JPS6329249A - Latex reagent - Google Patents

Latex reagent

Info

Publication number
JPS6329249A
JPS6329249A JP17187586A JP17187586A JPS6329249A JP S6329249 A JPS6329249 A JP S6329249A JP 17187586 A JP17187586 A JP 17187586A JP 17187586 A JP17187586 A JP 17187586A JP S6329249 A JPS6329249 A JP S6329249A
Authority
JP
Japan
Prior art keywords
reagent
latex
average particle
particle size
latex particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17187586A
Other languages
Japanese (ja)
Other versions
JPH0682128B2 (en
Inventor
Shinichi Kimura
信一 木村
Katsuo Mitani
三谷 勝男
Yoshito Eda
枝 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61171875A priority Critical patent/JPH0682128B2/en
Publication of JPS6329249A publication Critical patent/JPS6329249A/en
Publication of JPH0682128B2 publication Critical patent/JPH0682128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a reagent having excellent preservable stability by forming a latex reagent constituted by sensitizing an immune material to latex particles in such a manner said reagent has the average particle size of a prescribed range and that the ratio between the average particle size thereof and the average particle size of the latex particles attain the value of a specified range. CONSTITUTION:The average particle size of the latex particles to be used is not particularly limited and the latex particles having the average particle size ranging 0.05-0.38, more preferably 0.07-0.3mu are particularly adequate; further, the reproducibility is better with the particles having the smaller dispersion value of the particle sizes. The latex reagent is obtd. by sensitizing the immune active material with the latex particles. This reagent is required to have the average particle size D ranging; for example, 0.1-0.5mum. The ratio D/d of the average D of the particle of the reagent to the average particle size (d) of the latex particles is required to be in; for example, 1.3-3.0 range. The reagent has the high preservable stability but hardly detects the antigen of a low concn. if D/d is <1.3. Large agglutinated particles are generated at the time of sensitization and the agglutination arises non-specifically at the time of preservation when D/d exceeds 3.0.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、保存安定性の優れたラテックス試薬に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a latex reagent with excellent storage stability.

〔従来の技術及び発明が解決しようとする問題点〕抗原
・抗体反応を利用する免疫学的検査において、凝集反応
は沈降反応、補体結合反応と共に、あるいはこれらに比
して著しく簡便かつ鋭敏な反応として利用されている。
[Problems to be solved by the prior art and the invention] In immunological tests that utilize antigen-antibody reactions, agglutination reactions are used together with precipitation reactions and complement fixation reactions, or because they are much simpler and more sensitive than these reactions. It is used as a reaction.

そして、凝集反応は、遊離細胞や細菌膜表面に局在する
抗原を検出する反応と共に、抗原・抗体の精製技術の進
歩により特異性の高い抗血清が得られることによって、
特異性の高い抗体を血球粒子、ヘントナイト粒子。
The agglutination reaction, along with the reaction to detect antigens localized on the surface of free cells and bacterial membranes, has enabled highly specific antiserum to be obtained due to advances in antigen/antibody purification technology.
Highly specific antibodies to blood cell particles and hentonite particles.

カオリン粒子、ラテックス粒子などの粒子担体に固定さ
せておき、対応する抗原を反応させ凝集を起させ、該凝
集を直接又は間接的に測定することにより抗原温度を検
査するなど、臨床検査における応用範囲が著しく拡大し
ている。
Scope of application in clinical testing, such as testing antigen temperature by immobilizing on a particle carrier such as kaolin particles or latex particles, reacting with the corresponding antigen to cause agglutination, and measuring the agglutination directly or indirectly. is expanding significantly.

しかも近年、抗原の精製技術の進歩、特異性の高い抗体
の開発、更には定量分析技術の発展に伴ない、鋭敏性が
高く、非特異的凝集反応が起こらない、しかもより保存
安定性に優れている等の性状を有する診断用試薬の開発
が要望されている。
Moreover, in recent years, with the advancement of antigen purification technology, the development of highly specific antibodies, and furthermore, the development of quantitative analysis technology, it has become highly sensitive, does not cause non-specific agglutination reactions, and has excellent storage stability. There is a demand for the development of diagnostic reagents with properties such as:

しかしながら、診断用試薬に、免疫学的凝集反応待の迅
速性及び鋭敏性を保持したまま、保存時の安定性を向上
させる要求は相互に矛盾する性状を両者共に満足させる
要望であり、現実には非常に困難なことである。即ち、
過度のコロイド化学的安定性を付与された診断用試薬は
保存安定性には優れるものの、免疫学的凝集反応の迅速
性及び鋭敏性が十分ではないものが多(、また逆に、免
疫学的凝集反応の迅速性及び鋭敏性を上げようとすれば
、非特異的に自然凝集して保存性に劣る傾向を示すため
に、診断用試薬として利用し得なくなる。そのために現
在公知の診断用試薬は上記いずれかの性状が犠牲にされ
ていると言える。
However, the demand for improving the stability of diagnostic reagents during storage while retaining the rapidity and sensitivity of immunoagglutination reactions is a desire to satisfy both mutually contradictory properties. is extremely difficult. That is,
Diagnostic reagents with excessive colloidal chemical stability have excellent storage stability, but many of them do not have sufficient rapidity and sensitivity for immunological agglutination reactions (and, conversely, If an attempt is made to improve the rapidity and sensitivity of the agglutination reaction, it will tend to spontaneously aggregate non-specifically and have poor storage stability, making it unusable as a diagnostic reagent.For this reason, currently known diagnostic reagents cannot be used. It can be said that one of the above properties is sacrificed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は保存安定性に優れ、しかも免疫学的凝集反
応の迅速性及び鋭敏性を有する試薬を開発すべく鋭意系
統的に研究して来た。その結果以外にもこれらの相反す
る性状が、ラテックス粒子径及び該ラテックス粒子に免
疫活性物質を感作させたラテックス試薬の粒子径を制御
することにより、発揮されうろことを見出し、本発明を
完成し、ここに提案するに至った。
The present inventors have conducted extensive and systematic research in order to develop a reagent that has excellent storage stability and is rapid and sensitive for immunological agglutination reactions. In addition to these results, we have also discovered that these contradictory properties can be achieved by controlling the particle size of the latex particles and the particle size of the latex reagent that sensitizes the latex particles with an immunoactive substance, and have completed the present invention. And I have come to propose it here.

