JPS6329245A - Ultrasonic flaw detecting method for thick-walled steel pipe - Google Patents

Ultrasonic flaw detecting method for thick-walled steel pipe

Info

Publication number
JPS6329245A
JPS6329245A JP61173382A JP17338286A JPS6329245A JP S6329245 A JPS6329245 A JP S6329245A JP 61173382 A JP61173382 A JP 61173382A JP 17338286 A JP17338286 A JP 17338286A JP S6329245 A JPS6329245 A JP S6329245A
Authority
JP
Japan
Prior art keywords
flaw detection
wave
longitudinal wave
thick
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61173382A
Other languages
Japanese (ja)
Inventor
Shigenobu Tsutsumi
堤 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61173382A priority Critical patent/JPS6329245A/en
Publication of JPS6329245A publication Critical patent/JPS6329245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable flaw detection with a more sufficient sensitivity margin than flaw detection by a conventional longitudinal wave-transversal wave mode converting method by propagating a longitudinal wave directly to the internal surface defect of a thick-walled steel pipe. CONSTITUTION:This method is a flaw detecting method which supplies the longitudinal wave L directly to the internal surface defect by using a range of a longitudinal wave refraction angle thetaL=14-20 deg.. In this case, the acoustic pressure reciprocation passing rate of the longitudinal wave-transversal wave mode converting method is 6.8%, but that of the direct longitudinal wave method is 11.8% and 5.0% higher. Assuming that the sound pressure at a point C is 1, the sound pressure at a point C'' is about 2.8 from an ultrasonic wave beam path. Namely, flaw detection is performed by this method with a more sufficient sensitivity margin than flaw detection by the conventional longitudinal wave- transversal wave mode converting method.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、特に厚さ/外径(以下1/1)と言う)0
.2以上、外径80m以上の鋼管に有効な斜角超音波探
傷方法に関する。
Detailed Description of the Invention (Industrial Field of Application) This invention particularly relates to thickness/outer diameter (hereinafter referred to as 1/1) 0
.. This invention relates to an oblique ultrasonic flaw detection method that is effective for steel pipes with an outer diameter of 80 m or more.

(従来の技術) 鋼管に対する斜角超音波探傷方法は、鋼中に横波のみを
伝搬し管内外面欠陥を探傷する方法が、主流である。こ
の場合t/bが0.2程度以上になると超音波ビームが
内面に達せず、内面欠陥の探傷が出来なくなる。t/b
が0.2以上の鋼管の内面欠陥の超音波探傷方法として
縦波−横波モード変換法が開発され一般に適用されてい
る(参考−特許公報昭56−17024)。
(Prior Art) The mainstream method of oblique ultrasonic flaw detection for steel pipes is to propagate only transverse waves through the steel to detect defects on the inner and outer surfaces of the pipe. In this case, if t/b is about 0.2 or more, the ultrasonic beam will not reach the inner surface, making it impossible to detect defects on the inner surface. t/b
A longitudinal wave-transverse wave mode conversion method has been developed as an ultrasonic flaw detection method for internal defects in steel pipes with a diameter of 0.2 or more and is generally applied (reference: Japanese Patent Publication No. 17024-1981).

しかし、上記縦波−横波モード変換法において外径が、
80冒以上になると超音波ビーム路程が長くなり、内面
欠陥の深さ0.3w程度からの反射超音波が小さく信号
/雑音(以下S/Nと言う)良く探傷出来ないと言う問
題があった。
However, in the above longitudinal wave-transverse wave mode conversion method, the outer diameter is
When the depth is 80° or higher, the ultrasonic beam path becomes long, and there is a problem that the reflected ultrasonic waves from the depth of about 0.3W of the inner surface defect are small and the signal/noise (hereinafter referred to as S/N) cannot be detected well. .

