーの上部19と接触する部分
で、チップに斜めの切り欠き部24を設けたものである
。切り欠きの大きさは横方向65μm縦方向50μmと
した。実施例1,2と同一のガラスを流入させた後の顕
微観察でこの切り欠き部とCaTiOxスライダーのi
J+隙21にガラスが流入していることが認められた。
[Embodiment 3] The key point of the present invention is to flow the glass into both sides of the chip to fix the chip to the slider. In Examples 1 and 2, a notch was provided in the slider to allow glass to flow into both sides of the chip, but such a state can also be easily achieved by providing a notch in the chip. Figure 5 schematically shows the glass inflow state when a notch is provided in the chip). A notch 24 was provided.The size of the notch was 65 μm in the horizontal direction and 50 μm in the vertical direction.The notch and the CaTiOx slider were observed under a microscope after the same glass as in Examples 1 and 2 was introduced. i of
It was observed that glass was flowing into the J+ gap 21.

第6因は試料の研摩後の面粗さ測定の結果であシ、左右
のCa Ti Os部左右のガラスおよびチップ部全体
く渡って屈曲のない良好な平面度を示している。
The sixth factor is the result of surface roughness measurement after polishing the sample, which shows good flatness with no bending throughout the left and right Ca Ti Os parts, the left and right glass, and the entire chip part.

以上実施例に詳述した様に本発明の磁気ヘッドは平面度
が良好であり、本効果はスライダーあるいはチップのい
ずれかあるいは両方を加工し、チップの両側にガラスを
流入させる事により達成される。このガラスの流入幅は
実施例1から判る様に20μm以上であれば良い。また
実施例ではガラスを用いてチップを固着する場合につい
て示したが、樹脂を用いて固着する場合についても同様
であることは自明である。
As detailed in the examples above, the magnetic head of the present invention has good flatness, and this effect is achieved by processing either the slider or the chip, or both, and flowing glass into both sides of the chip. . As can be seen from Example 1, the inflow width of this glass may be 20 μm or more. Furthermore, although the embodiments have shown the case where the chips are fixed using glass, it is obvious that the same applies to the case where the chips are fixed using resin.

〔発明の効果〕〔Effect of the invention〕

以上詳述した様に本発明による磁気ヘッドは研摩加工を
施した後の空気ベアリング面の平面度が良好でちゃ、安
定した浮上を実現出来るという効果を有し産業上の利用
価値大である。
As described in detail above, the magnetic head according to the present invention has the effect of realizing stable flying if the air bearing surface after polishing has good flatness, and has great industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1.3.5図は本発明の実施例において埋設すべきチ
ップとスライダーの状態および固着ガラスの流入状態を
示す図、第2.4.6図は第1゜6.5図各々の実施例
において研摩後の平面度を測定したチャート図、第7図
は従来技術によるガラス流入の状態を示す図であり、第
8図はガラスを流入させる方法を示す模式図、第9図は
従来技術による平面度の測定結果、第10図は磁気ヘッ
ドの外観図である。 3.8.テップ    4,5:空気ベアリング面9°
スリット部  16:ガラス棒 18.21 二切欠き部   19ニスライダー第 7
 図 悴2図 第 3 図 第4 図 第5図 第 6 図 a孕饗 第 72 第 8 図 1に 第 q 図
Figure 1.3.5 is a diagram showing the state of the chip and slider to be buried and the inflow state of fixed glass in the embodiment of the present invention, and Figure 2.4.6 is a diagram showing the implementation of each of Figures 1 and 6.5. In the example, the flatness after polishing is measured; FIG. 7 is a diagram showing the state of glass inflow according to the conventional technique; FIG. 8 is a schematic diagram showing the method of glass inflow; and FIG. 9 is the conventional technique. FIG. 10 is an external view of the magnetic head. 3.8. Step 4, 5: Air bearing surface 9°
Slit part 16: Glass rod 18.21 Two notches part 19 Nislider No. 7
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure a Conception Day 72 Figure 8 Figure 1 and Figure q

Claims (3)