即ち、本発明はラテックス粒子に免疫活性物質を感作さ
せてなる平均粒子径(D)が0.1〜0.5μmのラテ
ックス試薬で且つ該ラテックス試薬はラテックス粒子の
平均粒子径(d)に対するラテックス試薬の平均粒子径
(D)の比(D/d)が1.3〜3.0の範囲であるこ
とを特徴とするラテックス試薬である。
That is, the present invention provides a latex reagent having an average particle diameter (D) of 0.1 to 0.5 μm, which is obtained by sensitizing latex particles with an immunologically active substance, and the latex reagent has an average particle diameter (D) of 0.1 to 0.5 μm. The latex reagent is characterized in that the ratio (D/d) of the average particle diameter (D) of the latex reagent is in the range of 1.3 to 3.0.

本発明で使用されるラテックス粒子の種類は特に限定さ
れず公知のものが使用される。最も一般的に好適に使用
されるラテックス粒子を例示すると例えば次式(1)、 (但し、R1は水素原子又はアルキル基であり、R2は
ハロゲン原子、置換若しくは非置換のフェニル基、アル
コキシカルボニル基、アシルオキシ基、アルコキシ基又
はシアノ基である。) で示される疎水性ビニル系単量体単位を含んでいる高分
子重合体よりなるラテックス粒子である。
The type of latex particles used in the present invention is not particularly limited, and known ones can be used. The most commonly used latex particles are exemplified by the following formula (1): , an acyloxy group, an alkoxy group, or a cyano group.

ここで、フェニル基の置換基としては特に限定されない
が、ハロゲン原子、ハロアルキル基、アルキル基等を挙
げることができる。このような疎水性ビニル系単量体単
位の中でもR2が置換若しくは非置換のフェニル基、塩
素原子、又はアルコキシカルボニル基である疎水性ビニ
ル系単量体単位が好ましい。このような単量体単位を与
える単量体としては、例えば、スチレン、ビニルトルエ
ン、クロロメチルスチレン、クロルスチレン、塩化ビニ
ル、臭化ビニル、メチルメタアクリレート、エチルメタ
アクリレート、プロピルメタアクリレート、酢酸ビニル
、エチルビニルエーテル、プロピルビニルエーテル、ブ
チルビニルエーテル、アクリロニトリル、メタアクリロ
ニトリル等が好適に用いられ、特にスチレン、ビニルト
ルエン、クロロメチルスチレン、塩化ビニル、メチルメ
タアクリレート、エチルメタアクリレート等が好ましく
採用される。また、高分子重合体よりなるラテックス粒
子表面に次式(II) (但し、Rは水素原子又はアルキル基である。)で示さ
れる単量体単位を有しているものが本発明に於いて好適
に用いられる。(n)式で示される単量体単位を与える
単量体としては、グリシジルアクリレート、グリシジル
メタアクリレート等が例示される。
Here, substituents for the phenyl group are not particularly limited, but include halogen atoms, haloalkyl groups, alkyl groups, and the like. Among such hydrophobic vinyl monomer units, hydrophobic vinyl monomer units in which R2 is a substituted or unsubstituted phenyl group, chlorine atom, or alkoxycarbonyl group are preferred. Examples of monomers providing such monomer units include styrene, vinyltoluene, chloromethylstyrene, chlorostyrene, vinyl chloride, vinyl bromide, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and vinyl acetate. , ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, acrylonitrile, methacrylonitrile, etc. are preferably used, and styrene, vinyltoluene, chloromethylstyrene, vinyl chloride, methyl methacrylate, ethyl methacrylate, etc. are particularly preferably employed. In addition, in the present invention, latex particles made of a high molecular weight polymer have a monomer unit represented by the following formula (II) (wherein, R is a hydrogen atom or an alkyl group) on the surface. Suitably used. Examples of the monomer providing the monomer unit represented by formula (n) include glycidyl acrylate, glycidyl methacrylate, and the like.

上記(1)式もしくは(II)式で示されるいずれか一
方の単量体単位のみで構成されているラテックス粒子、
または、上記(1)式及び(II)式で示される単量体
単位の両方で構成されているラテックス粒子は、本発明
に於いて特に好適に使用される。
Latex particles composed of only one monomer unit represented by the above formula (1) or (II),
Alternatively, latex particles composed of both the monomer units represented by the above formulas (1) and (II) are particularly preferably used in the present invention.

上記ラテックス粒子を吸着型ラテックス試薬の原料とし
て用いる場合には、前記(II)式で示される単量体単
位の含有量は、ラテックス粒子中に0〜20モル%、好
ましくは、0.05〜15モル%であることが好適であ
る。また、上記ラテックス粒子を共有結合型ラテックス
試薬の原料として用いる場合には、上記(II)式で示
される単量体単位の含有量はラテックス粒子中に20〜
100モル%、好ましくは、30〜99モル%の範囲か
ら選ぶことが好適である。
When the above latex particles are used as a raw material for an adsorption type latex reagent, the content of the monomer unit represented by the above formula (II) in the latex particles is 0 to 20 mol%, preferably 0.05 to 20 mol%. It is suitably 15 mol%. In addition, when the latex particles are used as a raw material for a covalently bonded latex reagent, the content of the monomer unit represented by the formula (II) in the latex particles is 20 to 20.
It is suitable to select from the range of 100 mol%, preferably from 30 to 99 mol%.

尚、ラテックス粒子を診断用ラテックス試薬の原料とし
て用いる場合は、ラテックス試薬の性質に悪影響を及ぼ
さない範囲で、例えば、20モル%以下の範囲で親水性
ビニル系単量体単位がラテ・ノクス粒子中に含まれてい
ても良い。親水性ビニル系単量体単位を与える単量体と
しては、例えば、メタクリル酸、アクリル酸、スチレン
スルホン酸、スチレンスルホン酸ナトリウム、2−ヒド
ロキシエチル(メタ)アクリレート、ビニルピロリドン
、ポリエチレングリコール(メタ)アクリル酸エステル
等が挙げられる。更にまた、必要に応じてジビニルヘン
ゼン、エチレングリコールジメタクリレート、ジエチレ
ングリコールメタクリレート、ビスフェノールAジグリ
シジルエーテル等の架橋性単量体も好適に使用できる。
In addition, when latex particles are used as a raw material for a diagnostic latex reagent, the hydrophilic vinyl monomer unit may be added to the latex particles in an amount of 20 mol% or less within a range that does not adversely affect the properties of the latex reagent. It may be included inside. Examples of monomers providing hydrophilic vinyl monomer units include methacrylic acid, acrylic acid, styrene sulfonic acid, sodium styrene sulfonate, 2-hydroxyethyl (meth)acrylate, vinylpyrrolidone, and polyethylene glycol (meth)acrylate. Examples include acrylic esters. Furthermore, crosslinkable monomers such as divinylhenzene, ethylene glycol dimethacrylate, diethylene glycol methacrylate, and bisphenol A diglycidyl ether can also be suitably used if necessary.

