JPS63292838A - Propagation delay adjusting system - Google Patents
Propagation delay adjusting systemInfo
- Publication number
- JPS63292838A JPS63292838A JP62128973A JP12897387A JPS63292838A JP S63292838 A JPS63292838 A JP S63292838A JP 62128973 A JP62128973 A JP 62128973A JP 12897387 A JP12897387 A JP 12897387A JP S63292838 A JPS63292838 A JP S63292838A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- base station
- bits
- subscriber
- bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000005236 sound signal Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101001093690 Homo sapiens Protein pitchfork Proteins 0.000 description 1
- 102100036065 Protein pitchfork Human genes 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Landscapes
- Time-Division Multiplex Systems (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔m 要〕
無線TDM八方へでは局間伝搬遅延の調整が必要である
が、これを、バースト送信信号にガードビットを設ける
ことでそのビ゛フト内調整を不必要にし、また専用タイ
ムスロットにより常時運用中の自動調整が可能とした。[Detailed description of the invention] [M Required] Adjustment of inter-station propagation delay is required in wireless TDM, but by providing guard bits in the burst transmission signal, intra-byte adjustment can be made unnecessary. In addition, dedicated time slots enable automatic adjustment during continuous operation.
本発明は、無線通信の時分割多重アクセス(TDMA:
Tia+e Division Multipl
e Access)方式で必要な局間伝搬遅延時間の
調整方式に関する。The present invention utilizes time division multiple access (TDMA) for wireless communications.
Tia+e Division Multipl
This invention relates to a method for adjusting the inter-station propagation delay time required in the e-Access method.
無線TDMA方式はディジタル加入者無線などに用いら
れ、これは第5図に示すように1つの基地局と複数の加
入者#1〜#nを対象とし、各加入者は基地局とまたこ
れを通して他の加入者と交信する。The wireless TDMA system is used for digital subscriber wireless, etc., and targets one base station and multiple subscribers #1 to #n, as shown in Figure 5, and each subscriber communicates with and through the base station. Communicate with other subscribers.
第6図に示すように加入者は、ディジタル端末装置10
、加入者用無線回線終端装置12、および加入者用無線
送受信装置14を備え、また基地局は基地局用無線送受
信装置16、基地局用無線回線終端装置18、監視制御
装置20、および監視制御卓22を備え、これらの送受
信装置14゜16間で例えば26GH2帯での時分割多
重アクセスTDMAを行なう、 TDMAであるから各
加入者は自己に与えられたタイムスロットを用いて送受
信する。As shown in FIG.
, a subscriber wireless line terminating device 12, and a subscriber wireless transmitting/receiving device 14, and the base station includes a base station wireless transmitting/receiving device 16, a base station wireless line terminating device 18, a supervisory control device 20, and a supervisory control device. It is equipped with a desk 22, and performs time division multiple access TDMA in, for example, the 26GH2 band between these transmitting and receiving devices 14 and 16. Since it is TDMA, each subscriber transmits and receives data using the time slot given to him/her.
基地局から加入者局への下り信号はフレーム同期形式の
連続信号で、各加入者はフレーム同期後に自局宛のタイ
ムスロット内データを取出し、処理する。下り信号の発
信元は基地局1つであるが、加入者から基地局への上り
信号は最大加入者数だけあり、各加入者が一斉に発信し
く但し、各々のタイムスロットにおいて)、これはバー
スト信号と呼ばれる。バースト信号は基地局へ、各々に
割当てられたタイムスロットにおいて厳密に正確に到達
する必要があり、到達時間帯に遅、進があると、隣の加
入者のタイムスロットと重なる(バースト間干渉を生じ
る)ことになる。そこで各加入者の送信タイミングの調
整が必要であり、そして各加入者と基地局との間の距離
はまちまちそして各加入者の使用機器の特性は非均−で
あるのが普通であるから、上記調整は各加入者毎に行な
うことになる。The downlink signal from the base station to the subscriber station is a continuous signal in a frame synchronization format, and each subscriber extracts and processes data within a time slot addressed to the subscriber station after frame synchronization. The source of the downlink signal is one base station, but there are as many uplink signals from subscribers to the base station as the maximum number of subscribers, and each subscriber transmits at the same time (in each time slot). This is called a burst signal. Burst signals must arrive at the base station exactly in the time slots assigned to each base station, and if there is a delay or lead in the arrival time, the burst signal will overlap with the time slot of an adjacent subscriber (to prevent inter-burst interference). occur). Therefore, it is necessary to adjust the transmission timing of each subscriber, and the distance between each subscriber and the base station varies, and the characteristics of the equipment used by each subscriber are usually non-uniform. The above adjustment will be made for each subscriber.