【特許請求の範囲】[Claims] (1)スライダーの空気ベアリング面を形成するレール
部に設けられたスリット中に磁気チップを埋設しガラス
あるいは樹脂を流入させ固着した磁気ヘッドにおいて、
このチップの両側にガラスあるいは樹脂を流入させたこ
とを特徴とする浮上型磁気ヘッド。
(1) In a magnetic head in which a magnetic chip is embedded in a slit provided in the rail part that forms the air bearing surface of the slider and fixed by flowing glass or resin,
This floating magnetic head is characterized by having glass or resin injected into both sides of the chip.
(2)特許請求範囲記載第1項において、チップの両側
に流入させるガラスの幅を20μm以上としたことを特
徴とする浮上型磁気ヘッド。
(2) A floating magnetic head according to claim 1, characterized in that the width of the glass flowing into both sides of the chip is 20 μm or more.
(3)特許請求範囲記載第2項においてスライダーの巻
線窓より上部の部分に該スライダーに切り欠きを設ける
こと、あるいは巻線窓より上部に担当するチップ部に切
り欠きを設けガラスを流入することを特徴とする浮上型
磁気ヘッド。
(3) In claim 2, a cutout is provided in the slider above the winding window, or a cutout is provided in the corresponding chip part above the winding window to allow glass to flow in. A floating magnetic head characterized by:
JP17298386A 1986-07-23 1986-07-23 Floating type magnetic head Pending JPS6329316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17298386A JPS6329316A (en) 1986-07-23 1986-07-23 Floating type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17298386A JPS6329316A (en) 1986-07-23 1986-07-23 Floating type magnetic head

Publications (1)

Publication Number Publication Date
JPS6329316A true JPS6329316A (en) 1988-02-08

Family

ID=15951992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17298386A Pending JPS6329316A (en) 1986-07-23 1986-07-23 Floating type magnetic head

Country Status (1)

Country Link
JP (1) JPS6329316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211211A (en) * 1988-02-18 1989-08-24 Matsushita Electric Ind Co Ltd Composite type floating magnetic head
JPH027220A (en) * 1988-06-27 1990-01-11 Matsushita Electric Ind Co Ltd Composite magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211211A (en) * 1988-02-18 1989-08-24 Matsushita Electric Ind Co Ltd Composite type floating magnetic head
JPH027220A (en) * 1988-06-27 1990-01-11 Matsushita Electric Ind Co Ltd Composite magnetic head

Similar Documents

Publication Publication Date Title
US6016290A (en) Read/write head with shifted waveguide
US8035929B2 (en) Magnetic head assembly and magnetic tape driving apparatus
KR100249050B1 (en) Magneto-resistive effect type head with step or protrusion for reducing thermal asperity
US20050094315A1 (en) Hard disk drive for perpendicular recording with transducer having submicron gap between pole tips
KR100520017B1 (en) Magnetoresistance effect device, magnetic head and magnetic reproducing apparatus
JP3990197B2 (en) Thin film magnetic head
KR100858076B1 (en) Head apparatus and disc drive having the same
JP2006260687A (en) Magnetoresistance effect type reproducing head
US4982301A (en) Magnetic head for perpendicular magnetic recording system and process
JPS6329316A (en) Floating type magnetic head
US4485419A (en) Complementary pole coupling magnetic head structure
JP4405234B2 (en) Thin film magnetic head polishing method
JPH06101090B2 (en) Floating type composite magnetic head
US4458280A (en) Servo writing transducer design and writing method
JP2007059015A (en) Manufacturing method of slider
KR100905720B1 (en) Electric field read/write head and method for manufacturing the same and information storage device comprising electric field read/write head
US3764756A (en) Magnetic head assembly with irregularly shaped aperture structure
US5572385A (en) Flying magnetic head and flying magnetic head assembly
JPS59151334A (en) Magnetic head
JP2006059501A (en) Manufacturing method of slider
JPS60164914A (en) Thin film magnetic head
EP0508471B1 (en) Flying-type magnetic heads
JPH06103515A (en) Production of floating magnetic head
JP2006099907A (en) Magnetic disk device and magnetic head slider
JPH0521310U (en) Thin film magnetic head