本発明で用いる高分子重合体よりなるラテックス粒子を
得るための重合方法は特に限定されず、公知の方法が好
適に採用される。例えば、アニオン性界面活性剤、非イ
オン性界面活性剤の存在下に水媒体中で水溶性ラジカル
開始剤を用いて乳化重合する方法、界面活性剤を使わず
に水媒体中で水溶性ラジカル開始剤を用いて不均一重合
する方法、部分げん化ボリヒニルアルコール、ポリビニ
ルピロリドン等の保護コロイドの存在下に懸濁重合する
方法、ビニル系単量体は溶解するが重合体は溶解しない
有機溶媒中で沈澱重合する方法等が採用される。
The polymerization method for obtaining latex particles made of a high molecular weight polymer used in the present invention is not particularly limited, and known methods are preferably employed. For example, a method of emulsion polymerization using a water-soluble radical initiator in an aqueous medium in the presence of an anionic surfactant or a nonionic surfactant, and a method of emulsion polymerization using a water-soluble radical initiator in an aqueous medium without using a surfactant. A method of heterogeneous polymerization using a chemical agent, a method of suspension polymerization in the presence of a protective colloid such as partially hydrogenated polyhinyl alcohol or polyvinylpyrrolidone, and an organic solvent that dissolves the vinyl monomer but not the polymer. A method such as precipitation polymerization in a medium is adopted.

本発明で使用するラテックス粒子の平均粒子径は特に限
定されないが、一般に0.05〜0.38μ好ましくは
0.07〜0.3μの範囲にあるものが好適に用いられ
る。さらにまた、該ラテックス粒子は、粒子径の分散値
の小さい方が、再現性が良いために望ましい。例えば、
粒子径の分散値は10%以下、さらには5%以下である
ことが好ましい。尚、上記分散値とは、標準偏差を平均
粒子径で除して100をかけた値であり、単位を%で表
示したものである。
The average particle diameter of the latex particles used in the present invention is not particularly limited, but those in the range of 0.05 to 0.38 microns, preferably 0.07 to 0.3 microns are generally suitably used. Furthermore, it is desirable for the latex particles to have a smaller particle diameter dispersion value because of better reproducibility. for example,
The particle size dispersion value is preferably 10% or less, more preferably 5% or less. The above-mentioned dispersion value is a value obtained by dividing the standard deviation by the average particle diameter and multiplying by 100, and is expressed in %.

このようにして得られたラテックス粒子は、特に免疫活
性物質を感作するごとによりラテックス試薬を得て、免
疫学的反応用診断用試薬として好適に使用される。該免
疫活性物質としては、特に限定されず、たとえば凝集反
応、凝集阻止反応などに利用しろる各種抗原、抗体など
のいずれであってもよい。代表的なものを例示すれば、
例えば、変性ガンマグロブリン、リウマチ因子、抗核因
子、ヒトアルブミン、抗ヒトアルブミン抗体、イムノグ
ロブリンG (IgG) 、イムノグロブリンA(Ig
A)、イムノグロブリンM (IgM) 、ストレプト
リジンO1抗ストレプトリジン0抗体、C−反応性蛋白
、抗C−反応性蛋白抗体、アルファーフェトプロティン
(AFP)、抗AFP抗体、癌胎児性抗原(CEA) 
、抗CEA抗体、ヒト胎盤ラフトゲン(HPL)、抗H
PL抗体、ヒト絨毛性ゴナドトロピン(HCG)、抗C
E抗体、抗エストロゲン抗体、抗インシュリン抗体、B
型肝炎表面抗原(HBS)、抗HBS抗体、梅毒トリポ
ネーマ抗原、風疹抗原、補体成分C1Q、抗補体成分C
14抗体、等の公知の免疫活性物質をあげることができ
る。
The latex particles thus obtained are preferably used as a diagnostic reagent for immunological reactions, especially after being sensitized with an immunologically active substance to obtain a latex reagent. The immunologically active substance is not particularly limited, and may be any of various antigens, antibodies, etc. that can be used in, for example, agglutination reactions, agglutination inhibition reactions, and the like. To give a typical example,
For example, denatured gamma globulin, rheumatoid factor, antinuclear factor, human albumin, anti-human albumin antibody, immunoglobulin G (IgG), immunoglobulin A (Ig
A), immunoglobulin M (IgM), streptolysin O1 anti-streptolysin 0 antibody, C-reactive protein, anti-C-reactive protein antibody, alpha-fetoprotein (AFP), anti-AFP antibody, carcinoembryonic antigen (CEA) )
, anti-CEA antibody, human placental lufftogen (HPL), anti-H
PL antibody, human chorionic gonadotropin (HCG), anti-C
E antibody, anti-estrogen antibody, anti-insulin antibody, B
Hepatitis surface antigen (HBS), anti-HBS antibody, Tryponema pallidum antigen, rubella antigen, complement component C1Q, anti-complement component C
Known immunologically active substances such as No. 14 antibodies can be mentioned.

本発明のラテックス試薬は前記ラテックス粒子に免疫活
性物質を感作することによって得られる。
The latex reagent of the present invention can be obtained by sensitizing the latex particles with an immunoactive substance.

該ラテックス粒子は一般に分散性がよく非凝集性のもの
であるが、免疫活性物質を感作させると凝集性が生じ、
該ラテックス試薬は凝集粒子として存在する。本発明で
提供するラテックス試薬はその粒子径(D)が0.1〜
0.5μmの範囲である必要がある。該ラテックス試薬
の粒子径が上記範囲より小さいものは著しく安定で、免
疫学的凝集反応に於いて要求される迅速性及び鋭敏性の
面で十分ではない。まな逆にラテックス試薬の粒子径が
上記範囲より大きい場合は凝集性が強く安定な試薬とな
らない場合があるので好ましくない。
The latex particles generally have good dispersibility and non-aggregation, but when sensitized with an immunoactive substance, they become agglomerated.
The latex reagent exists as aggregated particles. The latex reagent provided by the present invention has a particle diameter (D) of 0.1 to
It needs to be in the range of 0.5 μm. Latex reagents with a particle size smaller than the above range are extremely stable and are insufficient in terms of rapidity and sensitivity required in immunological agglutination reactions. On the other hand, if the particle size of the latex reagent is larger than the above range, it is not preferable because it may have strong aggregation properties and may not be a stable reagent.