従来、遅延調整は回線設定時(初期立上げ時)に、測定
器などを用いてマニュアルで行なっていた。これは、複
数局の送信信号(各加入者からのバフスト信号)が時間
軸で干渉を起さないためにはlビット(クロック速度)
内の微小時間の調整例えばクロック速度を32分割した
単位での調整を必要とし、調整の判断に人手を要してい
たことに依る。自動調整も可能であるが、これは遅延時
間検出及び制御に複雑な回路を要する。またこの自動調
整はシステム現調時の調整を目的とし、夏季と冬季の温
度の差による局間伝搬遅延時間変動(この遅延時間は空
間伝搬時間と装置内使用部品の伝搬遅延時間の和であり
、後者は温度で変る)には追随できない。Traditionally, delay adjustment was done manually using a measuring device during line setup (initial startup). This requires l bits (clock speed) in order to prevent transmission signals from multiple stations (buffed signals from each subscriber) from interfering on the time axis.
This is due to the fact that adjustment of the minute time within, for example, adjustment in units of 32 divisions of the clock speed is required, and human labor is required to judge the adjustment. Automatic adjustment is also possible, but this requires complex circuitry for delay time detection and control. In addition, this automatic adjustment is intended for adjustment during system on-site adjustment, and changes in inter-station propagation delay time due to temperature differences between summer and winter (this delay time is the sum of the spatial propagation time and the propagation delay time of parts used within the equipment). , the latter changes with temperature) cannot be followed.
本発明は、■伝搬遅延の微開を不要とし、■システム立
上げ時に自動的に遅延調整が行なわれ、■運用時の遅延
時間変動も自動的に検出、補正できるようにして、上記
の点を改善しようとするものである。The present invention achieves the above points by: (1) eliminating the need to slightly increase the propagation delay, (2) automatically adjusting the delay at the time of system startup, and (2) automatically detecting and correcting delay time fluctuations during operation. This is an attempt to improve.
本発明では上り信号の前後に複数ビットのガードを配置
する。第2図は上り及び下り信号のフォーマット例(1
スロット分)を示すが、各々同じ長さくビット数)を持
ち、下り信号はドントケア(何でもよい)信号D’Cが
しばらく続いたのち、PCM変換された音声信号又はデ
ータ■Sが続き、その後に通話チャンネル制御用信号S
、ドントケアDC,パリティP1及びドントケアDCが
続(。In the present invention, multiple bits of guard are placed before and after the upstream signal. Figure 2 shows an example of the format of uplink and downlink signals (1
slots), but each has the same length and number of bits), and the downstream signal is a don't care (anything goes) signal D'C that continues for a while, followed by a PCM-converted audio signal or data ■S, and then Call channel control signal S
, Don't Care DC, Parity P1 and Don't Care DC follow (.
また上り(バースト)信号は複数ビットのガードGをと
った後プリアンプルPRE、上り回線バースト信号のた
めの同期パターン5YNCとし、これに、PCM変換さ
れた音声信号又はデータvSを続け、その後に通話チャ
ンネル制御用信号S、ドントケアDC、パリティビット
Pと続け、最後にはまた複数ビットのガードGを置(。In addition, the uplink (burst) signal is subjected to multiple bits of guard G, followed by a preamble PRE and a synchronization pattern 5YNC for uplink burst signals, followed by a PCM-converted voice signal or data vs, and then a call. Channel control signal S, don't care DC, parity bit P, and finally multiple guard bits G (.
また本発明では基地局の上リバースト信号の受信回路を
第1図に示すように構成する。第1図で30は復調器、
32はクロック抽出回路、34はパターン一致検出回路
、36はFIFO(First InFirst 0
ut)レジスタ、38はインヒビットゲートである。Further, in the present invention, the base station's upper reversal signal receiving circuit is configured as shown in FIG. In Fig. 1, 30 is a demodulator;
32 is a clock extraction circuit, 34 is a pattern matching detection circuit, and 36 is a FIFO (First In First 0
ut) register, 38 is an inhibit gate.
