JPS6329254B2 - - Google Patents

Info

Publication number
JPS6329254B2
JPS6329254B2 JP57160698A JP16069882A JPS6329254B2 JP S6329254 B2 JPS6329254 B2 JP S6329254B2 JP 57160698 A JP57160698 A JP 57160698A JP 16069882 A JP16069882 A JP 16069882A JP S6329254 B2 JPS6329254 B2 JP S6329254B2
Authority
JP
Japan
Prior art keywords
group
dye
general formula
image
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57160698A
Other languages
Japanese (ja)
Other versions
JPS5948765A (en
Inventor
Tawara Komamura
Satoru Ikeuchi
Masaru Iwagaki
Takashi Sasaki
Hisashi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP16069882A priority Critical patent/JPS5948765A/en
Priority to DE19833332991 priority patent/DE3332991A1/en
Publication of JPS5948765A publication Critical patent/JPS5948765A/en
Priority to US07/185,374 priority patent/US4871647A/en
Publication of JPS6329254B2 publication Critical patent/JPS6329254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/40Development by heat ; Photo-thermographic processes
    • G03C8/4013Development by heat ; Photo-thermographic processes using photothermographic silver salt systems, e.g. dry silver
    • G03C8/4046Non-photosensitive layers
    • G03C8/4066Receiving layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱現像カラー拡散転写画像形成方法に
関し、さらに詳しくは、熱現像感光材料中に形成
された画像を昇華転写させて、鮮明なカラー画像
を得ることができる熱現像カラー拡散転写画像形
成方法に関する。 感光性物質(ハロゲン化銀)を用いたカラー画
像形成方法としては、たとえば発色現像主薬の酸
化体とカプラーにより形成された色素を用いる方
法、銀により色素を漂白して画像を得る方法(銀
色素漂白法)、或いはいわゆるインスタント写真
で用いられている色素をアルカリ性処理液で拡散
転写させるカラー拡散転写法等が知られている
が、これらはいずれも水溶性の処理液を必要と
し、画像を形成するための処理が複雑になる欠点
を有している。従つて乾式でしかも簡単な処理で
カラー画像を形成する新規な感光熱現像カラー画
像形成方法の関発が望まれている。 熱現像カラー画像形成方法としては、例えば特
公昭44−7782号、米国特許第3761200号、同第
3764328号、特開昭56−27132号、および同56−
27133号等に記載されているように、発色現像主
薬の酸化体とカプラーによるカラー画像形成方法
があるが、これらの方法では色素画像が形成され
るところに銀画像も形成されるため、銀画像によ
る色濁りが生じたり、現像後のプリントアウトに
より白地の汚染が生じる。こうした問題を取り除
くには、脱銀、定着工程が必要であり、熱現像写
真方法の長所である簡便かつドライな処理方式が
そこなわれる。 別の熱現像カラー画像形成方法としては、例え
ば特開昭52−105821号、同52−105822号、同56−
50328号、米国特許第4235957号等に記載されてい
る銀色素漂白法がある。しかし、これらの方法で
は色素画像漂白のために、強酸やハロゲン化銀錯
化剤を含む活性化シートを用いる必要があり、処
理が複雑となることや強酸を用いる点などの欠点
を有している。 さらに別の熱現像カラー画像形成方法として
は、例えば1978年5月に発行されたリサーチデイ
スクロージヤー16966に記載されている色素銀塩
法がある。この方法は上述の二つの方法の欠点を
補う方法としては注目されるが、色素銀塩を合成
する際に色素を完全に銀塩とすることが困難であ
り、銀塩となつて色素が残るため、それが画像の
カブリとなる。さらに色素を転写させる時に色素
を溶剤転写させるため、色素だけでなく、望まし
くない他の添加物も転写されることによつて色濁
りを生じるという欠点を有している。 したがつて、本発明の第1の目的は、キレート
化能を有する昇華性色素を熱現像によつて放出し
うる熱非拡散性色供与物質を用いた熱現像カラー
拡散転写画像形成方法の提供にある。 本発明の第2の目的は、形成された色素画像が
熱、光及び湿度等の環境条件に対して安定な熱現
像カラー拡散転写画像形成方法の提供にある。 上記本発明の目的は、後記一般式(1)又は(2)で表
わされ且つキレート化可能な昇華性色素を現像の
関数として放出しうる熱非拡散性色供与物質およ
び有機銀塩を含有した熱現像感光材料を像様露光
した後、熱現像することによつて、キレート化可
能な昇華性色素の像様分布を該色供与物質から形
成させ、該像様分布の少なくとも一部を、熱現像
感光材料と積重関係にある多価金属イオンを含む
受像層に熱転写し、該受像層に多価金属イオンと
キレート化した昇華性色素の像様分布を形成させ
ることによつて達成された。 “昇華性”とは一般には“液体状態を経ること
なく、固体から気体に変化する性質”であり、色
素についてもこの昇華性を示すものは当該業界に
おいて数多く知られている(具体例は「染料便
覧」(丸善)に示されている。)。昇華性色素は低
温では非移動性の固体であり、溶媒が存在しなけ
れば非拡散性である。加熱されて一定温度を越え
ると昇華して気体となり、拡散性を示し、空間を
移動することができる。例えば支持体上な塗布さ
れた昇華性色素は、加熱されることによつて気化
し、支持体を離れて拡散していく。もし近傍に受
像層があれば、たとえ該支持体と密着していなく
ても、受像層表面または内部に吸着、析出し、色
素画像を形成する。また昇華性色素は、気体状態
で、層間を拡散移動する能力も有している。すな
わち、昇華性色素が放出された層と、受像層の間
に中間層が存在しても、溶媒を必要とすることな
しに拡散移動することができるものである。した
がつてこの特性を利用することによつて、多重層
カラー熱現像感光材料を設計することも容易であ
る。 形成された色素画像は、キレート化されている
ために非昇華性色素となり、昇華性色素を用いる
場合の欠点である再昇華性を有しない。本発明の
方法に従えば熱による処理だけで画像が生成定着
され、非常に簡単な処理でカラー画像が得られ
る。 勿論本発明は拡散転写法であるため、脱銀を必
要とせず、且つ形成される画像はキレート化色素
画像であるので、熱、光及び湿気等の環境条件に
対して安定であり、特に耐光性にすぐれた色素画
像である。 本発明におけるキレート化可能な昇華性色素と
は昇華温度が50〜250℃、より好ましくは50〜170
℃であつて、多価金属イオンと少なくとも2座配
位以上のキレート錯体を形成することが可能な色
素であり、より好ましくは昇華温度が50〜170℃
であつて3座配位のキレート錯体を形成すること
ができるアゾ色素である。 人体に有害な濃厚アルカリ液中を色素が拡散し
て画像を形成する従来の、いわゆるインスタント
写真法に比べ、本発明の熱現像カラー拡散転写方
法は、一定温度で一定時間加熱するだけで転写画
像が得られ、安全性やその他の点ですぐれたもの
である。 また、熱現像感光材料中で形成あるいは放出さ
れた色素を、熱溶剤(サーマルソルベント)の如
きもので転写させる従来の方法においては、多重
層方式は困難なものであるが、本発明法によれば
容易に可能となる。 本発明において、色供与物質は熱非拡散性であ
り、加熱されても実質的に層内、層間拡散を生じ
ないものである。また本発明において、色供与物
質は、現像の関数として即ち熱現像の結果として
昇華性色素または昇華性色素プレカーサーを放出
しうるものであり、現像で生ずる酸化還元反応を
直接、あるいはクロス酸化剤等を仲介して間接的
に作用させることによつて放出反応が起こるもの
である。熱現像反応で放出された昇華性色素また
は昇華性色素プレカーサーは、低分子量であり、
双極子モーメントが小さく、疎水性が高いため、
親水性バインダーとの相互作用が小さく、すなわ
ち親水性バインダー中への溶解度が低く、親水性
バインダー中を溶剤を必要としないで容易に拡散
していくものである。したがつて、本発明では昇
華性色素または昇華性色素プレカーサーと親水性
バインダーとの組み合わせが、拡散および転写に
対して有利であり、すなわち該昇華性色素または
昇華性色素プレカーサーを放出しうる該色供与物
質は、親水性バインダー中に添加されるのが好ま
しい。このように親水性バインダーを用いた場
合、色供与物質は該バインダー中において非昇華
性にするために非拡散化(例えばバラスト基およ
び/又は親水性基を有する。)されている。なお、
該親水性バインダー中には、該色供与物質の非拡
散性を妨げず、かつ該色素または色素プレカーサ
ーの拡散性を妨げない範囲において、疎水性バイ
ンダーを添加することも可能である。 色供与物質が昇華性色素または昇華性色素プレ
カーサーを放出する反応は、分解、脱離、配位子
交換反応などがあるが、本発明においては、活性
点置換型カプラーを利用したジアゾカツプリング
方式あるいは酸化カツプリング方式が有効であ
る。 例えば芳香族一級アミン発色現像主薬の酸化体
と、活性点に結合を介してバラスト基を有するカ
プラーとのジアゾカツプリング又は酸化カツプリ
ングで形成された色素が昇華性を有する場合であ
る。また例えば芳香族一級アミン発色現像主薬の
酸化体と、活性点に結合を介して昇華性色素また
は昇華性色素プレカーサーを離脱基として有する
カプラーとのジアゾカツプリング又は酸化カツプ
リングにおいて、該昇華性色素または昇華性色素
プレカーサーが放出される反応である。 本発明の方法は、後者であつて、本発明におけ
るキレート化可能な昇華性色素を放出することが
できる非拡散性色供与物質(以下、単に「色供与
物質」と称する。)としては下記一般式(1)で表わ
される化合物がある。 一般式(1) 式中、X1は少なくとも1つの環が5〜7個の
原子から構成されている芳香族環又は複素環を形
成するのに必要な原子群を表わし、かつアゾ結合
に結合する炭素原子の隣接位の少なくとも1つが
(a)窒素原子であるか(b)窒素原子、酸素原子又はイ
オウ原子で置換された炭素原子であり、環上に適
当な置換基で置換されていてもよく、好ましい置
換基としてはアルキル基、アルコキシ基、シアノ
基、水酸基、チオール基、チオアルコキシ基、又
はハロゲン原子である。 X2は少なくとも1つの環が5〜7個の原子か
ら構成されている芳香族環又は複素環を完成する
のに必要な原子群を表わし、環上に適当な置換基
で置換されていてもよく、好ましい環としてはベ
ンゼン環、ナフタレン環、ピリジン環又はキノリ
ン環であり、好ましい置換基はアルキル基、アル
コキシ基、シアノ基、水酸基、アミノ基又はハロ
ゲン原子である。Gはキレート化基を表わし、好
ましくは水酸基、アミノ基、メトキシ基、チオー
ル基又はチオアルコキシ基等である。 Aは熱現像の関数として昇華性色素部位を放出
しうる基を表わす。 別の好ましい色供与物質としては下記一般式(2)
で表わされる化合物がある。 一般式(2) 式中、X1及びAはそれぞれ一般式(1)で定義さ
れたものと同様である。Z1は電子吸引性基であ
り、好ましくはアセチル基、ベンゾイル基、シア
ノ基又はアセトアミド基を表わし、Z2はアルキル
基(好ましくはメチル基)、又はアリール基(好
ましくはフエニル基)を表わす。 一般式(1)及び(2)において、Aで表わされる熱現
像の関数として昇華性色素部位を放出しうる基と
しては下記一般式(3)又は(4)で表わされる基があ
る。 一般式(3) 一般式(4) 式中、R1、R2、R3、R4、R5、R6、R7および
R8はそれぞれ、水素原子、ハロゲン原子(好ま
しくは塩素原子、臭素原子、沃素原子)、アルキ
ル基(好ましくは炭素原子数1〜24のアルキル基
であり、例えばメチル基、エチル基、t−ブチル
基、s−オクチル基、ペンタデシル基、シクロヘ
キシル基、トリフロロメチル基、ベンジル基、フ
エネチル基など)、アリール基(例えばフエニル
基、ナフチル基、トリル基、メシチル基など)、
アシル基(例えばアセチル基、チトラデカノイル
基、ピバロイル基、ベンゾイル基など)、アルキ
ルオキシカルボニル基(例えばメトキシカルボニ
ル基、ベンジルオキシカルボニル基など)、アリ
ールオキシカルボニル基(例えばフエノキシカル
ボニル基、p−トリルオキシカルボニル基、α−
ナフトキシカルボニル基など)、アルキルスルホ
ニル基(例えばメチルスルホニル基など)、アリ
ールスルホニル基(例えばフエニルスルホニル基
など)、カルバモイル基(例えばメチルカルバモ
イル基、ブチルカルバモイル基、テトラデシルカ
ルバモイル基、N−メチル−N−ドデシルカルバ
モイル基、フエニルカルバモイル基など)、アシ
ルアミノ基(例えばn−ブチルアミド基、β−フ
エノキシエチルアミド基、フエノキシアミド基、
β−メタンスルホンアミドエチルアミド基、β−
メトキシエチルアミド基など)、アルコキシ基
(好ましくは炭素原子数1〜18のアルコキシ基で
あり、例えばメトキシ基、エトキシ基、オクタデ
シルオキシ基など)、スルフアモイル基(例えば
メチルスルフアモイル基、フエニルスルフアモイ
ル基など)、スルホアミノ基(例えば、メチルス
ルホアミノ、トリルスルホアミノ)またはヒドロ
キシ基を表わす。 ただし、好ましくはR1、R2、R3およびR4のう
ちの少なくとも一つとR5、R6、R7およびR8のう
ちの少なくとも一つは熱拡散性を低下させるバラ
スト基、例えば、スルホ基、カルボキシ基、ヒド
ロキシ基のような親水性基を含有する基、あるい
はアルキル基を含有し、炭素原子数が8以上にな
るような基、を有するものである。 またR1とR2およびR3とR4のうちの少なくとも
一組と、R5とR6、R6とR7のうちの少なくとも一
組は互いに結合して、飽和または不飽和の5〜6
員環を形成してもよい。 Jは2価の結合基を表わし、好ましくは