(発明の目的) 本発明は、上記に鑑み、鋼管の斜角超音波探傷において
、t/l) ) 0.2 、外径80■以上の鋼管にお
いて微小な内面欠陥をS/N良く探傷する超音波探傷方
法を提供するものである。
(Object of the Invention) In view of the above, the present invention is an oblique ultrasonic flaw detection method for steel pipes, which detects minute internal defects with a good S/N ratio in steel pipes with an outer diameter of 80 mm or more with a t/l) ) 0.2 or more. The present invention provides an ultrasonic flaw detection method.

(発明が解決しようとする問題点) 金属に対する超音波探傷試験は、JIS Z2344が
多用されておシ、鋼管に対しては、JIS GO582
”鋼管の超音波探傷方法”が用いられておp1鋼管の超
音波探傷方法は、斜角超音波探傷方法が、常態である。
(Problem to be solved by the invention) JIS Z2344 is often used for ultrasonic flaw detection tests on metals, and JIS GO582 is used for steel pipes.
``Ultrasonic flaw detection method for steel pipes'' is used.P1 The ultrasonic flaw detection method for steel pipes is usually the oblique ultrasonic flaw detection method.

周知のように波動には、縦波(以下り波とする。)と横
波(以下S波とする。)があシ、異なる第1の媒質と第
2の媒質の境界面に縦波を入射すると、その入射角によ
り第2の媒質に屈折縦波りと屈折横波Sが発生する。
As is well known, there are two types of waves: longitudinal waves (hereinafter referred to as "S waves") and transverse waves (hereinafter referred to as "S waves").A longitudinal wave is incident on the interface between a different first medium and a second medium. Then, a refracted longitudinal wave and a refracted transverse wave S are generated in the second medium due to the incident angle.

第3図は、第1媒質を水、第2媒質を鋼とした時の斜め
入射時の音圧往復通過率と屈折角の関係を示した図であ
る。T、はS波の、TLはL波の音圧往復通過率を示す
。第3図において効率よく探傷するには、音圧往復通過
率の高い範囲すなわち屈折角θ8=35〜70度に限定
される事がわかる。これが、従来有効とされてきた範囲
である。
FIG. 3 is a diagram showing the relationship between the round trip pass rate of sound pressure and the refraction angle when the first medium is water and the second medium is steel. T and TL indicate the sound pressure round-trip passage rate of the S wave and the L wave, respectively. It can be seen from FIG. 3 that efficient flaw detection is limited to a range where the sound pressure reciprocating rate is high, that is, the refraction angle θ8=35 to 70 degrees. This is the range that has traditionally been considered effective.

これをさらに詳述するならば、S波のみで探傷する場合
に超音波ビームが管内面に達する限界の肉厚/外径は、
第4図に示す様に t/b = 172 (1−血θ)で与えられ、θ=3
5度としてその限界は、t/ll = 0.213とな
る。つt、bS波のみの探傷の場合t/bが0.213
を超えると超音波ビームが管内面に達ゼず管内面欠陥の
探傷が出来なくなる。JIS GO682°゛鋼管の超
音波探傷方法”において対象鋼管の制限として”厚さ対
外径の百分比20係以下”と規定しているのはこの所以
である。このためt/l)) 0.2の鋼管に対する超
音波探傷方法として第5図に示す様な縦波L→横波Sの
モード変換により探傷する方法が、推奨され一般に使用
されている。当方法は、第6図に示す様に、直接横波S
を管内面欠陥に当てるよシ、縦波L→横波Sのモード変
換を行った方が音圧往復通過率が高いためである。事実
当モード変換法において小さい外径の鋼管では、深さ0
.3 m程度の内面欠陥をS/′Nよく検出している。
To explain this in more detail, when performing flaw detection using only S waves, the limit wall thickness/outer diameter at which the ultrasonic beam reaches the inner surface of the tube is:
As shown in Figure 4, t/b = 172 (1 - blood θ), given by θ = 3
Assuming 5 degrees, the limit is t/ll = 0.213. In the case of flaw detection using only S waves, t/b is 0.213.
If it exceeds this value, the ultrasonic beam will not reach the inner surface of the tube, making it impossible to detect defects on the inner surface of the tube. This is why JIS GO 682° "Ultrasonic flaw detection method for steel pipes" stipulates that the target steel pipe is "thickness to outer diameter percentage ratio of 20 or less".For this reason, t/l)) 0.2 As an ultrasonic flaw detection method for steel pipes, the method of detecting flaws by mode conversion from longitudinal wave L to shear wave S, as shown in Fig. 5, is recommended and generally used.This method, as shown in Fig. 6, Direct transverse wave S
This is because the round-trip passage rate of sound pressure is higher when mode conversion from longitudinal wave L to transverse wave S is performed in order to apply the wave to the inner surface defect of the tube. In fact, in the actual mode conversion method, for steel pipes with small outer diameter, the depth is 0.
.. Internal defects of about 3 m can be detected with good S/'N.

しかし、当縦波し→横波Sのモード変換法を外径80瓢
以上の鋼管に適用した場合、超音波ビーム路程が長くな
り深さ0.3mm程度の欠陥からの反射超音波は、音圧
が低くS/Nよく探傷できないことが判明した。かつ、
これに対する有効な探傷方法もされていない。
However, when this longitudinal wave → transverse wave S mode conversion method is applied to a steel pipe with an outer diameter of 80 mm or more, the ultrasonic beam path becomes long, and the sound pressure of the reflected ultrasonic wave from a defect with a depth of about 0.3 mm increases. It was found that the S/N ratio was low and it was not possible to detect defects well. and,
No effective flaw detection method has been developed for this problem.

(問題点を解決するための手段) 本発明の探傷方法は、このような現状を打開するため開
発したものであり厚肉鋼管の超音波斜角探傷方法におい
て厚肉鋼管の内面欠陥に直接縦波Lを伝搬さゼ、これに
よシ鋼管に軸方向内面欠陥をS/Nよく探傷することを
特徴とする厚肉鋼管の超音波探傷方法である。
(Means for Solving the Problems) The flaw detection method of the present invention was developed to overcome the current situation, and is an ultrasonic angle flaw detection method for thick-walled steel pipes that directly detects defects on the inner surface of thick-walled steel pipes vertically. This is an ultrasonic flaw detection method for thick-walled steel pipes, which is characterized by propagating a wave L and thereby detecting defects on the axial inner surface of the steel pipe with a good signal-to-noise ratio.

本発明は特に被探傷鋼管の肉厚/外径が、0、2以上、
外径80m以上のものに対して有効な超音波探傷方法で
ある。
The present invention is particularly suitable for cases where the wall thickness/outer diameter of the steel pipe to be tested is 0, 2 or more,
This is an effective ultrasonic flaw detection method for objects with an outer diameter of 80 m or more.

第1図(a) 、 (b)は76.3mφx 20.O
m t (t/b = 0.262)と168.3協φ
X 44.1曝t(t/’D=o、2s 2)について
縦波屈折角θ、=43’で縦波−横波モード変換法で内
面欠陥探傷を行った場合の図である。
Figure 1 (a) and (b) are 76.3mφx 20. O
m t (t/b = 0.262) and 168.3 coφ
It is a diagram when internal defect detection is performed by longitudinal wave-transverse wave mode conversion method with longitudinal wave refraction angle θ, = 43' for X44.1 exposure t (t/'D=o, 2s2).

この場合音圧往復通過率については両方共同じである。In this case, the sound pressure round trip passage rate is the same for both.

しかし図の超音波ビームが内面に達する0点 C/点で
の音圧を比較すると、音圧は距離の2乗に反比例するこ
とから0点の音圧を1とした場合、A−B−Cのビーム
路程に対しA′−B′−C′のビーム路程は2.2倍と
なり、67点の音圧は、0.2程度となる。0点と67
点に同じ欠陥が存在した場合、同様に検出させるために
は、168.3mmφにおいては探傷器の増幅器感度を
15 dBも上げることになシ一般的には8/Nが悪く
探傷出来ない。
However, if we compare the sound pressure at point C/point where the ultrasonic beam reaches the inner surface in the figure, we can see that since sound pressure is inversely proportional to the square of the distance, if the sound pressure at point 0 is 1, then A-B- The beam path length of A'-B'-C' is 2.2 times that of beam path C, and the sound pressure at 67 points is about 0.2. 0 points and 67
If the same defect exists at a point, in order to detect it in the same way, it is necessary to increase the amplifier sensitivity of the flaw detector by as much as 15 dB for a diameter of 168.3 mm.Generally, 8/N is poor and cannot be detected.

(実施例) 第2図は、本発明法で探傷した時の図である。(Example) FIG. 2 is a diagram when flaws were detected using the method of the present invention.

本発明方法は、好寸しくは縦波屈折角θ1=14〜20
度の範囲を用い直接鋼管内面欠陥に縦波りを当てて探傷
する方法である。第2図では縦波屈折角θ1=16度と
した場合の説明図である。
In the method of the present invention, the longitudinal wave refraction angle θ1 is preferably 14 to 20.
This is a method of detecting flaws by applying longitudinal waves directly to defects on the inner surface of steel pipes using a range of degrees. FIG. 2 is an explanatory diagram when the longitudinal wave refraction angle θ1 is set to 16 degrees.

この場合、音圧往復通過率を比較すると、縦波−横波モ
ード変換法では6.8係に対し直接縦波法でFill、
8係と5.0係高くなる。また超音波ビーム路程から0
点とC〃点での音圧を比較した場合、0点での音圧を1
とした場合01点の音圧は2.8程度となる。つまシ本
発明方法においては、従来の縦波−横波モード変換法に
よる探傷より十分な感度余裕を持って探傷することが出
来ることがわかる。
In this case, when comparing the sound pressure round-trip passage rate, it is found that the longitudinal wave-transverse wave mode conversion method has a coefficient of 6.8, while the direct longitudinal wave method has a coefficient of Fill,
8 section and 5.0 section become higher. Also, from the ultrasonic beam path
When comparing the sound pressure at point C and point C, the sound pressure at point 0 is 1
In this case, the sound pressure at point 01 is about 2.8. It can be seen that in the method of the present invention, flaw detection can be performed with a sufficient margin of sensitivity compared to flaw detection using the conventional longitudinal wave-transverse wave mode conversion method.

実験結果では第1表の如き超厚肉鋼管においてもこの直
接縦波を鋼管内面に当てる探傷方法を利用することで内
面深さ0.3 m程度の欠陥でも容易にS/Nよく検出
できた。
Experimental results show that even in ultra-thick-walled steel pipes as shown in Table 1, by using this flaw detection method that applies direct longitudinal waves to the inner surface of the steel pipe, defects with an inner surface depth of about 0.3 m can be easily detected with a good S/N ratio. .

表1 超厚肉鋼管 このように直接縦波を管内面に伝搬させ探傷する方法は
、超厚内鍋管の内面欠陥探傷に有効であり、適切な探傷
方法と言うことができる。
Table 1: Ultra-thick-walled steel tube This method of detecting flaws by directly propagating longitudinal waves to the inner surface of the tube is effective for detecting defects on the inner surface of ultra-thick inner pot tubes, and can be said to be an appropriate flaw detection method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&) # (b)は縦波−横波モード変換法で
の小外径と大外径での探傷差を示す説明図、第2図は本
発明の説明図である。第3図は第1媒質を水、第2媒質
を鋼としたときの入射角θ4、屈折角θ8による音圧往
復通過車を模式的に示したグラフ、第4図は屈折角θと
t/1)の限界を示す説明図、第5図はt/b ) 0
.2の鋼管で用いられている縦波り一横波Sモード変換
法の説明図、第6図は縦波−横波モード変換法における
音圧往復通過率を模式的に示したグラフである。 □ □ 第6図 #1fCJA前南θ5 0   10 1520@530   a  、506
0り0ま援屈誼甫θL
FIG. 1(&)#(b) is an explanatory diagram showing the difference in flaw detection between a small outer diameter and a large outer diameter in the longitudinal wave-transverse wave mode conversion method, and FIG. 2 is an explanatory diagram of the present invention. Figure 3 is a graph schematically showing a sound pressure reciprocating vehicle with an incident angle θ4 and a refraction angle θ8 when the first medium is water and the second medium is steel, and Figure 4 is a graph showing the refraction angle θ and t/ An explanatory diagram showing the limits of 1), Figure 5 is t/b) 0
.. FIG. 6 is an explanatory diagram of the longitudinal wave-transverse wave S-mode conversion method used in the steel pipe No. 2, and FIG. 6 is a graph schematically showing the sound pressure round-trip passage rate in the longitudinal wave-transverse wave mode conversion method. □ □ Figure 6 #1f CJA front south θ5 0 10 1520@530 a, 506
0ri0ma support yiho θL