また本発明では上り信号のアクジションチャンネルを用
いて基地局が位相差を検出し、それを下り信号の制御チ
ャンネルを用いて加入者へ通知し、遅延調整させるが、
第3図に無線フレーム形式を、第4図にその上り信号の
アクジションチャンネルACQのフォーマットを示す。Furthermore, in the present invention, the base station detects the phase difference using the acquisition channel of the uplink signal, notifies the subscriber of this using the control channel of the downlink signal, and adjusts the delay.
FIG. 3 shows the radio frame format, and FIG. 4 shows the format of the acquisition channel ACQ of the uplink signal.
第3図に示されるように、1フレームは1つのTSO(
タイムスロットゼロ)と複数のVCH(ボイス/データ
チャンネル)からなり、後者は基地局と加入者局間の音
声又はデータの送受信に、また前者は制御用に用いられ
る。TSOは下り信号aでは下り回線フレーム同期パタ
ーンF1制御チャンネルCNTL、ドントケアDC,及
びオーダワイヤ(打合せ回線指定)OWからなり、上り
信号すではガードビットG、制御チャンネルCNTL、
アクジションチャンネルACQ、およびオーダワイヤO
Wからなる。また第4図に示されるようにアクジション
チャンネルACQは前後に多量のガードビットGをとっ
ており、これらで挾んでプリアンプルPRE、上り回線
バースト信号のための同期パターン5YNC,アクジシ
ョンパターンACQ PTN、局識別コード5T10
、ドントケアDC1誤り検出゛符号CRCをおく。As shown in Figure 3, one frame consists of one TSO (
It consists of a time slot zero) and a plurality of VCHs (voice/data channels), the latter used for transmitting and receiving voice or data between the base station and subscriber stations, and the former used for control. TSO consists of the downlink frame synchronization pattern F1 control channel CNTL, don't care DC, and order wire (meeting line designation) OW in the downlink signal a, and the guard bit G, control channel CNTL, and
Acquisition channel ACQ and order wire O
Consists of W. In addition, as shown in FIG. 4, acquisition channel ACQ has a large number of guard bits G before and after, and these are used to control preamble PRE, synchronization pattern 5YNC for uplink burst signals, and acquisition pattern ACQ PTN. , station identification code 5T10
, put a don't care DC1 error detection code CRC.
第2図に示すようにタイムスロット間に数ビットのガー
ドGを置き、上り信号送出期間は期間Tbのみにすると
、加入者の上り信号送信タイミングが前後に残り1ビツ
トまで移動しても隣接チャンネルに悪影響を与えること
がない(但し、バースト間干渉はフィルタ特性など、他
の要因にも依る)。As shown in Fig. 2, if several bits of guard G are placed between time slots and the uplink signal transmission period is only period Tb, even if the subscriber's uplink signal transmission timing moves back or forth by one bit, the adjacent channel (However, inter-burst interference also depends on other factors such as filter characteristics).
加入者のバースト送信タイミングは、1ビット単位で調
整できるように送信装置を設計しておく。The transmitter is designed so that the subscriber's burst transmission timing can be adjusted in units of one bit.
1ビツト以下のタイミング誤差は、第1図の受信回路で
吸収できる。即ち加入者がバースト信号を送出すると、
これは第1図の受信回路で受信され、その復凋器30で
復調され、復調出力を受けるクロック抽出回路32はそ
のプリアンプルPRE(第2図)からクロックを抽出し
くPLLを内蔵しており、その出力クロックをプリアン
プルに同期させる)、ゲート38及び検出回路34へこ
れを送る。同様に復調出力を受けるパターン一致検出回
路34はその同期パターン5YNC(第2図)を、内蔵
している予定のパターンと比較して一致すると同期検出
出力を生じてゲート3Bの禁止を解く。この結果クロッ
ク抽出回路32が出力するクロックが該ゲート38を通
り、FIFOし゛ラスタ36に書込みクロック−CLK
として入って復調出力の音声信号VS部分を該レジスタ
36に逐次取込ませる。この書込みと同時に読取りクロ
ックRCLKがFIFOレジスタに入り、書込んだ音声
信号を逐次読出す。FIFOレジスタはバッファとして
機能するから、読出しクロックRCLKは書込みクロッ
クWCLKと同期している必要はない、この受信回路で
はパターン一致検出回路で予定パターンとの一致検出で
同期パターン5YNCを検出し、それ以後の所定数ビッ
トを音声信号VSとしてFIFOレジスタ36に取込む
という方法をとるので、1ビツト内位相ずれは吸収され
て支障にはならない。Timing errors of 1 bit or less can be absorbed by the receiving circuit shown in FIG. That is, when a subscriber sends out a burst signal,
This is received by the receiving circuit shown in Fig. 1, demodulated by the demodulator 30, and the clock extraction circuit 32 which receives the demodulated output has a built-in PLL to extract the clock from the preamble PRE (Fig. 2). , whose output clock is synchronized to the preamble), and sends it to gate 38 and detection circuit 34. Similarly, the pattern matching detection circuit 34 which receives the demodulated output compares the synchronization pattern 5YNC (FIG. 2) with the built-in scheduled pattern and, if they match, generates a synchronization detection output and releases the inhibition of the gate 3B. As a result, the clock output from the clock extraction circuit 32 passes through the gate 38 and is written to the FIFO raster 36 as the write clock -CLK.