The present invention relates to a method for forming a heat-developable color diffusion transfer image, and more specifically, a method for forming a heat-developable color diffusion transfer image, in which a clear color image can be obtained by subjecting an image formed in a heat-developable photosensitive material to sublimation transfer. Regarding. Color image forming methods using a photosensitive substance (silver halide) include, for example, a method using a dye formed by an oxidized color developing agent and a coupler, and a method to obtain an image by bleaching the dye with silver (silver dye). Bleaching method) or color diffusion transfer method, which uses an alkaline processing solution to diffusely transfer pigments used in so-called instant photography, are known, but both require a water-soluble processing solution and are difficult to form images. This has the disadvantage that the processing required to do so is complicated. Therefore, there is a need for a new photosensitive and thermal development color image forming method that forms color images using a dry process and simple processing. As a heat development color image forming method, for example, Japanese Patent Publication No. 7782/1978, U.S. Pat. No. 3,761,200, U.S. Pat.
No. 3764328, JP-A-56-27132, and JP-A No. 56-
As described in No. 27133, there is a color image forming method using an oxidized color developing agent and a coupler, but in these methods, a silver image is also formed where a dye image is formed. This may cause color turbidity, and staining of the white background may occur due to printouts after development. To eliminate these problems, desilvering and fixing steps are required, which impairs the simple and dry processing method that is an advantage of thermal development photography. Other thermal development color image forming methods include, for example, JP-A Nos. 52-105821, 52-105822, and 56-
There are silver dye bleaching methods described in No. 50328 and US Pat. No. 4,235,957. However, these methods require the use of an activation sheet containing a strong acid or a silver halide complexing agent for dye image bleaching, and have drawbacks such as complicated processing and the use of strong acids. There is. Still another heat-developable color image forming method is, for example, the dye silver salt method described in Research Disclosure No. 16966 published in May 1978. This method is attracting attention as a method to compensate for the drawbacks of the two methods mentioned above, but it is difficult to completely convert the dye into silver salt when synthesizing the dye silver salt, and the dye remains as a silver salt. Therefore, this causes fog in the image. Furthermore, since the dye is transferred to a solvent when it is transferred, it has the disadvantage that not only the dye but also other undesirable additives are transferred, resulting in color turbidity. Accordingly, a first object of the present invention is to provide a method for forming a heat-developable color diffusion transfer image using a thermally non-diffusible color-providing substance capable of releasing a sublimable dye having chelating ability upon thermal development. It is in. A second object of the present invention is to provide a method for forming a heat-developable color diffusion transfer image in which the formed dye image is stable against environmental conditions such as heat, light, and humidity. The object of the present invention is to provide a thermally non-diffusible color-providing substance represented by the general formula (1) or (2) below and capable of releasing a chelatable sublimable dye as a function of development, and an organic silver salt. The photothermographic material is imagewise exposed and then thermally developed to form an imagewise distribution of a chelatable sublimable dye from the color-providing substance, and at least a part of the imagewise distribution is This is achieved by thermally transferring to an image-receiving layer containing polyvalent metal ions in a stacked relationship with the photothermographic material, and forming an imagewise distribution of sublimable dyes chelated with polyvalent metal ions in the image-receiving layer. Ta. “Sublimability” generally refers to “the property of changing from a solid to a gas without passing through a liquid state,” and many dyes that exhibit this sublimability are known in the industry (specific examples include “ Dye Handbook” (Maruzen)). Sublimable dyes are immobile solids at low temperatures and non-diffusible in the absence of a solvent. When it is heated and exceeds a certain temperature, it sublimates and becomes a gas, exhibiting diffusivity and being able to move through space. For example, a sublimable dye coated on a support vaporizes when heated, leaves the support, and diffuses. If there is an image-receiving layer nearby, the pigment will be adsorbed and deposited on the surface or inside the image-receiving layer, forming a dye image even if it is not in close contact with the support. Sublimable dyes also have the ability to diffuse between layers in a gaseous state. That is, even if there is an intermediate layer between the layer in which the sublimable dye is released and the image-receiving layer, the dye can be diffused and transferred without requiring a solvent. Therefore, by utilizing this property, it is easy to design a multilayer color heat-developable photosensitive material. Since the formed dye image is chelated, it becomes a non-sublimable dye and does not have re-sublimation property, which is a drawback when using a sublimable dye. According to the method of the present invention, an image is generated and fixed only by thermal processing, and a color image can be obtained with very simple processing. Of course, since the present invention uses a diffusion transfer method, there is no need for desilvering, and since the image formed is a chelated dye image, it is stable against environmental conditions such as heat, light, and moisture, and is particularly light-resistant. This is a pigmented image with excellent quality. In the present invention, the sublimable dye that can be chelated has a sublimation temperature of 50 to 250°C, more preferably 50 to 170°C.
℃, and is capable of forming at least a bidentate or higher coordination chelate complex with a polyvalent metal ion, and more preferably has a sublimation temperature of 50 to 170℃.
It is an azo dye that can form a tridentate chelate complex. Compared to the conventional so-called instant photography method, in which an image is formed by dyes diffusing in a concentrated alkaline solution that is harmful to the human body, the heat-developable color diffusion transfer method of the present invention allows the transferred image to be created by simply heating at a constant temperature for a certain period of time. It is excellent in terms of safety and other aspects. Furthermore, in the conventional method of transferring dyes formed or released in a heat-developable photosensitive material using a thermal solvent, it is difficult to achieve a multilayer system, but with the method of the present invention, This is easily possible. In the present invention, the color-providing substance is thermally non-diffusive and does not substantially cause intralayer or interlayer diffusion even when heated. In the present invention, the color-providing substance is one that can release a sublimable dye or a sublimable dye precursor as a function of development, that is, as a result of thermal development, and is capable of releasing a sublimable dye or a sublimable dye precursor as a function of development, that is, as a result of thermal development, and can directly or directly react with the redox reaction that occurs during development, or as a cross-oxidizing agent, etc. The release reaction occurs by acting indirectly through the mediation of The sublimable dye or sublimable dye precursor released in the heat development reaction has a low molecular weight,