本発明のラテックス試薬として他の重要な要件はラテッ
クス粒子の粒子径(d)に対する該ラテックス粒子の粒
子径(D)の比(D/d)が1.3〜3.0の範囲にあ
る必要があることである。前記(D/d)が1.3未満
の時は高い保存安定性を有するが、低濃度の抗原又は抗
体を検出することが困難となる。
Another important requirement for the latex reagent of the present invention is that the ratio (D/d) of the particle diameter (D) of the latex particles to the particle diameter (d) of the latex particles must be in the range of 1.3 to 3.0. There is. When the above (D/d) is less than 1.3, it has high storage stability, but it becomes difficult to detect antigens or antibodies at low concentrations.

すなわち、対応する抗原又は抗体を感作したラテックス
粒子間の静電的反発が強すぎるため、低濃度の抗原又は
抗体存在下で凝集することができない。また、前記(D
/d)が3.0を越える時は、感作時に大きな凝集塊が
できていることを示しており、保存時に非特異的に凝集
を引き起こす。さらに、抗原又は抗体存在下での最終的
な凝集塊の大きさが決まっているため、高濃度の抗原又
は抗体を検出することが困難となる。
That is, the electrostatic repulsion between latex particles sensitized with the corresponding antigen or antibody is too strong to allow them to aggregate in the presence of a low concentration of antigen or antibody. In addition, the above (D
/d) exceeding 3.0 indicates that large aggregates are formed during sensitization, which causes nonspecific aggregation during storage. Furthermore, since the final aggregate size in the presence of antigen or antibody is fixed, it becomes difficult to detect high concentrations of antigen or antibody.

本発明のラテックス試薬の製法は特に限定的ではないが
、一般に前記性状は原料として使用するラテックス粒子
径と免疫活性物質を感作する条件によって選ぶことが出
来る。例えばラテックス粒子径は前記のように使用目的
に応じて0.05〜0.38μmの範囲から選べばよい
。またラテックス試薬の平均粒子径(D)がラテックス
粒子の平均粒子径(d)に対してD/d=1.3〜3.
0、好ましくは1.5〜2.5の範囲になるような感作
方法は例えば次の方法が好適である。例えばラテックス
粒子の水性懸濁液にモーター付の撹拌棒を入れ懸濁液を
攪拌しながら、免疫活性物質含有液をすばやく添加し、
そのまま攪拌をつづける。攪拌速度は、ラテックス粒子
の大きさ、懸濁液の濃度、免疫活性物質含有液の濃度に
よって異なるが、100〜500回転/分、好ましくは
300〜400回転/分が好適に用いられる。また上記
振盪する場合も同様に25〜250回/分、好ましくは
50〜150回/分が好適に用いられる。感作処理は一
般にpH約6.0〜8.6、約4〜37℃の温度で行な
うのが好ましい。また−般に免疫活性物質はラテックス
粒子の飽和吸着量よりやや過剰量を使用し、感作後過剰
分を遠心分離などで除去するとよい。また一般に免疫活
性物質は、抗原又は抗体(■)/ラテックス粒子の表面
積(rd)の比が0.05〜10■/耐の範囲となるよ
うに選べば好適である。
Although the method for producing the latex reagent of the present invention is not particularly limited, the properties can generally be selected depending on the particle size of the latex used as a raw material and the conditions for sensitizing the immunoactive substance. For example, the latex particle size may be selected from the range of 0.05 to 0.38 μm depending on the purpose of use as described above. Further, the average particle diameter (D) of the latex reagent is D/d=1.3 to 3.
0, preferably in the range of 1.5 to 2.5, the following method is suitable, for example. For example, by inserting a motorized stirring rod into an aqueous suspension of latex particles and stirring the suspension, the immunoactive substance-containing solution is quickly added.
Continue stirring. The stirring speed varies depending on the size of the latex particles, the concentration of the suspension, and the concentration of the immunoactive substance-containing liquid, but is preferably 100 to 500 revolutions/minute, preferably 300 to 400 revolutions/minute. In addition, in the case of the above-mentioned shaking, 25 to 250 times/min, preferably 50 to 150 times/min is suitably used. The sensitization treatment is generally preferably carried out at a pH of about 6.0-8.6 and a temperature of about 4-37°C. Furthermore, it is generally advisable to use the immunoactive substance in an amount slightly in excess of the saturated adsorption amount of the latex particles, and remove the excess amount by centrifugation or the like after sensitization. In general, the immunologically active substance is preferably selected such that the ratio of antigen or antibody (■)/latex particle surface area (rd) is in the range of 0.05 to 10 ■/tolerance.

上記のようにして得られたラテックス試薬は必要により
水性溶媒で洗浄した後、一般には水性溶媒に浮遊せしめ
た状態で免疫学的凝集反応に供される。一般に水性溶媒
に浮遊させるときのラテックス試薬濃度は0.01〜0
.1重量%の範囲から選べば好適である。
The latex reagent obtained as described above is washed with an aqueous solvent if necessary, and then generally subjected to an immunological agglutination reaction while suspended in an aqueous solvent. Generally, the concentration of latex reagent when suspended in an aqueous solvent is 0.01 to 0.
.. It is preferable to select from the range of 1% by weight.

本発明のラテックス試薬は前記性状の他に上記水性溶媒
に浮遊せしめた状態でのラテックス試薬のゼータ電位が
一20mV〜lOmV、好ましくは一10mV〜On+
Vの範囲で、また吸光度が光路長10m1セルで0.5
〜1.5の範囲となるように例えば前記方法で調製する
のが最も好適である。これらの性状は特に鋭敏性の良好
なラテックス試薬を得るために好適である。
In addition to the properties described above, the latex reagent of the present invention has a zeta potential of 120 mV to 10 mV, preferably 110 mV to On+ when suspended in the aqueous solvent.
V range, and the absorbance is 0.5 in a cell with an optical path length of 10 m.
It is most preferable to prepare, for example, by the method described above, so that the molecular weight is in the range of 1.5 to 1.5. These properties are particularly suitable for obtaining a latex reagent with good sensitivity.