The audio signal VS portion of the demodulated output is input into the register 36 one after another. At the same time as this writing, the read clock RCLK enters the FIFO register, and the written audio signals are sequentially read out. Since the FIFO register functions as a buffer, the read clock RCLK does not need to be synchronized with the write clock WCLK.In this receiving circuit, the pattern match detection circuit detects synchronization pattern 5YNC by detecting a match with the scheduled pattern, and thereafter Since a method is adopted in which a predetermined number of bits of the audio signal VS are taken into the FIFO register 36 as the audio signal VS, a phase shift within one bit is absorbed and does not pose a problem.
この第1図、第2図の、ガードビットGを設けること及
び、受信信号からクロックを抽出し、同期パターンを検
出してそれ以後のデータを取込むという方法で、伝搬遅
延の微調は不要になる。By providing the guard bit G shown in Figures 1 and 2, extracting the clock from the received signal, detecting the synchronization pattern, and capturing subsequent data, fine adjustment of the propagation delay is no longer necessary. Become.
基地局での受信データの取込みには通常、基地局で発生
したクロックで復調出力を打抜くという方法が採られる
が、この方法では復調出力とクロックの位相が正しく合
っていなければならず(データの中央をクロックが打抜
く必要があり)、このため加入者送信タイミングの微国
整が必要であるが、第1図の回路ではこの必要がない。To acquire received data at a base station, a method is usually adopted in which the demodulated output is punched using a clock generated at the base station, but with this method, the phase of the demodulated output and the clock must match correctly (data (The clock needs to be punched through the center of the line), which requires slight adjustment of the subscriber transmission timing, but this is not necessary in the circuit shown in FIG.
自動遅延調整は上り信号のACQ及び下り信号のCNT
Lを用いて行なうことができる。システム立上げ時には
加入者は適当なタイミングで(但し下り信号は受信して
いるからそのTSOに入るように)第3図の上り信号b
(但しこれはACQのみ)を送出する。基地局ではこれ
を受信して第4図のΔ印で示す5YNCとACQ P
TNの境界を検出し、当該加入者が正しく自己のスロッ
トへ送信する場合の該境界の位置(基準)とのずれをビ
ット数で求め、そのずれ(ビット数)を第一0図の下り
信号aの制御チャンネルCNTLを用いて当該加入者局
へ通知する。これを受けて加入者局は上り信号の送信タ
イミングを指定されたずれがOになるように自動調整す
る。Automatic delay adjustment uses ACQ for upstream signals and CNT for downstream signals.
This can be done using L. When starting up the system, the subscriber receives the upstream signal b in Figure 3 at an appropriate timing (however, since the downstream signal is being received, the subscriber enters the TSO).
(However, this only sends ACQ). The base station receives this and transmits 5YNC and ACQ P as shown by Δ in Figure 4.
Detect the boundary of the TN, calculate the deviation from the position (reference) of the boundary in the number of bits when the subscriber correctly transmits to its own slot, and calculate the deviation (number of bits) as the downlink signal in Figure 10. A notification is sent to the subscriber station using the control channel CNTL of a. In response to this, the subscriber station automatically adjusts the transmission timing of the uplink signal so that the specified deviation becomes O.
この遅延調整を運用中に定期的に行なうと、経時変化等
による遅延発生を阻止することができる。If this delay adjustment is performed periodically during operation, it is possible to prevent delays caused by changes over time.