Due to its small dipole moment and high hydrophobicity,
The interaction with the hydrophilic binder is small, that is, the solubility in the hydrophilic binder is low, and it easily diffuses in the hydrophilic binder without requiring a solvent. Therefore, in the present invention, the combination of a sublimable dye or a sublimable dye precursor with a hydrophilic binder is advantageous for diffusion and transfer, i.e. the color from which the sublimable dye or sublimable dye precursor can be released. Preferably, the donor material is added into a hydrophilic binder. When a hydrophilic binder is used in this manner, the color-providing substance is non-diffusible (for example, has a ballast group and/or a hydrophilic group) in order to be non-sublimable in the binder. In addition,
It is also possible to add a hydrophobic binder to the hydrophilic binder insofar as it does not interfere with the non-diffusibility of the color-providing substance and does not interfere with the diffusibility of the dye or dye precursor. Reactions in which a color donor releases a sublimable dye or a sublimable dye precursor include decomposition, elimination, and ligand exchange reactions, but in the present invention, a diazo coupling method using an active site substitution coupler is used. Alternatively, an oxidation coupling method is effective. For example, a dye formed by diazo coupling or oxidative coupling between an oxidized aromatic primary amine color developing agent and a coupler having a ballast group via a bond at its active site has sublimation properties. For example, in diazo coupling or oxidative coupling between an oxidized product of an aromatic primary amine color developing agent and a coupler having a sublimable dye or a sublimable dye precursor as a leaving group via a bond to the active site, the sublimable dye or This is a reaction in which a sublimable dye precursor is released. The method of the present invention is the latter, and the non-diffusible color-providing substances (hereinafter simply referred to as "color-providing substances") capable of releasing the chelatable sublimable dye of the present invention are as follows. There is a compound represented by formula (1). General formula (1) In the formula, X 1 represents an atomic group necessary to form an aromatic ring or a heterocycle in which at least one ring is composed of 5 to 7 atoms, and the adjacent carbon atoms bonded to the azo bond at least one of the
(a) It is a nitrogen atom, or (b) It is a carbon atom substituted with a nitrogen atom, an oxygen atom, or a sulfur atom, and the ring may be substituted with an appropriate substituent, and a preferable substituent is an alkyl group. , an alkoxy group, a cyano group, a hydroxyl group, a thiol group, a thioalkoxy group, or a halogen atom. X 2 represents an atomic group necessary to complete an aromatic ring or a heterocycle in which at least one ring is composed of 5 to 7 atoms, even if the ring is substituted with an appropriate substituent. Preferred rings are benzene, naphthalene, pyridine, or quinoline, and preferred substituents are alkyl, alkoxy, cyano, hydroxyl, amino, or halogen. G represents a chelating group, preferably a hydroxyl group, an amino group, a methoxy group, a thiol group or a thioalkoxy group. A represents a group capable of releasing sublimable dye moieties as a function of thermal development. Another preferred color-providing substance is the following general formula (2):
There is a compound represented by General formula (2) In the formula, X 1 and A are each the same as defined in general formula (1). Z 1 is an electron-withdrawing group, preferably an acetyl group, benzoyl group, cyano group or acetamido group, and Z 2 is an alkyl group (preferably a methyl group) or an aryl group (preferably a phenyl group). In the general formulas (1) and (2), the group represented by A that can release a sublimable dye moiety as a function of thermal development includes a group represented by the following general formula (3) or (4). General formula (3) General formula (4) In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and
R 8 is a hydrogen atom, a halogen atom (preferably a chlorine atom, a bromine atom, an iodine atom), an alkyl group (preferably an alkyl group having 1 to 24 carbon atoms), such as a methyl group, an ethyl group, or a t-butyl group. group, s-octyl group, pentadecyl group, cyclohexyl group, trifluoromethyl group, benzyl group, phenethyl group, etc.), aryl group (e.g. phenyl group, naphthyl group, tolyl group, mesityl group, etc.),
Acyl groups (e.g. acetyl group, titradecanoyl group, pivaloyl group, benzoyl group, etc.), alkyloxycarbonyl groups (e.g. methoxycarbonyl group, benzyloxycarbonyl group, etc.), aryloxycarbonyl groups (e.g. phenoxycarbonyl group, p-tolyl group, etc.) Oxycarbonyl group, α-
naphthoxycarbonyl group, etc.), alkylsulfonyl group (e.g., methylsulfonyl group, etc.), arylsulfonyl group (e.g., phenylsulfonyl group, etc.), carbamoyl group (e.g., methylcarbamoyl group, butylcarbamoyl group, tetradecylcarbamoyl group, N-methyl -N-dodecylcarbamoyl group, phenylcarbamoyl group, etc.), acylamino group (e.g. n-butylamide group, β-phenoxyethylamide group, phenoxyamide group,
β-Methanesulfonamidoethylamide group, β-
methoxyethylamide group, etc.), alkoxy group (preferably an alkoxy group having 1 to 18 carbon atoms, such as methoxy group, ethoxy group, octadecyloxy group, etc.), sulfamoyl group (such as methylsulfamoyl group, phenylsulfamoyl group), amoyl group, etc.), a sulfamino group (eg, methylsulfamino, tolylsulfamino), or a hydroxy group. However, preferably at least one of R 1 , R 2 , R 3 and R 4 and at least one of R 5 , R 6 , R 7 and R 8 are ballast groups that reduce thermal diffusivity, for example, It has a group containing a hydrophilic group such as a sulfo group, a carboxy group, or a hydroxy group, or a group containing an alkyl group and having 8 or more carbon atoms. In addition, at least one set of R 1 and R 2 , R 3 and R 4 , and at least one set of R 5 and R 6 , R 6 and R 7 are bonded to each other, and saturated or unsaturated 5- 6
It may form a membered ring. J represents a divalent bonding group, preferably

〔例示昇華性色素〕[Example sublimable dye]

Dye−(1) 2−(4−メトキシ−2−ピリジルア
ゾ)フエノール Dye−(2) 1−(4−メトキシ−2−ピリジルア
ゾ)−2−ナフトール Dye−(3) 2−(2−ヒドロキシフエニルアゾ)−
4−メトキシ−1−ナフトール Dye−(4) 2−(2−ヒドロキシフエニルアゾ)−
4−メトキシ−フエノール Dye−(5) 8−(2−ヒドロキシフエニルアゾ)−
キノリン Dye−(6) 2−(2−ヒドロキシフエニルアゾ)−
1,4−ジメトキシ−フエノール Dye−(7) 1−(2−ピリジルアゾ)−2−ナフト
ール Dye−(8) 2−(2−ピリジルアゾ)−1−ナフト
ール Dye−(9) 2−(3−メトキシ−2−ピリジルア
ゾ)−4−メトキシ−5−ニトロフエノール Dye−(10) 2−(3−クロル−2−ピリジルアゾ)
−4−クロルフエノール Dye−(11) 2−(4−ヒドロキシ−2−ピリジル
アゾ)−4−メトキシフエノール Dye−(12) 2−(4−ヒドロキシ−2−ピリジル
アゾ)−4−メトキシ−1−ナフトール なお、上記CPM−(1)〜(6)の化学構造式中の
Dye-(1) 2-(4-methoxy-2-pyridylazo)phenol Dye-(2) 1-(4-methoxy-2-pyridylazo)-2-naphthol Dye-(3) 2-(2-hydroxyphenyl azo)−
4-methoxy-1-naphthol Dye-(4) 2-(2-hydroxyphenylazo)-
4-Methoxy-phenol Dye-(5) 8-(2-hydroxyphenylazo)-
Quinoline Dye-(6) 2-(2-hydroxyphenylazo)-
1,4-dimethoxy-phenol Dye-(7) 1-(2-pyridylazo)-2-naphthol Dye-(8) 2-(2-pyridylazo)-1-naphthol Dye-(9) 2-(3-methoxy -2-pyridylazo)-4-methoxy-5-nitrophenol Dye-(10) 2-(3-chloro-2-pyridylazo)
-4-Chlorphenol Dye-(11) 2-(4-hydroxy-2-pyridylazo)-4-methoxyphenol Dye-(12) 2-(4-hydroxy-2-pyridylazo)-4-methoxy-1-naphthol In addition, in the chemical structural formulas of CPM-(1) to (6) above,