〔作 用〕[For production]

上記のような特徴を有する本発明のラテックス試薬は一
般にラテックス粒子が平均2〜3個凝集したものできわ
めて高い保存安定性を有する反面、適度に凝集している
ため高い鋭敏性、迅速性を有している。
The latex reagent of the present invention having the above-mentioned characteristics generally has extremely high storage stability as it has an average of 2 to 3 latex particles agglomerated, but it also has high sensitivity and rapidity due to moderate aggregation. are doing.

〔効 果〕〔effect〕

本発明のラテックス試薬は、水性媒体中で極めて安定で
あり、保存安定性に優れているだけでなく、同時に広い
測定領域を有しているラテックス試薬を提供するものと
して、その価値は極めて大きい。
The latex reagent of the present invention is extremely stable in an aqueous medium, and has extremely high value as it provides a latex reagent that not only has excellent storage stability but also has a wide measurement range.

以下に実施例によって、本発明のラテックス試薬が保存
安定性にすくれていることを示すが、本発明は、これら
の実施例に限定されるものではない。
The following examples demonstrate that the latex reagent of the present invention has excellent storage stability, but the present invention is not limited to these examples.

尚、実施例におけるラテックス試薬の平均粒子径は、レ
ーザー回転グレーディング方式オートマチイック表面電
荷スペクトルアナライザーLASERZEE”’ Sy
stem 3000(PEN KEM社製)(以下パー
ティクルアナライザーと略す)を使用して決定した。
In addition, the average particle diameter of the latex reagent in the examples was measured using a laser rotation grading automatic surface charge spectrum analyzer LASERZEE"' Sy
It was determined using stem 3000 (manufactured by PEN KEM) (hereinafter abbreviated as particle analyzer).

実施例1 (1)リウマチ因子側“定試薬の調製 平均粒子径0.178μmのポリスチレンラテックス粒
子をNaC120,05Mを含むpH8,2の0.1M
のホウ酸緩衝液(以下BBSと略す)で希釈しラテック
ス濃度が1重量%の懸濁液を調製する。
Example 1 (1) Preparation of rheumatoid factor side “regular reagent” Polystyrene latex particles with an average particle diameter of 0.178 μm were mixed with 0.1M NaCl at pH 8.2 containing 120.05M.
A suspension having a latex concentration of 1% by weight is prepared by diluting it with a borate buffer solution (hereinafter abbreviated as BBS).

次いで60℃で10分間加熱処理したヒ)IgGをBB
Sにより希釈し1■/ mlに調製する。上記ラテック
ス懸濁液1容を350回転/分で攪拌しながら熱変性ヒ
ト1gG1容を加え、次いで同速度で攪拌しながら2時
間室温で放置した。次いで遠心分離し、上清を除去した
後、沈澱をウシ血清アルブミンを0.05重量%の濃度
で添加したBBSで再分散しラテックス濃度を0.03
重量%に調製し、リウマチ因子測定試薬を得た。パーテ
ィクルアナライザーで分析した結果、ラテックス試薬の
平均粒子径は0.240μmであった。またLAS[!
RZEE Model 501 (PEN KEM社製
)でゼータ電位を測定した結果−2,5±0.2mV(
BBS中)であった。ラテックス試薬の吸光度は1゜2
5(光路長101m 580nm)であった。
Then, the IgG heated at 60°C for 10 minutes was
Dilute with S and adjust to 1 μ/ml. 1 volume of heat-denatured human 1 gG was added to 1 volume of the above latex suspension while stirring at 350 rpm, and then left at room temperature for 2 hours while stirring at the same speed. After centrifugation and removal of the supernatant, the precipitate was redispersed in BBS containing bovine serum albumin at a concentration of 0.05% by weight to give a latex concentration of 0.03%.
% by weight to obtain a rheumatoid factor measuring reagent. As a result of analysis using a particle analyzer, the average particle diameter of the latex reagent was 0.240 μm. Also LAS [!
The result of measuring the zeta potential with RZEE Model 501 (manufactured by PEN KEM) was -2.5 ± 0.2 mV (
BBS). The absorbance of latex reagent is 1°2
5 (optical path length 101 m, 580 nm).

(2)測定方法 日立製作所υ−3200型自記分光光度計の測光部に温
度調節器及びマグネット式攪拌装置を取り付けた装置に
より吸光度を測定した。光路長10mmのガラス製光学
セルに円筒状の攪拌子を入れ、次いで(1)で得たリウ
マチ因子測定用試薬1980μ!を分注し、測光部に挿
入し、37℃に保温した。
(2) Measurement method Absorbance was measured using a Hitachi υ-3200 self-recording spectrophotometer equipped with a temperature controller and a magnetic stirrer attached to the photometry section. A cylindrical stirrer was placed in a glass optical cell with an optical path length of 10 mm, and then 1980μ of the rheumatoid factor measurement reagent obtained in (1) was added. was dispensed, inserted into the photometric section, and kept at 37°C.

次いで、該攪拌装置によりリウマチ因子測定用試薬を攪
拌しつつ、被検液20μ!を添加した。
Next, while stirring the reagent for measuring rheumatoid factor using the stirring device, 20 µm of the test liquid was added. was added.

添加と同時に吸光度の測定を開始した。吸光度の測定は
、580hmの波長の光線を用いて行なった。なお、攪
拌は被検液添加後3秒で停止した。
Measurement of absorbance was started at the same time as the addition. Absorbance measurements were performed using a light beam with a wavelength of 580 hm. Note that stirring was stopped 3 seconds after the addition of the test liquid.

(3)既知濃度血清の測定 リウマチ因子濃度16001U/−であるリウマチ患者
血清のプール血清を生理食塩水で希釈しリウマチ因子濃
度5.10.20.40.80.100.200゜50
0、1000mm/m lの被検液を得た。
(3) Measurement of serum with known concentration The pooled serum of rheumatoid patients with a rheumatoid factor concentration of 16001 U/- was diluted with physiological saline to obtain a rheumatoid factor concentration of 5.10.20.40.80.100.200゜50.
Test liquids of 0 and 1000 mm/ml were obtained.

(2)の測定条件下で上記9種の被検液及びBBSにつ
き吸光度を各5回測定した。
Under the measurement conditions of (2), the absorbance was measured five times for each of the nine test solutions and BBS.