この場合の遅延調整は、運用中に基地局より下り信号の
制御チャンネルCNTLを用いて加入者に指示し、上記
の如<ACQを送出させることにより行なうことができ
る。The delay adjustment in this case can be performed by instructing the subscriber from the base station during operation using the control channel CNTL of the downlink signal, and having the subscriber send out <ACQ as described above.
システム立上げ時、複数の加入者局が同時にアクジショ
ン(A CQ)パターンを送出することも考えられる。When starting up the system, it is conceivable that multiple subscriber stations simultaneously send out acquisition (ACQ) patterns.
この場合は基地局で互いに干渉してしまい、基地局では
これをCRCチェックで知って何もしない。加入者は基
地局からの回答がないので所定時間後に再びACQを上
げるが、この再試行時間は各加入者局で異ならせておい
て今度は同時送出が行なわれないようにする等の方法が
採られる。In this case, the base station will interfere with each other, and the base station will know this by checking the CRC and do nothing. Since the subscriber does not receive a response from the base station, the subscriber raises the ACQ again after a predetermined period of time, but it is possible to set this retry time to be different for each subscriber station so that simultaneous transmission will not occur this time. taken.
具体例を挙げると、第2図の上り/下り信号(打合せ及
び通話チャンネル)は共に308ビツトで(第3図のV
CHの1つに相当)、その最初の4.16.16各ビツ
トが下り信号ではドントケアDCに、上り信号ではガー
ドビットG、プリアンプルPRE、同期パターン5YN
Cになる。中央の256ビツトは音声信号又はデータに
割当てられ、残る10.1.1.4各ビツトが下り信号
では通話チャンネル制御用信号S、ドントケアDC。To give a specific example, the upstream/downstream signals (meeting and call channels) in Figure 2 are both 308 bits (V in Figure 3).
(corresponding to one of the CHs), the first 4, 16, 16 bits are don't care DC in the down signal, guard bit G, preamble PRE, and synchronization pattern 5YN in the up signal.
It becomes C. The middle 256 bits are assigned to voice signals or data, and the remaining 10.1.1.4 bits are used for the communication channel control signal S and don't care DC in the downstream signal.
パリティP1ドントケアDCに、また上り信号では同じ
<S、DC,PおよびガードビットGに割当てられる。Parity P1 is assigned to don't care DC, and the same <S, DC, P and guard bit G are assigned to the upstream signal.
プリアンプルPREのパターンは1010・・・・・・
であり、ドントケアDCはオール1とする。The pattern of preamble PRE is 1010...
, and the don't care DCs are all 1.
第3図で、1フレームは8192ビツト、時間で4m
S s従ってビットレートは2048K b / Sで
ある。In Figure 3, one frame is 8192 bits, and the time is 4m.
S s so the bit rate is 2048K b/S.
この1フレームの800ビツトをタイムスロットゼロT
SOが、残る7392ビツトを各308ビツトのボイス
チャンネルVCH#1〜#24が占める。This 800 bits of one frame are stored in time slot zero T.
The remaining 7392 bits of SO are voice channels VCH #1 to #24 of 308 bits each.
TSOは16,272,204.308各ビツトに区分
され、これらは下り信号では同期パターンF1制御チャ
ンネルCNTL、 ドントケアDC,およびオーダワ
イヤOWが、また上り信号ではガードピント01制御チ
ヤンネルCNTL、アクジシッンチャンネルACQ、オ
ーダワイヤOWが占める。The TSO is divided into 16,272,204.308 bits, and these are the synchronization pattern F1 control channel CNTL, don't care DC, and order wire OW for the downlink signal, and the guard focus 01 control channel CNTL and the acquisition channel for the uplink signal. ACQ and order wire OW occupy.
第4図に示すようにアクジションチャンネルは70ビツ
トのガード0116ビツトのプリアンプル、16ビツト
の同期パターン、8ビツトのアクジションパターンへ〇
〇 PTNSl 6ビツトの局識別コード、2ピント
のドントケアDC,6ビツトの誤り検出符号CRC,お
よび70ビツトのガー下Gからなる。As shown in Figure 4, the acquisition channel consists of a 70-bit guard 0, a 16-bit preamble, a 16-bit synchronization pattern, an 8-bit acquisition pattern, a 6-bit station identification code, a 2-pin don't care DC, It consists of a 6-bit error detection code CRC and a 70-bit lower G.