【式】は【ceremony

〔現像剤〕[Developer]

乾燥して得られた試料に対し、ステツプウエツ
ジを通して30000CMSの露光を与えた。 一方、アイボリー紙上に15%の水溶性ポリビニ
ルブチラール10%の塩化ニツケルを含む水溶液を
一平方メートル当りポリビニルブチラールが1.40
gとなるように塗布して塩化ニツケルを含有した
受像紙を作つた。 前記露光済の試料の塗布面と前記受像紙の塗布
面を密着し、表面温度が150℃のアイロンで30秒
間圧着加熱した後、試料と受像紙をひきはがし
た。 受像紙表面には最大反射濃度0.78、最小反射濃
度0.19の黄色のステツプウエツジのネガ像が得ら
れた。 実施例 2 ベヘン酸銀4.5gにアルコール20c.c.、水5c.c.お
よび水溶性ポリビニルブチラール25%水溶液15c.c.
を加え、超音波ホモジナイザーにて分散液−〔1〕
を調製した。 一方、フタル酸0.20g、フタラジン0.13g、前
記例示色供与物質CPM−(2)0.89gおよび下記現
像剤2.55gを水溶性ポリビニルブチラール8%水
−アルコール(1:1)溶液40c.c.と共に24時間ボ
ールミル分散して溶液−〔1〕を得た。 〔現像剤〕 さらに、トリフロロ酢酸銀と臭化リチウムをポ
リビニルブチラール10重量%アセトン溶液中で反
応させて乳剤−〔1〕を得た。 前記分散液−〔1〕10c.c.に下記増感色素の0.05
重量%メタノール溶液0.3c.c.、および酢酸第2水
銀20mgを加えた。 〔増感色素〕 最後に溶液−〔1〕を加えて、透明ポリエステ
ルフイルム上に湿潤膜厚が74μとなるようにワイ
ヤーバーで塗布し、感光性層を形成した。 その上に下記組成の白色反射層及び受像層を設
け、受像層の上に別の透明ポリエステルフイルム
を接着した。 <白色反射層> (単位g/m2) 二酸化チタン(平均粒径1.5μ) 15 二酢酸セルロース 1.2 ドデシル硫酸ナトリウム 0.08 エタノール 25 水 30 <受像層> (単位g/m2) 二酢酸セルロース 1.6 塩化ニツケル 1.0 エタノール 21 水 42 この試料の感光性層側に対して、ステツプウエ
ツジを通して30000CMSの露光を与え、感光性層
側に表面温度100℃のアイロンを30秒間圧着した。 感光性層にはネガの銀画像と、未反応の色供与
物質のポジ画像が形成され、受像層には、最大反
射濃度1.06、最小反射濃度0.17のマゼンタのネガ
像が得られた。 実施例 3 4−ヒドロキシベンゾトリアゾール銀 8.71g CPM−(1) 12.8g オセインゼラチン10重量%水溶液 84c.c. 水 120c.c. メタノール 96c.c. 上記組成物をアルミナボールミルで分散して、
分散液−〔3〕を得た。 同様に下記組成の溶液−〔2〕を調製した。 オセインゼラチン10重量%水溶液 42c.c. 現像剤
The dried sample was exposed to 30,000 CMS through a step wedge. On the other hand, an aqueous solution containing 15% water-soluble polyvinyl butyral and 10% nickel chloride was deposited on ivory paper at a concentration of 1.40 polyvinyl butyral per square meter.
An image-receiving paper containing nickel chloride was prepared by applying the following coating to give an amount of nickel chloride. The coated surface of the exposed sample and the coated surface of the image-receiving paper were brought into close contact, and after heating and pressing with an iron having a surface temperature of 150° C. for 30 seconds, the sample and the image-receiving paper were peeled off. A negative image of a yellow step wedge with a maximum reflection density of 0.78 and a minimum reflection density of 0.19 was obtained on the surface of the receiver paper. Example 2 4.5 g of silver behenate, 20 c.c. of alcohol, 5 c.c. of water, and 15 c.c. of a 25% aqueous solution of water-soluble polyvinyl butyral.
Add and use an ultrasonic homogenizer to make the dispersion - [1]
was prepared. Meanwhile, 0.20 g of phthalic acid, 0.13 g of phthalazine, 0.89 g of the above-mentioned exemplary color donor CPM-(2), and 2.55 g of the following developer were mixed with 40 c.c. of a water-soluble polyvinyl butyral 8% water-alcohol (1:1) solution. A solution-[1] was obtained by dispersing in a ball mill for 24 hours. [Developer] Further, silver trifluoroacetate and lithium bromide were reacted in a 10% by weight polyvinyl butyral acetone solution to obtain emulsion-[1]. The above dispersion - [1] 0.05 of the following sensitizing dye in 10 c.c.
0.3 cc of wt% methanol solution and 20 mg of mercuric acetate were added. [Sensitizing dye] Finally, Solution-[1] was added and coated onto a transparent polyester film using a wire bar to a wet film thickness of 74 μm to form a photosensitive layer. A white reflective layer and an image-receiving layer having the following compositions were provided thereon, and another transparent polyester film was adhered onto the image-receiving layer. <White reflective layer> (Unit: g/m 2 ) Titanium dioxide (average particle size: 1.5 μ) 15 Cellulose diacetate 1.2 Sodium dodecyl sulfate 0.08 Ethanol 25 Water 30 <Image-receiving layer> (Unit: g/m 2 ) Cellulose diacetate 1.6 Chloride Nickel 1.0 Ethanol 21 Water 42 The photosensitive layer side of this sample was exposed to 30,000 CMS through a step wedge, and an iron with a surface temperature of 100° C. was pressed onto the photosensitive layer side for 30 seconds. A negative silver image and a positive image of the unreacted color donor were formed in the photosensitive layer, and a magenta negative image with a maximum reflection density of 1.06 and a minimum reflection density of 0.17 was obtained in the image-receiving layer. Example 3 4-hydroxybenzotriazole silver 8.71 g CPM-(1) 12.8 g Ossein gelatin 10% by weight aqueous solution 84 c.c. Water 120 c.c. Methanol 96 c.c. The above composition was dispersed in an alumina ball mill,
Dispersion liquid [3] was obtained. Similarly, a solution [2] having the following composition was prepared. Ossein gelatin 10% by weight aqueous solution 42c.c. Developer

【式】 1.80g 4−アリール−3−アミノ−5−メルカプト−
1,2,4−トリアゾール 28mg メタノール 10.5c.c. エマルゲン950(KAO−ATLAS社) 245mg ジメチル尿素 3.5g 前記分散液−〔3〕25c.c.と溶液−〔2〕15c.c.を混
合したのち、平均粒径0.04μの臭化銀乳剤を銀に
換算して0.11g分添加し、写真用バライタ紙上に
塗布して第一感光性層を得た。 次いで、分散液−〔3〕の4−ヒドロキシベン
ゾトリアゾール銀8.71gのかわりに、5−ニトロ
ベンゾトリアゾール7.80g、前記色供与物質
CPM−(1)12.8gのかわりにCPM−(2)11.5gにし
て同様に分散液−〔4〕を得た。 前記分散液−〔4〕を25c.c.とり、そこへ下記増
感色素の0.02重量%メタノール溶液3.2c.c.を加え、
さらに溶液−〔2〕を15c.c.加えて、第一感光性層
の上に塗布して第二感光性層とした。 〔増感色素〕 得られた試料に対して、ステツプウエツジを通
して10万CMSの白色露光を与えたものを試料(A)、
該試料(A)の条件に加えてコダツクラツテンフイル
ターNo.74を用いたものを試料(B)、前記試料(A)の条
件に加えてコダツクラツテンフイルターNo.94を用
いたものを試料(C)とした。 一方、写真用バライタ紙上に実施例1に記載の
方法と同様にして塩化ニツケル含有ポリビニルブ
チラール層を塗布して受像紙を作つた。 各試料の感光性層側の受像紙の塗布面を合わ
せ、表面温度が160℃のアイロンで30秒間圧着加
熱した。ひきはがして得られた各試料の受像紙の
最大および最小反射濃度を、測定光別に下記表−
1に示す。 実施例 4 (定着性及び耐光性) Dye−(2)、Dye−(4)、Dye−(7)それぞれ50mgを
8%ポリビニルブチラールのメタノール溶液10c.c.
に溶解し、ポリエステルフイルム上に湿潤膜厚が
55μとなるようにワイヤーバーで塗布し、乾燥し
た。 次に実施例1と同様にして得た塩化ニツケル含
有ポリビニルブチラール層を塗布した受像紙及び
塩化ニツケルを含まないポリビニルブチラール層
を塗布した受像紙に、上述の色素〔Dye−(2)、
Dye−(4)、Dye−(7)〕を150℃の表面温度を有す
るアイロンで1分間転写させた。 こうして得られた染着して受像紙を110℃の表
面温度のアイロンで10分間再転写させ、転写染着
直後と再転写後のλmaxによる光学濃度(再転写
前D0、再転写後D)を測定し、D/D0×100の値
を残存率(%)とし、下記表−2に示した。残存
率が大きいほど定着性が良いことを示している。 同様にして得た染着受像紙を6000Wのキセノン
ランプで48時間照射(受像紙面上の照度は60000
ルツクス)し、露光前と露光後においてλmaxに
よる光学濃度(露光前D0、露光後D)を測定し、
D/D0×100の値を残存率(%)とし、表−2に
示した。 これらの結果から明らかなように、本発明に従
えば、簡便な処理により安定なカラー画像が得ら
れしかも多色カラーも可能であることがわかる。
[Formula] 1.80g 4-aryl-3-amino-5-mercapto-
1,2,4-triazole 28 mg Methanol 10.5 cc Emulgen 950 (KAO-ATLAS) 245 mg Dimethylurea 3.5 g After mixing the above dispersion - [3] 25 c.c. and solution - [2] 15 c.c. A silver bromide emulsion having an average grain size of 0.04 μm was added in an amount of 0.11 g in terms of silver, and was coated on photographic baryta paper to obtain a first photosensitive layer. Then, instead of 8.71 g of 4-hydroxybenzotriazole silver in dispersion [3], 7.80 g of 5-nitrobenzotriazole and the color-providing substance were added.
A dispersion [4] was similarly obtained by using 11.5 g of CPM-(2) instead of 12.8 g of CPM-(1). Take 25cc of the dispersion liquid [4], add 3.2cc of a 0.02% methanol solution of the following sensitizing dye to it,
Furthermore, 15 c.c. of solution-[2] was added and coated on the first photosensitive layer to form a second photosensitive layer. [Sensitizing dye] The obtained sample was exposed to white light of 100,000 CMS through a step wedge, and the sample (A) was
Sample (B) was obtained by using Kodatsu Kura Ten Filter No. 74 in addition to the conditions of sample (A), and sample (B) was obtained by using Kodatsu Kura Ten Filter No. 94 in addition to the conditions of sample (A). (C). Separately, a nickel chloride-containing polyvinyl butyral layer was coated on photographic baryta paper in the same manner as described in Example 1 to prepare an image-receiving paper. The coated surfaces of the image-receiving paper on the photosensitive layer side of each sample were aligned and heated for 30 seconds using an iron with a surface temperature of 160°C. The maximum and minimum reflection densities of the image-receiving paper of each sample obtained by peeling are shown in the table below for each measurement light.
Shown in 1. Example 4 (Fixing properties and light resistance) 50 mg each of Dye-(2), Dye-(4), and Dye-(7) were added to 10 c.c. of an 8% methanol solution of polyvinyl butyral.
is dissolved in the polyester film and forms a wet film thickness on the polyester film.
It was applied with a wire bar to a thickness of 55μ and dried. Next, the above dyes [Dye-(2),
Dye-(4), Dye-(7)] was transferred for 1 minute using an iron having a surface temperature of 150°C. The dyed image-receiving paper obtained in this way was retransferred for 10 minutes with an iron at a surface temperature of 110°C, and the optical density by λmax immediately after transfer dyeing and after retransfer (D 0 before retransfer, D after retransfer) was measured, and the value of D/D 0 ×100 was defined as the residual rate (%), which is shown in Table 2 below. The higher the residual rate, the better the fixing performance. The dyed image-receiving paper obtained in the same way was irradiated with a 6000W xenon lamp for 48 hours (the illuminance on the image-receiving paper surface was 60,000
lux) and measure the optical density according to λmax (D 0 before exposure, D after exposure) before and after exposure,
The value of D/D 0 ×100 was defined as the residual rate (%) and is shown in Table-2. As is clear from these results, according to the present invention, stable color images can be obtained through simple processing, and multicolor images are also possible.

【表】【table】

【表】【table】

【表】 比較例 1 本発明の実施例4の本発明の色素に代えて下記
色素(A)、(B)を用いた以外は同様に試料を作製し、
実施例4と同様の処理を行つた。なお色素(A)、(B)
はいずれもアルカリ性処理液を用いたカラー拡散
転写写真材料に用いられる色素である。 下記表−3に示した結果からも明らかな通り、
色素(A)、(B)は受像紙の金属イオンの有無にかかわ
らず定着性には差はないが、著しく転写性が悪い
ために熱現像カラー拡散転写画像形成方法には適
しないことが判る。
[Table] Comparative Example 1 A sample was prepared in the same manner except that the following dyes (A) and (B) were used in place of the dye of the present invention in Example 4 of the present invention,
The same treatment as in Example 4 was carried out. In addition, dyes (A) and (B)
Both are dyes used in color diffusion transfer photographic materials using alkaline processing solutions. As is clear from the results shown in Table 3 below,
Although dyes (A) and (B) have no difference in fixing performance regardless of the presence or absence of metal ions on the receiving paper, they are found to be unsuitable for heat-developable color diffusion transfer image forming methods due to extremely poor transferability. .

【表】【table】

【表】 〓 転写前の色素量 〓
なお色素(2)、(4)、(7)はそれぞれ転写率66%、64
%、61%であつた(Ni含有受像紙に対する値)。 上記の結果からも理解できるように、公知のア
ルカリ性処理液を用いたカラー拡散転写写真材料
用色素の転用では、本発明の画像形成方法におい
てはキレートの有無にかかわらず定着性には大き
な差はないが、著しく転写性が低いために画像を
得ることは困難である。
[Table] 〓 Amount of dye before transfer 〓
In addition, dyes (2), (4), and (7) have a transfer rate of 66% and 64%, respectively.
%, 61% (value for Ni-containing receiver paper). As can be understood from the above results, when dyes are used for color diffusion transfer photographic materials using known alkaline processing liquids, in the image forming method of the present invention, there is no significant difference in fixability regardless of the presence or absence of chelate. However, it is difficult to obtain images due to extremely low transferability.

Claims (1)

【特許請求の範囲】 1 下記一般式(1)又は(2)で表わされ且つキレート
化可能な昇華性色素を現像の関数として放出しう
る熱非拡散性色供与物質および有機銀塩を含有し
た熱現像感光材料を像様露光した後、熱現像する
ことによつて、キレート化可能な昇華性色素の像
様分布を該色供与物質から形成させ、該像様分布
の少なくとも一部を、熱現像感光材料と積重関係
にある多価金属イオンを含む受像層に熱転写し、
該受像層に多価金属イオンとキレート化した昇華
性色素の像様分布を形成させることを特徴とする
熱現像カラー拡散転写画像形成方法。 一般式(1) 〔式中、X1は少なくとも1つの環が5〜7個の
原子から構成されている芳香族環又は複素環を形
成するのに必要な原子群を表わし、かつアゾ結合
に結合する炭素原子の隣接位の少なくとも1つが
(a)窒素原子であるか(b)窒素原子、酸素原子又はイ
オウ原子で置換された炭素原子であり、X2は少
なくとも1つの環が5〜7個の原子から構成され
ている芳香族環又は複素環を完成するのに必要な
原子群を表わし、Gはキレート化基を表わし、A
は熱現像の関数として昇華性色素部位を放出しう
る基を表わす。〕 一般式(2) 〔式中、X1及びAはそれぞれ一般式(1)で定義さ
れたものと同義であり、Z1は電子吸引性基を表わ
し、Z2はアルキル基又はアリール基を表わす。〕 2 Aが下記一般式(3)または(4)で示されることを
特徴とする特許請求の範囲第1項記載の熱現像カ
ラー拡散転写画像形成方法。 一般式(3) 一般式(4) 〔式中、R1、R2、R3、R4、R5、R6、R7および
R8はそれぞれ、水素原子、ハロゲン原子、アル
キル基、アリール基、アシル基、アルキルオキシ
カルボニル基、アリールオキシカルボニル基、ア
ルキルスルホニル基、アリールスルホニル基、カ
ルバモイル基、アシルアミノ基、アルコキシ基、
スルフアモイル基、スルホアミノ基またはヒドロ
キシ基を表わす。 ただし、R1、R2、R3およびR4のうちの少なく
とも1つと、R5、R6、R7およびR8のうちの少な
くとも1つは熱拡散性を低下させるバラスト基で
ある。 またR1とR2およびR3とR4のうちの少なくとも
1組と、R5とR6、R6とR7およびR7とR8のうちの
少なくとも1組は互いに結合して、飽和または不
飽和の5〜6員環を形成してもよい。 Jは2価の結合基を表わし、mは0または1を
表わす。〕 3 多価金属イオンが、銅()、ニツケル
()、亜鉛()、白金()、パラジウム()
又はコバルト()であることを特徴とする特許
請求の範囲第1項記載の熱現像カラー拡散転写画
像形成方法。
[Scope of Claims] 1 Contains a thermally non-diffusible color-providing substance represented by the following general formula (1) or (2) and capable of releasing a chelatable sublimable dye as a function of development, and an organic silver salt The photothermographic material is imagewise exposed and then thermally developed to form an imagewise distribution of a chelatable sublimable dye from the color-providing substance, and at least a part of the imagewise distribution is thermally transferred to an image-receiving layer containing polyvalent metal ions in a stacked relationship with the photothermographic material;
A method for forming a heat-developable color diffusion transfer image, the method comprising forming an imagewise distribution of a sublimable dye chelated with a polyvalent metal ion in the image-receiving layer. General formula (1) [In the formula, X 1 represents an atomic group necessary to form an aromatic ring or a heterocycle in which at least one ring is composed of 5 to 7 atoms, and At least one of the adjacent positions
(a) is a nitrogen atom, or (b) is a carbon atom substituted with a nitrogen atom, an oxygen atom, or a sulfur atom, and X 2 is an aromatic ring in which at least one ring is composed of 5 to 7 atoms; or represents the atomic group necessary to complete the heterocycle, G represents a chelating group, and A
represents a group capable of releasing sublimable dye moieties as a function of thermal development. ] General formula (2) [In the formula, X 1 and A each have the same meaning as defined in general formula (1), Z 1 represents an electron-withdrawing group, and Z 2 represents an alkyl group or an aryl group. 2. The heat-developable color diffusion transfer image forming method according to claim 1, wherein A is represented by the following general formula (3) or (4). General formula (3) General formula (4) [In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and
R 8 is a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an acyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an alkylsulfonyl group, an arylsulfonyl group, a carbamoyl group, an acylamino group, an alkoxy group,
Represents a sulfamoyl group, a sulfamino group or a hydroxy group. However, at least one of R 1 , R 2 , R 3 and R 4 and at least one of R 5 , R 6 , R 7 and R 8 are ballast groups that reduce thermal diffusivity. Furthermore, at least one pair of R 1 and R 2 , R 3 and R 4 , and at least one pair of R 5 and R 6 , R 6 and R 7 , and R 7 and R 8 are bonded to each other and are saturated. Alternatively, an unsaturated 5- to 6-membered ring may be formed. J represents a divalent bonding group, and m represents 0 or 1. ] 3 Polyvalent metal ions include copper (), nickel (), zinc (), platinum (), palladium ()
2. The heat-developable color diffusion transfer image forming method according to claim 1, wherein cobalt () is used.
JP16069882A 1982-09-13 1982-09-13 Formation of color image by heat development and diffusion transfer Granted JPS5948765A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16069882A JPS5948765A (en) 1982-09-13 1982-09-13 Formation of color image by heat development and diffusion transfer
DE19833332991 DE3332991A1 (en) 1982-09-13 1983-09-13 METHOD FOR FORMING A COLOR DIFFUSION TRANSFER IMAGE BY WARM DEVELOPING
US07/185,374 US4871647A (en) 1982-09-13 1988-04-22 Method of forming color diffusion transfer image by heat development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16069882A JPS5948765A (en) 1982-09-13 1982-09-13 Formation of color image by heat development and diffusion transfer

Publications (2)

Publication Number Publication Date
JPS5948765A JPS5948765A (en) 1984-03-21
JPS6329254B2 true JPS6329254B2 (en) 1988-06-13

Family

ID=15720532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16069882A Granted JPS5948765A (en) 1982-09-13 1982-09-13 Formation of color image by heat development and diffusion transfer

Country Status (1)

Country Link
JP (1) JPS5948765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260982U (en) * 1988-10-27 1990-05-07

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236794A (en) * 1984-05-10 1985-11-25 Matsushita Electric Ind Co Ltd Image-receiving material for sublimation-type thermal recording

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335533A (en) * 1976-09-10 1978-04-03 Eastman Kodak Co Photographic element
JPS5479031A (en) * 1977-11-10 1979-06-23 Eastman Kodak Co Photographic element
JPS57111534A (en) * 1980-12-27 1982-07-12 Konishiroku Photo Ind Co Ltd Photographic sensitive element
JPS57111535A (en) * 1980-12-27 1982-07-12 Konishiroku Photo Ind Co Ltd Photographic sensitive element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335533A (en) * 1976-09-10 1978-04-03 Eastman Kodak Co Photographic element
JPS5479031A (en) * 1977-11-10 1979-06-23 Eastman Kodak Co Photographic element
JPS57111534A (en) * 1980-12-27 1982-07-12 Konishiroku Photo Ind Co Ltd Photographic sensitive element
JPS57111535A (en) * 1980-12-27 1982-07-12 Konishiroku Photo Ind Co Ltd Photographic sensitive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260982U (en) * 1988-10-27 1990-05-07

Also Published As

Publication number Publication date
JPS5948765A (en) 1984-03-21

Similar Documents

Publication Publication Date Title
US4430415A (en) Heat-developable photographic material with fine droplets containing silver halide, organic silver salt oxidizing agent and color image forming substance
JPH0245178B2 (en) NETSUGENZOSHASHINZAIRYONIOKERUJUZOYOSO
US4555470A (en) Heat-developable color photographic material with heat fusible compound
JPS58116537A (en) Color photosensitive material
JPS58174949A (en) Heat development type color photosensitive material for diffusion transfer
JPH0248103B2 (en)
JPS6148848A (en) Color photographic sensitive material
US4871647A (en) Method of forming color diffusion transfer image by heat development
JPS6329254B2 (en)
JPS5912431A (en) Color heat diffusion transfer method
JPS6257021B2 (en)
JPS59164553A (en) Color photosensitive material
JP3150346B2 (en) Image recording material
JPH0251497B2 (en)
JPH0228135B2 (en) NETSUGENZOKARAAKAKUSANTENSHAGAZONOKEISEIHOHO
JPS59159159A (en) Thermodevelopable color photosensitive material
JPS6320329B2 (en)
JPH0228134B2 (en) NETSUGENZOKARAAKAKUSANTENSHAGAZONOKEISEIHOHO
JPH0228136B2 (en) KARAANETSUKAKUSANTENSHAHOHO
JPH0254538B2 (en)
JPS5957237A (en) Color thermal diffusion transfer method
JPH0140973B2 (en)
JPH0356463B2 (en)
JPH0326818B2 (en)
JPS59181349A (en) Heat developable color photographic material