得られた吸光度のうち、被検液添加後1分後と5分後の
吸光度から一定間隔時間に対する吸光度の差を得た。
Among the obtained absorbances, the difference in absorbance for a fixed interval of time was obtained from the absorbances 1 minute and 5 minutes after addition of the test liquid.

また、(1)で得た試薬を4℃で12か月保存後同様に
して吸光度の差を求めた。この結果を第1表に示す。
Further, the reagent obtained in (1) was stored at 4° C. for 12 months, and then the difference in absorbance was determined in the same manner. The results are shown in Table 1.

第1表の結果から、試薬作成後7日目と4℃。From the results in Table 1, 7 days after reagent preparation and 4°C.

12か月保存後の吸光度の差は全ての測定濃度で変動係
数の範囲内に入っている。
The differences in absorbance after 12 months of storage are within the coefficient of variation for all measured concentrations.

なお4℃、12か月保存後の試薬の平均粒子径は0.2
40μm 、ゼータ電位は−2,3±0.2mVで吸光
度は1.26であった。
The average particle size of the reagent after storage at 4°C for 12 months is 0.2
40 μm, the zeta potential was −2.3±0.2 mV, and the absorbance was 1.26.

(来夏以下余白) 第  1  表 (注1,2)各5回の測定結果より平均値、標準偏差及
び標準偏差を平均値で除してパーセント表示した変動係
数を求めた。
(Leaving space below next summer) Table 1 (Notes 1 and 2) From the results of each five measurements, the average value, standard deviation, and coefficient of variation expressed as a percentage were calculated by dividing the standard deviation by the average value.

0主1) 試薬作成後7日目の測定活用、0主2) 試
薬作成後4℃で12か月保存後の測定結果。
0 Main 1) Measurement utilization on the 7th day after reagent preparation, 0 Main 2) Measurement results after 12 months storage at 4°C after reagent preparation.

比較例1 実施例1で用いたのと同様のラテックス懸濁液1容に加
熱変性ヒトIgG?、@液1容をラテックス懸濁液を静
置状態で添加し、次いで2時間静置した。
Comparative Example 1 Heat-denatured human IgG was added to 1 volume of the same latex suspension as used in Example 1. , 1 volume of the latex suspension was added while the latex suspension was still standing, and then left standing for 2 hours.

以下実施例1と同様に処理した。パーティクルアナライ
ザーで分析した結果、ラテックス試薬の平均粒子径は0
.720μmであり、吸光度2.35であった。ラテッ
クス試薬の平均粒子径CD)に対するラテックス粒子の
平均粒子径(d)の比D/d = 4.0であった。実
施例1と同様にして既知濃度のりウマチ患者血清のプー
ル血清を測定した結果を第2表に示す。
Thereafter, the same treatment as in Example 1 was carried out. As a result of analysis using a particle analyzer, the average particle size of the latex reagent was 0.
.. It was 720 μm and the absorbance was 2.35. The ratio of the average particle diameter (d) of the latex particles to the average particle diameter CD of the latex reagent was D/d = 4.0. Table 2 shows the results of measuring the pooled serum of rheumatoid arthritis patients with known concentrations in the same manner as in Example 1.

第2表から明らかなように試薬作成後7日目と4℃、1
2か月保存後の吸光度の差は異なっている。
As is clear from Table 2, on the 7th day after reagent preparation and at 4℃, 1
The difference in absorbance after 2 months storage is different.

試薬作成後4℃、12か月後の平均粒子径は0.931
μmで吸光度は2.65で、保存中に非特異凝集を生じ
ている。
The average particle diameter after 12 months at 4℃ after reagent preparation was 0.931.
The absorbance in μm was 2.65, and nonspecific aggregation occurred during storage.

(木頁以下余白) 第  2  表 (注1,2)各5回の測定結果より平均値、標準偏差及
び標準偏差を平均値で除してパーセント表示した変動係
数を求めた。
(Left space below the wooden page) Table 2 (Notes 1 and 2) From the results of each five measurements, the average value, standard deviation, and coefficient of variation expressed as a percentage were determined by dividing the standard deviation by the average value.

0主1) 試薬作成後7日目の測定結尾0主2) 試薬
作成後4℃で12力明保存後の測定結尾0主3)   
BBSでの測定結尾 比較例2 実施例1で用いたのと同様のラテックス懸濁液1容にノ
ニオン系の界面活性剤(HLB =15)1/20容を
添加し、室温1時間静置した。次いでヒトIgG溶液1
容を400回転/分で攪拌しながらすばやく添加し、2
時間400回転/分で攪拌をつづけた。以下実施例1と
同様に処理した。パーティクルアナライザーで分析した
結果、ラテックス試薬の平均粒子径は0.196μmで
あり、ゼータ電位は35mVで吸光度0.47であった
。ラテックス試薬の平均粒子径(D)に対するラテック
ス粒子の平均粒子径(d)に対する比はD/d =1.
10であった。
0 Main 1) Measurement result 0 main on 7th day after reagent preparation 2) Measurement result 0 main after storage at 4℃ for 12 days after reagent preparation 3)
BBS measurement results Comparative Example 2 1/20 volume of a nonionic surfactant (HLB = 15) was added to 1 volume of the same latex suspension as used in Example 1, and the mixture was allowed to stand at room temperature for 1 hour. . Then human IgG solution 1
quickly add the volume while stirring at 400 rpm,
Stirring was continued at 400 revolutions/minute. The following treatment was carried out in the same manner as in Example 1. As a result of analysis using a particle analyzer, the average particle diameter of the latex reagent was 0.196 μm, the zeta potential was 35 mV, and the absorbance was 0.47. The ratio of the average particle diameter (D) of the latex particles to the average particle diameter (D) of the latex reagent is D/d = 1.
It was 10.

実施例1と同様にして既知濃度のりウマチ患者血清のプ
ール血清を測定した結果を第3表に示す。
Table 3 shows the results of measuring the pooled serum of patients with rheumatoid arthritis having known concentrations in the same manner as in Example 1.

第3表の結果から保存安定性は優れているが、臨床的に
測定が必要な5mm1/m1において凝集が生しない欠
点がある。なお、試薬作成後4℃、12か月後の平均粒
子径は0.198μmであり、表面電荷密度は一37m
Vで吸光度は0.48であった。
From the results in Table 3, the storage stability is excellent, but there is a drawback that no aggregation occurs at 5 mm1/ml, which is required for clinical measurement. The average particle diameter after 12 months at 4°C after reagent preparation was 0.198 μm, and the surface charge density was -37 μm.
The absorbance was 0.48 at V.