加入者局の上り信号の送出タイミングの調整は、送信デ
ータ回路に複数段の遅延回路を挿入し、基地局から送ら
れたずれ量を示すビット数で該塀延回路の段数を調整し
て行なうことができる。この遅延回路はフリップフロッ
プ(レジスタ)とし、クロックで送信データを逐次シフ
トさせるようにしておくと、例えば基地局が1ビツト遅
延を指示してきたとき、送信データが更に1段余分にフ
リップフロップを通ってから出力されるようにすること
で、上記指示に従うことができる。Adjustment of the transmission timing of uplink signals from subscriber stations is performed by inserting multiple stages of delay circuits into the transmission data circuit, and adjusting the number of stages of the fence circuit according to the number of bits indicating the amount of deviation sent from the base station. be able to. This delay circuit is a flip-flop (register), and if the transmit data is shifted sequentially using a clock, for example, when the base station instructs a 1-bit delay, the transmit data passes through one more stage of flip-flops. You can follow the above instructions by setting the output after
以上説明したように0本発明では、ビット内微開整が不
要となりまた自動制御が行なわれるため、調整工数及び
フィールドでの調整時間が少なく、システムの立上げ、
運用、を迅速にできる。また経時変化、温度変化等によ
る位相(ずれ)変動を自動的に調整できるので、位相変
動により発生するバースト間干渉を未然に防ぎ、システ
ムの信頼度および回線品質の向上が図れる。As explained above, in the present invention, there is no need for fine adjustment within the bit, and automatic control is performed, so the adjustment man-hours and adjustment time in the field are reduced, and the system start-up and adjustment time are reduced.
Operation can be done quickly. Furthermore, since phase (shift) fluctuations due to changes over time, temperature changes, etc. can be automatically adjusted, interference between bursts caused by phase fluctuations can be prevented, and system reliability and line quality can be improved.
第1図は本発明のバースト信号受信回路のブロック図・
第2図はバースト信号の形式例を示す説明図、第3図は
無線フレーム形式例を示す説明図、第4図はACQのフ
ォーマットを示す説明図、第5図はディジタル加入者無
線方式の説明図、第6図は第5図の一部の詳細説明図で
ある。
第1図で30は復調器、32はクロック抽出回路、34
はパターン一致検出回路、36はPIFOしジスタ、3
8はインヒビソトゲートである。Fig. 1 is a block diagram of a burst signal receiving circuit according to the present invention. Fig. 2 is an explanatory diagram showing an example of a burst signal format. Fig. 3 is an explanatory diagram showing an example of a radio frame format. Fig. 4 is an explanatory diagram showing an example of a wireless frame format. FIG. 5 is an explanatory diagram of the digital subscriber radio system, and FIG. 6 is a detailed explanatory diagram of a part of FIG. In FIG. 1, 30 is a demodulator, 32 is a clock extraction circuit, and 34
is a pattern match detection circuit, 36 is a PIFO register, 3
8 is an inhibitor sotogate.
Claims (2)
MA方式で通信するシステムにおける、加入者局から基
地局への信号の伝搬遅延調整方式において、基地局に、
復調器(30)、復調出力よりクロックを抽出する回路
(32)、同期パターンを検出する回路(34)、およ
びFIFOレジスタ(36)を有する受信回路を設け、 加入者局より基地局への上り信号にはその前後にガード
ビット(G)を置き、また同期パターン(SYNC)を
含ませてその後に送信データ(VS)を続け、 基地局では前記検出回路(34)が同期パターンを検出
し、後続の送信データをFIFOレジスタに取込ませる
ことを特徴とする伝搬遅延調整方式。(1) TD by connecting a base station and multiple subscriber stations via wireless lines
In a signal propagation delay adjustment method from a subscriber station to a base station in a system that communicates using the MA method, the base station:
A receiving circuit including a demodulator (30), a circuit for extracting a clock from the demodulated output (32), a circuit for detecting a synchronization pattern (34), and a FIFO register (36) is provided, and the uplink from the subscriber station to the base station is provided. Guard bits (G) are placed before and after the signal, and a synchronization pattern (SYNC) is included, followed by transmission data (VS). At the base station, the detection circuit (34) detects the synchronization pattern, A propagation delay adjustment method characterized by loading subsequent transmission data into a FIFO register.
示のあったとき所定のタイムスロット(TSO)に入る
ように適宜のタイミングで所定パターンの上り信号を送
出し、 基地局でこれを受信し、基準点からのずれをビット数で
求め、これを前記所定タイムスロット(TSO)の下り
信号に挿入して加入者局に通知し、加入者局では通知さ
れたビット数に従って上り信号送出タイミングを調整す
ることを特徴とする特許請求の範囲第1項記載の伝搬遅
延調整方式。(2) When the subscriber station starts up the system and/or receives instructions during operation, it sends out uplink signals in a predetermined pattern at appropriate timings so as to enter a predetermined time slot (TSO), and the base station transmits the uplink signals. receive the signal, calculate the deviation from the reference point in the number of bits, insert it into the downlink signal of the predetermined time slot (TSO) and notify the subscriber station, and the subscriber station sends out the uplink signal according to the notified number of bits. 2. The propagation delay adjustment method according to claim 1, wherein the propagation delay adjustment method adjusts timing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128973A JPS63292838A (en) | 1987-05-26 | 1987-05-26 | Propagation delay adjusting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128973A JPS63292838A (en) | 1987-05-26 | 1987-05-26 | Propagation delay adjusting system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63292838A true JPS63292838A (en) | 1988-11-30 |
Family
ID=14997984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62128973A Pending JPS63292838A (en) | 1987-05-26 | 1987-05-26 | Propagation delay adjusting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63292838A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217027A (en) * | 1989-02-17 | 1990-08-29 | Nippon Telegr & Teleph Corp <Ntt> | Guard time setting system for time-division multiple connection |
JPH04505994A (en) * | 1989-06-26 | 1992-10-15 | モトローラ・インコーポレイテッド | Synchronization and equalization in TDMA cellular systems |
JPH0730477A (en) * | 1993-06-25 | 1995-01-31 | Nec Corp | Initial position adjusting circuit in time-divided multidirectional multiplex communication system |
-
1987
- 1987-05-26 JP JP62128973A patent/JPS63292838A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217027A (en) * | 1989-02-17 | 1990-08-29 | Nippon Telegr & Teleph Corp <Ntt> | Guard time setting system for time-division multiple connection |
JPH04505994A (en) * | 1989-06-26 | 1992-10-15 | モトローラ・インコーポレイテッド | Synchronization and equalization in TDMA cellular systems |
JPH0730477A (en) * | 1993-06-25 | 1995-01-31 | Nec Corp | Initial position adjusting circuit in time-divided multidirectional multiplex communication system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2146420C1 (en) | Method and device for synchronizing burst transmission to communication system | |
JP5265715B2 (en) | Timing advance and timing deviation synchronization | |
US4472802A (en) | System of transmitting information between a central station and sub-stations | |
US6125125A (en) | Synchronization of TDMA cell sites | |
EP0088647B1 (en) | System for adjusting a time axis by using a control and an adjustment time slot in a satellite station of a tdma network | |
KR20000048770A (en) | Synchronization in tdma systems in a non-real-time fashion | |
WO1994028643A1 (en) | Base station for a tdma cellular radio network | |
JPH06132879A (en) | Method for radio synchronism of base station of simultaneous broadcasting network | |
US6707807B1 (en) | Reception time of messages in access channels of TDMA mobile communication system controlled by transmitting device | |
RU2145465C1 (en) | Method for synchronization of data packets | |
JPS63292838A (en) | Propagation delay adjusting system | |
JPS61144935A (en) | Method and circuit apparatus for reducing protection time between time channels of degital type wireless communicationsystem | |
US6850501B1 (en) | Method and arrangement for enhancing pre-synchronization reliability in a cellular radio system | |
CA1243788A (en) | Method of implementing burst acquisition control in tdma system | |
US6317585B1 (en) | Mobile satellite communication system with quick retransmission determination function | |
JPH07193859A (en) | Inter-base station tdma frame synchronization system in mobile communication | |
JP2962277B2 (en) | TDMA transmission timing setting method | |
JP3220074B2 (en) | Method and apparatus for synchronizing between base stations | |
JPH02276322A (en) | Automatic inter-station phase compensating system | |
JPH0974586A (en) | Radio synchronizing device | |
JP2815807B2 (en) | Control channel standby method | |
JPS59216334A (en) | Adjusting system of multistation control signal timing | |
JPH05336089A (en) | Synchronizing signal phase adjusting circuit | |
JPH0744524B2 (en) | Data transmission device | |
JPH03206739A (en) | Transmission synchronizing system |