Claims (1)

【特許請求の範囲】[Claims] 厚肉銅管の超音波斜角探傷方法において、厚肉鋼管に直
接縦波Lを伝搬させることを特徴とする厚肉鋼管の超音
波探傷方法。
An ultrasonic angle flaw detection method for thick-walled copper pipes, which is characterized in that a longitudinal wave L is propagated directly to the thick-walled steel pipe.
JP61173382A 1986-07-23 1986-07-23 Ultrasonic flaw detecting method for thick-walled steel pipe Pending JPS6329245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173382A JPS6329245A (en) 1986-07-23 1986-07-23 Ultrasonic flaw detecting method for thick-walled steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173382A JPS6329245A (en) 1986-07-23 1986-07-23 Ultrasonic flaw detecting method for thick-walled steel pipe

Publications (1)

Publication Number Publication Date
JPS6329245A true JPS6329245A (en) 1988-02-06

Family

ID=15959360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173382A Pending JPS6329245A (en) 1986-07-23 1986-07-23 Ultrasonic flaw detecting method for thick-walled steel pipe

Country Status (1)

Country Link
JP (1) JPS6329245A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171663A (en) * 1982-03-31 1983-10-08 Sumitomo Metal Ind Ltd Ultrasonic flaw detection of metallic pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171663A (en) * 1982-03-31 1983-10-08 Sumitomo Metal Ind Ltd Ultrasonic flaw detection of metallic pipe

Similar Documents

Publication Publication Date Title
JPH0253746B2 (en)
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
US4619143A (en) Apparatus and method for the non-destructive inspection of solid bodies
JPH0352908B2 (en)
Titov et al. Pulse-echo NDT of adhesively bonded joints in automotive assemblies
CA2978468C (en) Method for inspecting a weld seam with ultrasonic phased array
Ma et al. The reflection of guided waves from simple dents in pipes
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
JP2003004710A (en) Method for inspecting padded pipe
JP4656754B2 (en) Pipe parameter estimation method, pipe material state evaluation method, pipe inspection method, and pipe parameter estimation apparatus used therefor
JP4144703B2 (en) Tube inspection method using SH waves
JPS6329245A (en) Ultrasonic flaw detecting method for thick-walled steel pipe
JP2000352563A (en) Ultrasonic flaw detector for cladding tube
JP2002243703A (en) Ultrasonic flaw detector
JP2000321041A (en) Method for detecting carburizing layer and method for its thickness
Catton et al. Advances in defect characterisation using long-range ultrasonic testing of pipes
RU2117941C1 (en) Process of ultrasonic inspection od pipes and pipe-lines
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
Baiotto et al. Development of methodology for the inspection of welds in lined pipes using array ultrasonic techniques
JPS5946553A (en) Angle beam ultrasonic flaw inspection
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
Peterson et al. Assessment of Corrosion Damage in Steel Samples Using Electro-Magnetic Acoustic Measurements
JP2002071650A (en) Method of ultrasonic flaw detection for hollow concrete column
Wu et al. Detection and identification of dents in pipelines using guided waves
JP2017146222A (en) Sputtering target ultrasonic inspection method, and sputtering target