(来夏以下余白) 第  3  表 (注1.2)各5回の測定結果より平均値、標準偏差及
び標準偏差を平均値で除してパーセント表示した変動係
数を求めた。
(Margin below next summer) Table 3 (Note 1.2) From the results of each five measurements, the average value, standard deviation, and coefficient of variation expressed as a percentage were calculated by dividing the standard deviation by the average value.

0主1) 試薬作成後7日目の測定結尾0主2) 試薬
作成後4℃で12か月保存後の測定結果。
0 main 1) Measurement results on the 7th day after reagent preparation 0 main 2) Measurement results after 12 months storage at 4°C after reagent preparation.

0主3)   BBSでの測定結果。0 Main 3) Measurement results at BBS.

実施例2 平均粒子径0.134μmのポリスチレンラテックス粒
子をNaCe 0.05Mを含むpi(8,2の0.1
−のグリシン緩衝液(以下CBSと略す)で希釈しラテ
ックス濃度が1重量%の懸濁液を調製する。ラテックス
懸濁液1容に加熱変性ヒ)IgG熔液1容を実施例1と
同様にして添加し、次いで攪拌下2時間放置した。以下
実施例1と同様に処理した。パーティクルアナライザー
で分析した結果、ラテックス試薬の平均粒子径は0.2
旧μmであり、ゼータ電位は−3,4±0.2mV(C
BS中)で、吸光度は1.03であった。実施例1と同
様に既知濃度のりウマチ患者血清のプール血清を測定し
た。結果を第4表に示す。
Example 2 Polystyrene latex particles with an average particle diameter of 0.134 μm were mixed with pi (0.1 of 8,2) containing 0.05 M of NaCe.
- dilute with glycine buffer (hereinafter abbreviated as CBS) to prepare a suspension having a latex concentration of 1% by weight. One volume of the heat-denatured IgG melt was added to one volume of the latex suspension in the same manner as in Example 1, and then left under stirring for 2 hours. Thereafter, the same treatment as in Example 1 was carried out. As a result of analysis using a particle analyzer, the average particle diameter of the latex reagent was 0.2.
old μm, and the zeta potential is -3,4 ± 0.2 mV (C
(in BS), and the absorbance was 1.03. In the same manner as in Example 1, pooled sera of rheumatoid arthritis patient sera with known concentrations were measured. The results are shown in Table 4.

第4表の結果から、試薬作成後7日目と4℃。From the results in Table 4, 7 days after reagent preparation and 4°C.

12か月保存後の吸光度の差は全ての測定濃度で変動係
数の範囲内に入っている。
The differences in absorbance after 12 months of storage are within the coefficient of variation for all measured concentrations.

なお、4℃、12か月保存後の試薬の平均粒子径は0.
205 pmでゼータ電位は−3,3±0.1 mVで
、吸光度は1.06であった。
The average particle diameter of the reagent after storage at 4°C for 12 months was 0.
At 205 pm, the zeta potential was -3.3±0.1 mV and the absorbance was 1.06.

第  4  表 (注1,2)各5回の測定結果より平均値、標準偏差及
び標準偏差を平均値で除してパーセント表示した変動係
数を求めた。
Table 4 (Notes 1 and 2) From the results of each of the five measurements, the average value, standard deviation, and coefficient of variation expressed as a percentage were determined by dividing the standard deviation by the average value.

0主1) 試薬作成後7日目の測定結北Q主2) 試薬
作成後4℃で12か月保存後の測定結果。
0 Main 1) Measurement results on the 7th day after making the reagent Q Main 2) Measurement results after storing the reagent at 4°C for 12 months.

0主3)  BBSでの測定結果、 実施例3 +mm  C−反応性蛋白質測定試薬の調製平均直径0
.123μmのポリスチレンラテックス粒子を塩化アル
モニウム−アンモニア緩衝液(pH=8.0)で希釈し
ラテックス濃度が1重量%の懸S液を調製する。次いで
C−反応性蛋白質(以下CRPと略す)をヤギに免疫し
て得た抗CRP血清より塩析処理により分画した抗CR
PヤギIgG分画を塩化アンモニウム−アンモニア緩衝
液(pH−8,0)で希釈し、蛋白濃度2■/mlの溶
液を調製する。上記ラテックス懸濁液1容に抗CRPヤ
ギIgG分画の溶液1容を実施例1と同様にして加え3
7℃で2時間反応させた。次いで遠心分離し、上滑を除
去した後沈澱をウシ血清アルブミンを0.05重量%の
濃度で添加した塩化アンモニウム−アンモニア緩衝液(
pH= 8.0 >  で再分散しラテックス濃度を0
.05重量%に調製し、CRP測定試薬を得た。
0 main 3) Measurement results with BBS, Example 3 +mm Preparation average diameter of C-reactive protein measurement reagent 0
.. A suspended S solution having a latex concentration of 1% by weight is prepared by diluting 123 μm polystyrene latex particles with an aluminum chloride-ammonia buffer (pH=8.0). Next, anti-CR was fractionated by salting out from anti-CRP serum obtained by immunizing a goat with C-reactive protein (hereinafter abbreviated as CRP).
The goat IgG fraction is diluted with ammonium chloride-ammonia buffer (pH-8,0) to prepare a solution with a protein concentration of 2/ml. Add 1 volume of anti-CRP goat IgG fraction solution to 1 volume of the above latex suspension in the same manner as in Example 1.
The reaction was carried out at 7°C for 2 hours. After centrifugation and removal of the supernatant, the precipitate was added to an ammonium chloride-ammonia buffer containing bovine serum albumin at a concentration of 0.05% by weight.
Redisperse at pH = 8.0 > to reduce latex concentration to 0.
.. 05% by weight to obtain a CRP measurement reagent.

パーティクルアナライザーで分析した結果、ラテックス
試薬の平均粒子径は0.213μmであった。またゼー
タ電位は−2,0±0.2+mmV(塩化アンモニウム
−アンモニア緩衝液中)で吸光度は1.30であった。
As a result of analysis using a particle analyzer, the average particle diameter of the latex reagent was 0.213 μm. The zeta potential was -2.0±0.2+mmV (in ammonium chloride-ammonia buffer) and the absorbance was 1.30.

(2)測定方法 試薬1990μlと被検液10μlを用いる以外は実施
例1と同様にして測定した。
(2) Measurement method Measurement was carried out in the same manner as in Example 1, except that 1990 μl of the reagent and 10 μl of the test liquid were used.

(3)既知濃度血清の測定 CRP濃度240mg/dlの精製CRP溶液をCRP
を吸収処理して実質的にCRPを含まない状態としたC
RP不含血清により希釈し、CRP濃度が0.10.0
.25.0.50.1.0.2.5.5.0.10゜1
5、20.30.40.60 mg7dlの被検液を得
た。
(3) Measurement of serum with known concentration A purified CRP solution with a CRP concentration of 240 mg/dl was
C that has undergone absorption treatment to become substantially free of CRP.
Diluted with RP-free serum to give a CRP concentration of 0.10.0
.. 25.0.50.1.0.2.5.5.0.10゜1
5.20.30.40.60 mg7dl of test liquid was obtained.

(2)の測定条件下で上記12種の被検液及び塩化アン
モニウム−アンモニア緩衝液につき吸光度を各5回測定
した。
Under the measurement conditions of (2), the absorbance was measured five times for each of the 12 test solutions and the ammonium chloride-ammonia buffer solution.

得られた吸光度のうち、被検液添加後1分後と5分後の
吸光度より一定間隔時間に対する吸光度の差を得た。ま
た、(1)で得た試薬を4℃で12か月保存後同様にし
て吸光度の差を求めた。
Among the obtained absorbances, the difference in absorbance for a fixed interval of time was obtained from the absorbances 1 minute and 5 minutes after addition of the test liquid. Further, the reagent obtained in (1) was stored at 4° C. for 12 months, and then the difference in absorbance was determined in the same manner.

この結果を第5表に示した。The results are shown in Table 5.

第  5  表 第5表の結果から、試薬作成後7日目と4℃。Table 5 From the results in Table 5, 7 days after reagent preparation and 4°C.

12か月保存後の吸光度の差は全ての測定濃度で変動係
数の範囲内に入っている。
The differences in absorbance after 12 months of storage are within the coefficient of variation for all measured concentrations.

なお、4℃、12か月保存後の試薬の平均粒子径は0.
214 pmで、ゼータ電位は−2,1±0.3mV、
吸光度は1.31であった。
The average particle diameter of the reagent after storage at 4°C for 12 months was 0.
At 214 pm, the zeta potential is -2.1 ± 0.3 mV,
The absorbance was 1.31.

Claims (1)

【特許請求の範囲】 1、ラテックス粒子に免疫活性物質を感作させてなる平
均粒子径(D)が0.1〜0.5μmのラテックス試薬
で且つ該ラテックス試薬はラテックス粒子の平均粒子径
(d)に対するラテックス試薬の平均粒子径(D)の比
(D/d)が1.3〜3.0の範囲であることを特徴と
するラテックス試薬。 2、ラテックス試薬のゼータ電位が−20mV〜10m
Vの範囲である特許請求の範囲第1項記載のラテックス
試薬。 3、ラテックス試薬の吸光度が光路長10mmセルで0
.5〜1.5の範囲である特許請求の範囲第1項記載の
ラテックス試薬。
[Scope of Claims] 1. A latex reagent having an average particle diameter (D) of 0.1 to 0.5 μm, which is obtained by sensitizing latex particles with an immunoactive substance; A latex reagent characterized in that the ratio (D/d) of the average particle diameter (D) of the latex reagent to d) is in the range of 1.3 to 3.0. 2. The zeta potential of the latex reagent is -20mV to 10m
The latex reagent according to claim 1, which has a range of V. 3. The absorbance of the latex reagent is 0 in a cell with an optical path length of 10 mm.
.. The latex reagent according to claim 1, which has a molecular weight in the range of 5 to 1.5.
JP61171875A 1986-07-23 1986-07-23 Latex reagent Expired - Fee Related JPH0682128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171875A JPH0682128B2 (en) 1986-07-23 1986-07-23 Latex reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171875A JPH0682128B2 (en) 1986-07-23 1986-07-23 Latex reagent

Publications (2)

Publication Number Publication Date
JPS6329249A true JPS6329249A (en) 1988-02-06
JPH0682128B2 JPH0682128B2 (en) 1994-10-19

Family

ID=15931410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171875A Expired - Fee Related JPH0682128B2 (en) 1986-07-23 1986-07-23 Latex reagent

Country Status (1)

Country Link
JP (1) JPH0682128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145256A (en) * 2004-11-16 2006-06-08 Sekisui Chem Co Ltd Magnetic material included particles for immunoassay and immunochromatography method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147306A1 (en) * 2012-03-30 2013-10-03 積水メディカル株式会社 Latex particles for agglutination assay
US9383356B2 (en) 2012-09-27 2016-07-05 Sekisui Medical Co., Ltd. Latex particles for particle agglutination assay

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROTIDES OF THE BIOLOGICAL FLUIDS=1973 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145256A (en) * 2004-11-16 2006-06-08 Sekisui Chem Co Ltd Magnetic material included particles for immunoassay and immunochromatography method

Also Published As

Publication number Publication date
JPH0682128B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4401765A (en) Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays
JPH0260269B2 (en)
JP2011090004A (en) Hyaluronic acid measuring kit for immune-aggregation method
JP4086266B2 (en) Immunoassay method
JPS6329249A (en) Latex reagent
JP2004325414A (en) Method and kit for measuring immunity
US5756363A (en) Liposome reagent for immunoagglutination and immunoanalytical method
US9383356B2 (en) Latex particles for particle agglutination assay
JPH02257063A (en) Reagent and method for immunoassay
JPS62138502A (en) Polymer particle
JPH0613568B2 (en) Method for producing reactive polymer particles
JPH0220067B2 (en)
JPS6293663A (en) Method for measuring concentration of antigen or antibody
JPS59192962A (en) Latex reagent
JPS6343412B2 (en)
JPS6293664A (en) Method for measuring concentration of antigen or antibody
JP2001050963A (en) Immunological agglutination reagent
JPH03233358A (en) Method for measuring antigen or antibody with high sensitivity
JPH0713641B2 (en) Method of manufacturing diagnostic reagent
JP3598701B2 (en) Immunochemical assay using an insoluble carrier
JP2575148B2 (en) Drug
JPH03142360A (en) Latex reagent
JP2001074741A (en) Latex immunity nephelometry measurement method and kit
JP4246012B2 (en) Method for producing carrier carrying ligand and method for immunoassay using said carrier
JPS6035267A (en) Multi-item immunity examination

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees