JPS6329234A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS6329234A
JPS6329234A JP17162886A JP17162886A JPS6329234A JP S6329234 A JPS6329234 A JP S6329234A JP 17162886 A JP17162886 A JP 17162886A JP 17162886 A JP17162886 A JP 17162886A JP S6329234 A JPS6329234 A JP S6329234A
Authority
JP
Japan
Prior art keywords
calibration curve
concentration
standard addition
value
quantitative analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17162886A
Other languages
Japanese (ja)
Inventor
Hideo Yamada
英雄 山田
Koichi Uchino
内野 興一
Hisako Minegishi
峰岸 久子
Masao Hashimoto
橋本 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP17162886A priority Critical patent/JPS6329234A/en
Publication of JPS6329234A publication Critical patent/JPS6329234A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Abstract

PURPOSE:To expand a measurable concn. range by providing a calibration curve forming function by curvilinear approximation and calibration curve forming function by a method of least squares to a calibration curve forming function of a signal processing mechanism for a quantitative analysis by a standard addition method. CONSTITUTION:Light of the wavelength intrinsic to an element to be measured is projected from a hollow cathode lamp 1 to a sample tube 2. A spectroscope 3 selects the wavelength intrinsic to the element to be measured and sets the same. The sample placed in the sample tube 2 is thermally cracked by a heating program set by a microcomputer 7 to generate the atomic vapor of the element to be measured. The light signal attenuated by the change of the density distribution with time based on the generation and dissipation of the atomic vapor is detected in a photomultiplier 4 and is taken into the computer 7 by an A/D converter 6, by which the formation of the calibration curve for the purpose of the standard addition method and the arithmetic processing such as density calculation of the element to be measured in the sample are executed. The computer 7 is provided with the calibration curve forming function by the curvilinear approximation and the calibration curve forming function by the method of least squares so that the measurable concn. range can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分光光度計に係り、特↓こ検量線が濃度軸方向
に湾曲した状態においても標準添加法を用いて定量分析
を行うのに好適な原子吸光分光光度計や分光蛍光光度計
などの分光光度計に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a spectrophotometer, which is particularly useful for performing quantitative analysis using the standard addition method even when the calibration curve is curved in the direction of the concentration axis. The present invention relates to a suitable spectrophotometer such as an atomic absorption spectrophotometer or a spectrofluorometer.

〔従来の技術〕[Conventional technology]

原子吸光分光光度計や分光蛍光光度計等の分光光度計に
おいては、被測定物質の定量分析の際に起こる共存物質
の化学的あるいは物理的の干渉を補正して精度の高い定
量結果(濃度)を得るための方法として、標準添加法が
必須の要件となっている。したがって、多くの分光光度
計の場合は、標準添加法での定量分析が一般化されて才
9す、標準添加法での信号処理機能と測定機能を有して
いる。
In spectrophotometers such as atomic absorption spectrophotometers and spectrofluorophotometers, highly accurate quantitative results (concentration) are obtained by correcting chemical or physical interference of coexisting substances that occur during quantitative analysis of the analyte. The standard addition method is an essential method for obtaining this. Therefore, in the case of many spectrophotometers, quantitative analysis using the standard addition method has become commonplace, and many spectrophotometers have signal processing functions and measurement functions using the standard addition method.

従来の分光光度計における標準添加法は、試料溶液を3
〜4個の秤量可能な容器に等量を分取し、そのうちの1
つの容器を除いた残りの容器に被測定物質の標準溶液を
一定倍数で添加する。そしてそれぞれの容器を溶媒で一
定容量に希釈をして標準添加法測定用のアリコートを調
製する。ブランク溶液も試料溶液と同量を秤取して同様
に希釈する。それぞれの測定用アリコートを分光光度計
で測定し、吸光度値や蛍光強度値等の分光光度計の指示
値を求めて、ブランク溶液の指示値を補正する。そして
添加した被測定物質の標準溶液の濃度を横軸に、吸光度
値や蛍光強度値等の分光光度計の指示値を縦軸にとって
、濃度に対する指示値をプロットして検量線を作成する
。この検量線が充分に低濃度域まで直線であると仮定し
て吸光度値や蛍光強度値等の分光光度計の指示値がゼロ
まで外挿(作成した検量線が吸光度値や蛍光強度値等の
分光光度計の指示値軸を横切って濃度軸と交わるまで延
長)する。直線の外挿線と濃度軸の交点から被測定物質
の標準溶液が添加されていない測定用アリコート中に含
まれる被測定物質の濃度を得るものである。
The standard addition method in conventional spectrophotometers is to add the sample solution to 3
~ Dispense equal amounts into 4 weighable containers, one of which
Add the standard solution of the analyte to the remaining containers except for one container in a fixed ratio. Then, each container is diluted to a constant volume with a solvent to prepare an aliquot for standard addition measurement. Weigh out the same amount of the blank solution as the sample solution and dilute it in the same way. Each measurement aliquot is measured with a spectrophotometer, and spectrophotometer readings such as absorbance values and fluorescence intensity values are determined, and the readings of the blank solution are corrected. Then, a calibration curve is created by plotting the indicated values against the concentration, with the concentration of the added standard solution of the analyte being plotted on the horizontal axis and the indicated values of the spectrophotometer, such as absorbance values and fluorescence intensity values, on the vertical axis. Assuming that this calibration curve is a straight line down to a sufficiently low concentration range, the spectrophotometer readings such as absorbance values and fluorescence intensity values are extrapolated to zero. (extend across the reading axis of the spectrophotometer until it intersects the concentration axis). The concentration of the analyte contained in the measurement aliquot to which no standard solution of the analyte has been added is obtained from the intersection of the linear extrapolation line and the concentration axis.

このため、作成された被測定物質の標準溶液の添加濃度
と吸光度値や蛍光強度値等の分光光度計の指示値との関
係曲線、すなわち、検量線が直線である場合のみに適用
される。したがって、従来の原子吸光分光光度計や分光
蛍光光度計等の分光光度計での標準添加法技術は、標準
添加直線外挿法である。
Therefore, it is applied only when the relationship curve between the added concentration of the standard solution of the analyte and the indicated value of the spectrophotometer such as the absorbance value or fluorescence intensity value, that is, the calibration curve, is a straight line. Therefore, the standard addition method technique in conventional spectrophotometers such as atomic absorption spectrophotometers and spectrofluorometers is standard addition linear extrapolation.

しかし、原子吸光分光光度計や分光蛍光光度計等の分光
光度計における検量線は、被測定物質の分光特性や濃度
域によって直線を示すとは限らず、濃度軸方向に湾曲す
る場合も少なくない。特に標準添加法での定量分析が一
般化されている原子吸光分光光度計の検量線は、−・般
に低濃度領域(吸光度0.2〜0.3程度まで)では直
線を示すが濃度領域が高くなると濃度軸方向に湾曲する
。これ起因するものである。標準添加直線外挿法が適用
できる直線の検量線を得られる濃度レンジはたかだか1
衝程度以内で大変狭い。このため、高濃度領域試料の定
量分析の際は試料溶液中に含まれる被測定元素の濃度域
が直線の検量線を示す濃度レンジ内になるように何回か
の予備的な希釈操作とΔIII定操作を繰り返してから
標準添加法測定用のアリコートを調製する必要があり、
等定量分析操作が煩雑になる。また、希釈倍率が大きい
と希釈誤差と汚染等による誤差が入りやすくなるので、
定量分析操作の低下を招く危険があり、等定量分析の操
作性と汎用性については充分配慮されていなかった。
However, the calibration curve of a spectrophotometer such as an atomic absorption spectrophotometer or a spectrofluorometer does not necessarily show a straight line depending on the spectral characteristics and concentration range of the substance to be measured, and is often curved in the direction of the concentration axis. . In particular, the calibration curve of an atomic absorption spectrophotometer, in which quantitative analysis using the standard addition method is commonly used, generally shows a straight line in the low concentration region (absorbance of about 0.2 to 0.3), but in the concentration region When becomes high, it curves in the direction of the concentration axis. This is due to this. The concentration range in which a linear calibration curve can be obtained using the standard addition linear extrapolation method is at most 1.
It is very narrow and within the range of opposition. For this reason, when performing quantitative analysis of a sample in a high concentration region, several preliminary dilution operations and ΔIII It is necessary to repeat the same procedure before preparing aliquots for standard addition method measurements.
Equal quantitative analysis operations become complicated. In addition, if the dilution ratio is large, errors due to dilution and contamination are likely to occur, so
There was a risk of degrading quantitative analysis operations, and sufficient consideration was not given to the operability and versatility of quantitative analysis.

さらに分光光度計での検量線は濃度領域には無関係に濃
度軸方向に湾曲して直線を示さない場合も少なくない。
Furthermore, the calibration curve of a spectrophotometer is often curved in the direction of the concentration axis and does not show a straight line, regardless of the concentration range.

このような検量線を示す被測定物質は標準添加法での定
量分析が困難であり、試料の前処理を行って共存物質を
除去しておく等の他の煩雑な共存物質の化学的あるいは
物理的等の干渉除去対策法を用いなければならないこと
がしばしば起る。
It is difficult to quantitatively analyze a substance to be measured that shows such a calibration curve using the standard addition method. It often happens that it is necessary to use interference cancellation measures such as targets.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の原子吸光分光光度計や分光蛍光光度計等の分
光光度計で被測定物質の定量分析の際に共存物質の化学
的あるいは物理的等の干渉を補正するための方法として
一般化されている標準添加法の技術は、2〜3の既知濃
度の被測定物質の標準溶液を試料溶液に添加して、吸光
度値や蛍光強度値等の分光光度計の指示値を測定し、そ
の時の干渉を受けた検量線が充分に低濃度域まで直線で
あると仮定して吸光度値や蛍光強度値等の分光光度計の
指示値がゼロまで外挿し、直線の外挿線と濃度軸の交点
から試料溶液中に含まれる被測定物質の濃度を得る標準
添加直線外挿法であった。
This method has been generalized as a method for correcting chemical or physical interference of coexisting substances during quantitative analysis of a substance to be measured using conventional spectrophotometers such as the above-mentioned atomic absorption spectrophotometers and spectrofluorophotometers. The standard addition method involves adding two to three standard solutions of the analyte with known concentrations to a sample solution, measuring spectrophotometer readings such as absorbance and fluorescence intensity, and detecting interference. Assuming that the received calibration curve is a straight line down to a sufficiently low concentration range, extrapolate the spectrophotometer readings such as absorbance values and fluorescence intensity values to zero, and from the intersection of the straight extrapolated line and the concentration axis. This was a standard addition linear extrapolation method to obtain the concentration of the analyte contained in the sample solution.

したがって、標準添加法による定量分析が適用されるの
は、作成した被測定物質の標準溶液の添ある場合のみに
限定される。
Therefore, quantitative analysis using the standard addition method is applicable only when a prepared standard solution of the analyte is added.

しかし、分光光度計における検量線は全て直線を示すと
は限らず、被測定物質の分光特性や濃度域によっては濃
度軸方向に湾曲する場合も少なくない。例えば、標準添
加法による定量分析が比較的多く行われている原子吸光
分光光度計の検量線は、一般に低濃度領域(吸光度Q、
2〜0.3程度まで)では直線を示すが、濃度領域が高
くなると濃度軸方向に湾曲する。標準添加法での定量分
析が適用できる直線の検量線を示す濃度レンジは、たか
だか1衝程度以内で大変狭い。また、他の分光光度計の
場合は、被測定物質の分光特性によって検量線が濃度領
域に関係無く濃度軸方向に湾曲して直線を示さない場合
も少なくない。
However, all calibration curves in spectrophotometers do not always show a straight line, and are often curved in the direction of the concentration axis depending on the spectral characteristics and concentration range of the substance to be measured. For example, the calibration curve of an atomic absorption spectrophotometer, in which quantitative analysis using the standard addition method is relatively often performed, is generally in the low concentration region (absorbance Q,
2 to 0.3), it shows a straight line, but as the density region increases, it curves in the direction of the density axis. The concentration range showing a linear calibration curve to which quantitative analysis using the standard addition method can be applied is very narrow, within about one stroke at most. Furthermore, in the case of other spectrophotometers, the calibration curve often curves in the concentration axis direction regardless of the concentration region and does not show a straight line due to the spectral characteristics of the substance to be measured.

このため、従来の分光光度計での標準添加法技術は、原
子吸光分光光度計や分光蛍光光度計等において比較的多
く起こる濃度軸方向に湾曲する検量線での定量分析につ
いては全く配慮がされておらず、試料溶液中の被測定物
質の濃度が直線の検量線を得ることのできる濃度レンジ
内になるように何回かの予備的な希釈操作と測定操作を
繰り返すことに起因する定量分析操作の煩雑化、希釈操
作の際に起こる希釈誤差と汚染等による定量分析精度の
低下、そして検量線が濃度領域に無関係に濃度軸方向に
湾曲して直線域の全く無い場合における標準添加法の不
適性に基づく低汎用性と、試料の前処理等による標準添
加法以外の共存物質による干渉除去対策法の採用に起因
する定量分析操作の煩雑化等に問題があった。
For this reason, the standard addition method technology used in conventional spectrophotometers does not take into account quantitative analysis using calibration curves that curve in the direction of the concentration axis, which is relatively common in atomic absorption spectrophotometers, spectrofluorometers, etc. Quantitative analysis is performed by repeating several preliminary dilution operations and measurement operations so that the concentration of the analyte in the sample solution is within the concentration range that allows a linear calibration curve to be obtained. The standard addition method is complicated, the accuracy of quantitative analysis is reduced due to dilution errors and contamination that occur during dilution, and the calibration curve curves in the concentration axis direction regardless of the concentration range and has no linear range. There were problems such as low versatility due to incompatibility and complication of quantitative analysis operations due to the adoption of interference removal methods using coexisting substances other than standard addition methods such as sample pretreatment.

本発明の目的は、原子吸光分光光度計や分光蛍光光度計
等の分光光度計での標準添加法の信号処理機構に、吸光
度値や蛍光強度値等の分光光度計の指示値が濃度値の関
係あるいは濃度値が吸光度値や蛍光強度値等の分光光度
計の指示値の関数となる曲線近似による検量線作成機能
、そして最小二乗法による検量線作成機能を併せて備え
ることによって、濃度値と吸光度値や蛍光強度値等の分
光光度計の指示値との関係曲線、すなわち、検量析結果
を得ることができ、そして標準添加法での測定可能な濃
度レンジと定量分析操作性および標準添加法の汎用性を
大幅に拡大することができる分光光度計を提供すること
にある。
The purpose of the present invention is to provide a signal processing mechanism for standard addition methods in spectrophotometers such as atomic absorption spectrophotometers and spectrofluorophotometers so that the indicated values of the spectrophotometer, such as absorbance values and fluorescence intensity values, are equivalent to concentration values. By providing a calibration curve creation function using curve approximation, in which the relationship or concentration value is a function of spectrophotometer readings such as absorbance values and fluorescence intensity values, and a calibration curve creation function using the least squares method, concentration values and Relationship curves with spectrophotometer readings such as absorbance values and fluorescence intensity values, that is, calibration analysis results can be obtained, and the measurable concentration range using the standard addition method, quantitative analysis operability, and the standard addition method The object of the present invention is to provide a spectrophotometer that can greatly expand its versatility.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、原子吸光分光光度計や分光蛍光光度計等の
分光光度組が有する標準添加法による定量分析のための
信号処理機構の検量線作成機能に、吸光度値や蛍光強度
値等の分光光度計の指示値が濃度値の関数あるいは濃度
値が吸光度値や蛍光強度値等の分光光度計の指示値の関
数となる曲線近似による検量線作成機能および最小二乗
法による検量線作成機能をあわせて備え、濃度値と吸光
度値や蛍光強度値等の分光光度計の指示値との関係曲線
、すなわち、検量線が濃度軸方向に湾曲する状態の場合
でも標準添加法にて精度の高い定量分析結果を得るとと
もに、標準添加法での測定可能な濃度レンジを大幅に拡
大させた構成として達成するようにした。
The above purpose is to use the calibration curve creation function of the signal processing mechanism for quantitative analysis using the standard addition method that spectrophotometers such as atomic absorption spectrophotometers and spectrofluorophotometers have. It combines a calibration curve creation function using curve approximation, in which the meter reading is a function of the concentration value, or a concentration value is a function of the spectrophotometer reading, such as absorbance value or fluorescence intensity value, and a calibration curve creation function using the least squares method. In addition, the relationship curve between concentration values and spectrophotometer readings such as absorbance values and fluorescence intensity values, that is, highly accurate quantitative analysis results using the standard addition method even when the calibration curve curves in the direction of the concentration axis. In addition to this, we achieved this with a configuration that greatly expanded the measurable concentration range using the standard addition method.

〔作用〕[Effect]

本発明の作用を、第6図、第7図および第8図に例示し
たフレームレス原子化装置を用いた原子吸光分光光度計
による吸光度値と濃度値との関係曲線、すなわち、検量
線にて説明する。
The effect of the present invention is shown in the relationship curve between the absorbance value and the concentration value measured by an atomic absorption spectrophotometer using a flameless atomization device as illustrated in FIG. 6, FIG. 7, and FIG. 8, that is, a calibration curve. explain.

第6図は、Cr、Cu、Pbの比較的大きい濃度レンジ
における検量線の一例である。原子吸光分光光度計での
検量線は、光源であるホローカッ−ドラツグの自己吸収
や原子化装置内で発生する被測定元素の原子蒸気の密度
勾配等の分光特性によって必ずしも直線関係を示すとは
限らない3.−般には低濃度領域(吸光度0.2〜0.
3程度まで)。
FIG. 6 is an example of a calibration curve in a relatively large concentration range of Cr, Cu, and Pb. The calibration curve of an atomic absorption spectrophotometer does not necessarily show a linear relationship due to spectral characteristics such as the self-absorption of the hollow-quad drag that is the light source and the density gradient of the atomic vapor of the element to be measured generated in the atomization device. No 3. -Generally low concentration region (absorbance 0.2-0.
up to about 3).

では直線関係を示すが、それより濃度領域が高くなるに
つれて濃度軸方向に湾曲する傾向を示す。
shows a linear relationship, but as the concentration region becomes higher than that, it shows a tendency to curve in the concentration axis direction.

検量線の湾曲の程度と形状は被測定元素に依存する。ま
た、検量線が直線関係を示す濃度レンジはたかだか1衝
程度以内で大変狭い。このため、検量線が直線である場
合のみに適用される従来技術)1゛量分析の際には試料
溶液中に含まれる被測定元素ト の濃度域が直線の検量線を示す大変狭い濃度レンジ内に
なるように何回かの予備的な希釈操作と測定操作を繰り
返してから標準添加油測定用のアリコートを調製する必
要がある。
The degree and shape of the curvature of the calibration curve depend on the element to be measured. Further, the concentration range in which the calibration curve shows a linear relationship is very narrow, within about one stroke at most. For this reason, the concentration range of the analyte element contained in the sample solution is a very narrow concentration range that shows a linear calibration curve. It is necessary to prepare an aliquot for standard additive oil measurement after repeating several preliminary dilution operations and measurement operations to ensure that the standard additive oil is within

第7図は、フレームレス原子化装置を用いた原子吸光分
光光度計でのMnの高濃度領域(0,02〜0 、2 
ppm)における検量線の一例である。Mnの検量線は
、一般に吸光度0.3 程度以下が得られる低濃度領域
では吸光度値が濃度値に比例するための直線の検量線を
示す。したがって、従来技術である標準添加直線外挿法
での定量分析が可能となる。しかし、吸光度0.5 程
度以上が得られる高濃度領域(0,02〜0.2ppm
)では吸光度値と濃度値とは比例しない。このため、最
小二乗法による直線(y=ax+b、ここで、y;吸光
度値や蛍光強度値等の分光光度計の指示値、x;濃度値
、a、b;定数)で検量線を作成すると、第7図(a)
に示した検量線のように直線で作成した検量線と各濃度
の吸光度値とは一致しない。このような場合には、従来
技術である標準添加直線外挿法での定量分析は全く不可
能で精度の高い分析結果(濃度)を得ることは困難とな
る。このような場合(検量線が濃度軸方向に湾曲する)
、高次の関数式を用いた曲線近似による検量線作成機能
用いると精度の高い検量線を作成することができる。第
7図(b)に示した検量線は、2次関数式の曲線近似(
y=a xz+b x+o、ここに、C;定数)と最小
二乗法によって作成したものであ(1]) る。この場合、作成した検量線と各濃度における吸光度
値が一致しているので精度の高い検量線であることが判
る。これによって、曲線近似↓こよる検量線作成機能と
最小二乗法による検量線作成機能をあわせて備えた標準
添加曲線外挿法を用いれば検量線が濃度軸方向に湾曲す
る濃度領域でも定量分析は可能となることが判る。した
がって、精度の高い分析結果を得ることができるととも
に、標準添加法での測定可能な濃度レンジと定量分析の
操作性(高濃度試料の場合における検量線が直線を示す
濃度レンジ内の濃度に調製するための何〒、パの予備的
な希釈操作と測定操作)そLT4m準添加法の汎用性を
大幅に拡大することができる。
Figure 7 shows the high concentration region of Mn (0,02~0,2
This is an example of a calibration curve in ppm). The calibration curve for Mn is a linear calibration curve because the absorbance value is proportional to the concentration value in a low concentration region where an absorbance of about 0.3 or less is generally obtained. Therefore, quantitative analysis using the standard addition linear extrapolation method, which is a conventional technique, becomes possible. However, in the high concentration region (0.02 to 0.2 ppm) where an absorbance of about 0.5 or more can be obtained,
), the absorbance value and concentration value are not proportional. For this reason, if you create a calibration curve using a straight line (y = ax + b, where y: spectrophotometer readings such as absorbance value and fluorescence intensity value, x: concentration value, and a, b: constant) using the least squares method, , Figure 7(a)
As shown in the calibration curve shown in Figure 2, the calibration curve created using a straight line does not match the absorbance value of each concentration. In such a case, quantitative analysis using the conventional standard addition linear extrapolation method is completely impossible, and it becomes difficult to obtain highly accurate analysis results (concentration). In such a case (the calibration curve curves in the direction of the concentration axis)
If you use the calibration curve creation function by curve approximation using a high-order functional formula, you can create a highly accurate calibration curve. The calibration curve shown in Figure 7(b) is based on the curve approximation of the quadratic function equation (
y=axz+bx+o, where C is a constant), and was created by the least squares method (1]). In this case, since the created calibration curve and the absorbance values at each concentration match, it can be seen that the calibration curve is highly accurate. As a result, quantitative analysis can be performed even in the concentration range where the calibration curve curves in the concentration axis direction by using the standard addition curve extrapolation method, which has a calibration curve creation function using curve approximation ↓ and a calibration curve creation function using the least squares method. It turns out that it is possible. Therefore, highly accurate analysis results can be obtained, and the concentration range that can be measured using the standard addition method and the operability of quantitative analysis (in the case of high concentration samples, the concentration is adjusted to within the concentration range where the calibration curve shows a straight line) (preliminary dilution and measurement operations) can greatly expand the versatility of the LT4m quasi-addition method.

第8図も、フレームレス原子化装置を用いた原子吸光分
光光度計でのMnの高濃度領域(0,05〜0 、25
ppm)における検量線の一例である。第7図の場合と
異なるのは濃度範囲が0.02〜0.20ppmから0
.05−0.25pp+nとわずかに高くなっているこ
とである。第7図での濃度範囲(0,02〜0.20p
pm)では2次関数式(y=axz+bx+c)の曲線
近似と最小二乗法による検量線作成法によって精度の高
い検量線を作成できることが判ったが、しかし、濃度範
囲が0.05〜0.25ppmと若干高くなるだけで検
量線の濃度軸方向への湾曲の程度が大きくなる。このた
め、2次関数式の曲線近似による検量線作成法では精度
の高い検量線の作成は国電となる。第8図の検量線は、
3次関数式(y=ax”+bx”+cx+d、ここに、
d;定数)の曲線近似と最小二乗法によって作成したも
のである。作成した検量線と各濃度における吸光度値が
一致しているので精度の高い検量線であることが判る。
Figure 8 also shows a high Mn concentration region (0.05 to 0.25
This is an example of a calibration curve in ppm). The difference from the case in Figure 7 is that the concentration range is from 0.02 to 0.20 ppm to 0.
.. 05-0.25pp+n, which is slightly higher. Concentration range in Figure 7 (0.02~0.20p
pm), it was found that a highly accurate calibration curve could be created by curve approximation of the quadratic function equation (y = axz + bx + c) and the least squares method. Even if the value becomes slightly higher, the degree of curvature of the calibration curve in the direction of the concentration axis increases. Therefore, in the method of creating a calibration curve by approximating a curve using a quadratic function equation, a highly accurate calibration curve can only be created using the National Electrical System. The calibration curve in Figure 8 is
Cubic function formula (y=ax"+bx"+cx+d, where,
d: constant) curve approximation and the method of least squares. Since the created calibration curve and the absorbance values at each concentration match, it can be seen that the calibration curve is highly accurate.

原子吸光分光光)度肝や分光蛍光光度計等の分光光度計
における濃度値と吸光度値や蛍光強度値等の分光光度計
の指示値との関係曲線、すなわち、検量線の濃度軸方向
への湾曲の程度と形状は被測定物質と濃度領域によって
異なる。しかし、標準添加法の信号処理機能と測定機能
に2次関数式よりさらに高次の関数式を用いた曲線近似
と最小二乗法による検量線作成法を備えた標準添加曲線
外挿法を用いること(]3) によって、種々の形状の検量線の場合においても標準添
加法での定量分析を可能とすることができる。
Atomic absorption spectroscopy) The relationship curve between the concentration value on a spectrophotometer such as a spectrophotometer or spectrofluorometer and the indicated value of the spectrophotometer such as absorbance value or fluorescence intensity value, that is, the curvature of the calibration curve in the direction of the concentration axis. The degree and shape of the difference vary depending on the substance being measured and the concentration region. However, for the signal processing and measurement functions of the standard addition method, it is necessary to use a standard addition curve extrapolation method that is equipped with curve approximation using a higher-order function equation than the quadratic function equation and a calibration curve creation method using the least squares method. (]3) makes it possible to perform quantitative analysis using the standard addition method even in the case of calibration curves of various shapes.

〔実施例〕〔Example〕

以下本発明を第1図に示した実施例および第2図〜第5
図を用いて詳細に説明する。
The embodiment of the present invention shown in FIG. 1 and FIGS. 2 to 5 are as follows.
This will be explained in detail using figures.

第1図は本発明の分光光度計の一実施例を示すブロック
図で、標準添加曲線外挿法の機能を備えたフレームレス
原子化装置による原子吸光分光光度計の場合を示しであ
る。光源のホローカソードランプ1から被測定元素固有
の波長の光が抵抗発熱体のカーボン等で作られた試料管
2の照射され、る。分光器3は、被測定元素固有の波長
を選択して設定し、試料管2内に置かれた試料は、試料
管2への通電電流を制御する機能を備えたマイクロコン
ピュータ7で設定された加熱プログラムによって熱分解
されて被測定元素の原子状の蒸気を発生する。その原子
蒸気の発生と散逸に基づく密度分布の時間変化によって
ホローカソードランプ1から照射されている被測定元素
固有の波長の光は吸収されて減少し、また、元の光量へ
復帰するという原子吸収の現象が起こる。吸収され減光
した光信号は、光電子増倍管4によって電気信号に変換
されて前置増幅器5で増幅される。そしてアナログ/デ
ィジタル変換器6を介してマイクロコンピュータ7に入
り、標準添加法のための検量線の作成や試料中の被測定
元素の濃度計算等の演算処理が行われる。原子吸収スペ
クトルの状態、検量線の形状、試料濃度の分析結果そし
てその定量分析において必要とする測定条件等の原子吸
光分析法における情報は、CRT8に表示されるととも
にプリンター/プロッター9に記録される。
FIG. 1 is a block diagram showing an embodiment of the spectrophotometer of the present invention, and shows the case of an atomic absorption spectrophotometer using a frameless atomization device equipped with a standard addition curve extrapolation function. A sample tube 2 made of carbon or the like as a resistance heating element is irradiated with light having a wavelength specific to the element to be measured from a hollow cathode lamp 1 as a light source. The spectrometer 3 selects and sets a wavelength specific to the element to be measured, and the sample placed in the sample tube 2 is set using a microcomputer 7 that has the function of controlling the current flowing to the sample tube 2. It is thermally decomposed by a heating program to generate atomic vapor of the element to be measured. Atomic absorption, in which the light with a wavelength specific to the element to be measured emitted from the hollow cathode lamp 1 is absorbed and reduced by the time change in the density distribution based on the generation and dissipation of atomic vapor, and then returns to the original light intensity. phenomenon occurs. The absorbed and attenuated optical signal is converted into an electrical signal by a photomultiplier tube 4 and amplified by a preamplifier 5. The data then enters the microcomputer 7 via the analog/digital converter 6, where arithmetic processing such as creating a calibration curve for the standard addition method and calculating the concentration of the element to be measured in the sample is performed. Information in atomic absorption spectrometry, such as the state of the atomic absorption spectrum, the shape of the calibration curve, the analysis results of sample concentration, and the measurement conditions required for quantitative analysis, is displayed on the CRT 8 and recorded on the printer/plotter 9. .

標準添加曲線外挿法による定量分析技術の機能は、マイ
クロコンピュータ7に備えられている。
The microcomputer 7 is equipped with the function of quantitative analysis technology using the standard addition curve extrapolation method.

第2図、第3図および第4図は、本実施例の種型添加曲
線外挿法による定量分析技術を従来の標準添加直線外挿
法による定量分析技術と比較して例示したものである。
Figures 2, 3, and 4 illustrate the quantitative analysis technology using the seed type addition curve extrapolation method of this example in comparison with the conventional quantitative analysis technology using the standard addition linear extrapolation method. .

排水に含まれるCuについて、フレームレス原子化装置
による原子吸光分光光度計を用いて定量分析を行った場
合の例である。
This is an example of quantitative analysis of Cu contained in wastewater using an atomic absorption spectrophotometer using a flameless atomization device.

第2図は検量線が直線を示す低濃度領域(吸光度0.2
程度以下)において標準添加法(標準添加直線外挿法)
で定量分析を行い、試料(排水)に含まれるC u s
度について確認した例である。
Figure 2 shows the low concentration region (absorbance 0.2) where the calibration curve is a straight line.
standard addition method (standard addition linear extrapolation method)
Quantitative analysis was carried out to determine the amount of Cus contained in the sample (wastewater).
This is an example of checking the degree.

10mflのメスフラスコ4個に試料を1. 、 Om
 O。
Add 1. , Om
O.

ずつ分取する。10ppm濃度のCuの標準溶液を0.
0..10,0.20および0 、30 m Q  を
添加する。そしてそれぞれのメスフラスコを蒸留水で定
量(10mα)して標準添加法測定用のアリコートを調
製する。試料は10倍に希釈し、添加したCuの標準溶
液の濃度は0,0.10,0.20およびQ、30pp
+mとなる。原子吸収スペクトルの最大ピーク高さく3
24.8nmにおける吸光度)を求め、標準添加法の信
号処理機能によって検量線を作成し、試料中に含まれる
Ouの濃度を得た。
Separate each portion. A standard solution of Cu with a concentration of 10 ppm was added to 0.
0. .. Add 10,0.20 and 0,30 mQ. Then, each volumetric flask is quantified (10 mα) with distilled water to prepare an aliquot for standard addition method measurement. The sample was diluted 10 times, and the concentrations of the added Cu standard solution were 0, 0.10, 0.20 and Q, 30pp.
+m. Maximum peak height of atomic absorption spectrum 3
The absorbance at 24.8 nm) was determined, a calibration curve was created using the signal processing function of the standard addition method, and the concentration of O contained in the sample was obtained.

検量線10は直線(y二ax十すの1次関数式)で最小
二乗法によって作成したものである。作成した検量線と
各濃度における吸光度値は一致しているので精度の高い
検量線であることが判る。すなわち、試料の希釈倍率を
大きく(10倍)とり、濃度域が直線の検量線を示す濃
度レンジ内になるように考慮して標準添加法測定用のア
リコートを調製すると、従来の標準添加法被術である標
準添加直線外挿法での定量分析が可能となる。この定量
分析結果から、試料中に含まれるCuの濃度は1.6p
pm (0,16ppmX 10)であることが判る。
The calibration curve 10 is a straight line (a linear function equation of y2ax10s) created by the least squares method. Since the created calibration curve and the absorbance values at each concentration match, it can be seen that the calibration curve is highly accurate. In other words, if an aliquot for standard addition method measurement is prepared by increasing the dilution ratio of the sample (10 times) and considering the concentration range to be within the concentration range that shows a linear calibration curve, Quantitative analysis using the standard addition linear extrapolation method is now possible. From this quantitative analysis result, the concentration of Cu contained in the sample was 1.6p.
pm (0.16 ppm×10).

第3図は第2図の場合と同一の試料(排水)を10 m
 Qのメスフラスコ4個に5 、 Om Q ずつ分取
して、1.0ppma濃度のCuの標準溶液を0゜1.
0,2.0および3 、 Om Q 添加した後に、そ
れぞれのメスフラスコを蒸留水で定容(10mu)2.
0および3 、0 ppmとなる。原子吸収スペクトル
の最大ピーク高さく吸光度)を求め、標準添加法の信号
処理機能によって検量線を作成し、試料中に含まれるC
uの濃度を得た。検量線11は、従来の標準添加法被術
の標準添加直線外挿法(最小二乗法による直線作成法)
によって作成したものである。得られた吸光度は0.3
〜0.8程度で第2図の10倍希釈の場合に比較してか
なり大きく、フレームレス原子吸光分光光度計の測定濃
度レンジとしては高濃度である。したがって、この濃度
領域での検量線は濃度軸方向に湾曲する。このため、従
来の標準添加法被術である標準添加直線外挿法(y=a
x+b)で作成した検量線11と各濃度の吸光度値は一
致しない。このような場合には、定量分析は不可能で精
度の高い分析結果(濃度)を得ることは困難である。こ
のことは、定量分析結果から求められたCuの濃度値の
3pp■ (1,5ppmX2)が、第2図での直線の
検量線を得ることのできる低濃度領域(吸光度0.2〜
0.3程度まで)での定量分析結果の1 、6 ppm
と大きく相違していることからも確認できる。すなわち
、従来の標準添加法被術である標準添加直線外挿法は検
量線が直線を示す低濃度領域(吸光度0.2〜0.3程
度まで)の定量分析に適用され、検量線が濃度軸方向に
湾曲する高濃度領域(吸光度0.3 程度以上)での定
量分析は全く不可能で、汎用性がないことが判る。
Figure 3 shows the same sample (waste water) as in Figure 2 at a distance of 10 m.
A standard solution of Cu with a concentration of 1.0 ppma was added to 4 Om Q volumetric flasks at 0°1.
After addition of 0, 2.0 and 3, OmQ, each volumetric flask was diluted to a constant volume (10 mu) with distilled water.
0 and 3,0 ppm. Determine the maximum peak height (absorbance) of the atomic absorption spectrum, create a calibration curve using the signal processing function of the standard addition method, and calculate the carbon content in the sample.
The concentration of u was obtained. The calibration curve 11 is obtained by standard addition linear extrapolation method (straight line creation method using the least squares method) using the conventional standard addition method.
It was created by The absorbance obtained was 0.3
~0.8, which is considerably larger than the 10-fold dilution shown in FIG. 2, and is a high concentration within the measurement concentration range of a frameless atomic absorption spectrophotometer. Therefore, the calibration curve in this concentration range is curved in the concentration axis direction. For this reason, the standard addition linear extrapolation method (y=a
The calibration curve 11 created in x+b) and the absorbance values of each concentration do not match. In such cases, quantitative analysis is impossible and it is difficult to obtain highly accurate analysis results (concentration). This means that the Cu concentration value of 3 ppm (1.5 ppm x 2) determined from the quantitative analysis results is in the low concentration region (absorbance 0.2 to
1.6 ppm of quantitative analysis results (up to about 0.3 ppm)
This can be confirmed by the large difference between the two. In other words, the standard addition linear extrapolation method, which is a technique used in the conventional standard addition method, is applied to quantitative analysis in the low concentration region (absorbance of about 0.2 to 0.3) where the calibration curve is a straight line; Quantitative analysis in a high concentration region (absorbance of about 0.3 or more) that curves in the axial direction is completely impossible, and it can be seen that there is no versatility.

第4図は第3図での測定で調製した標準添加法測定用の
アリコートを用いて、本発明に係る標準添加法技術であ
る標準添加曲線外挿法で定量分析を行った結果である。
FIG. 4 shows the results of quantitative analysis using the standard addition method measurement aliquot prepared in the measurement shown in FIG. 3 using the standard addition curve extrapolation method, which is the standard addition method technique according to the present invention.

検量線12は最小二乗法による3次関数式(y=ax”
+bx”+cx+d)の曲線近似によって作成したもの
である。作成した検量線12と各濃度における吸光度値
はよく一致しているので精度の高い標準添加測定用の検
量線を作成できたことが判る。このことは、得られた1
、6ppm  (0,8ppIIX2)の分析結果が、
第2図の直線の検量線を得ることのできる低濃度領域(
吸光度0.2〜0.3程度まで)における定量分析結果
の1 、6ppm (0、16ppmX 10’)と一
致していることからも確認できる。すなわち、本発明に
係る標準添加法技術である標準添加曲線外挿法を有する
ことによって、検量線が濃度軸方向に湾曲した状態にお
いても標準添加法での定量分析は可能である。
The calibration curve 12 is a cubic function equation (y=ax”
+bx"+cx+d). Since the created calibration curve 12 and the absorbance values at each concentration agree well, it can be seen that a highly accurate calibration curve for standard addition measurement was created. This means that the obtained 1
, 6ppm (0,8ppIIX2) analysis results are
The low concentration region (
This can also be confirmed from the fact that it is consistent with the quantitative analysis result of 1.6 ppm (0.16 ppm x 10') at absorbance of about 0.2 to 0.3). That is, by having the standard addition curve extrapolation method, which is the standard addition method technology according to the present invention, quantitative analysis by the standard addition method is possible even when the calibration curve is curved in the concentration axis direction.

第5図は分光蛍光光度計において排水中に含まれるCe
についての標準添加法による定量分析の例である。蛍光
法によるCeの定量分析の際に得られる相対蛍光強度(
感度)は、共存する11CQ等の酸の濃度に依存(干渉
)する。したがって、干渉を補正するための測定法であ
る標準添加法は必須である。試料に含まれるHcQ等の
酸の濃度が高いほど得られる相対蛍光強度は著しく低下
する。このため、試料中に含まれるIIcQ等の濃度は
低くして測定するのが感度的に有利である。しかし、共
存する酸の濃度が低いと、検量線は原子吸光分光光度計
の場合と異なり濃度領域に関係なく(低濃度領域でも)
濃度軸方向に湾曲する。こ(排水)2mffに0.25
,50.75および1100pp濃度のCeの標準溶液
(INIIcQ溶液)をそれぞれ2oμQずつ添加して
標準添加法測定用のアリコートを調製した。蛍光波長3
52止、励起波長260nmにて相対蛍光強度を求めた
Figure 5 shows Ce contained in wastewater measured using a spectrofluorophotometer.
This is an example of quantitative analysis using the standard addition method. Relative fluorescence intensity obtained during quantitative analysis of Ce by fluorescence method (
Sensitivity) depends on the concentration of coexisting acids such as 11CQ (interference). Therefore, the standard addition method, which is a measurement method for correcting interference, is essential. The higher the concentration of acid such as HcQ contained in the sample, the more significantly the obtained relative fluorescence intensity decreases. Therefore, it is advantageous in terms of sensitivity to measure the concentration of IIcQ and the like contained in the sample at a low level. However, when the concentration of coexisting acids is low, the calibration curve is independent of the concentration range (even in the low concentration range), unlike in the case of an atomic absorption spectrophotometer.
Curved in the concentration axis direction. This (drainage) 0.25 to 2mff
, 50.75 and 1100 pp concentrations of Ce standard solutions (INIIcQ solution) were added in an amount of 2 μQ each to prepare aliquots for standard addition method measurements. Fluorescence wavelength 3
The relative fluorescence intensity was determined at an excitation wavelength of 260 nm.

検量線13は本発明に係る標準添加法である標準添加曲
線外挿法を用いて最小二乗法による2次関数式(y=a
x”+b c+c)  の曲線近似によって作成したも
のである。作成した検量線13と各濃度における相対蛍
光強度値はよく一致しているので精度の高い検量線であ
ることが判る。したがって、得られた定量分析結果(濃
度)Q、28ppmは高精度である。特に本発明に係る
標準添加技術である標準添加曲線外挿法は、第5図の分
光蛍光光度計によるCeの定量分析例のように、検量線
が濃度領域には全く無関係に濃度軸方向に湾曲して直線
を示さない場合にも標準添加法での定量分析を行うとき
に有効である。
The calibration curve 13 is calculated using a quadratic function equation (y=a
It was created by curve approximation of The quantitative analysis result (concentration) Q, 28 ppm is highly accurate.In particular, the standard addition curve extrapolation method, which is the standard addition technique according to the present invention, is similar to the example of quantitative analysis of Ce using a spectrofluorometer in Figure 5. In addition, it is effective when performing quantitative analysis using the standard addition method even when the calibration curve curves in the concentration axis direction and does not show a straight line, completely unrelated to the concentration range.

本実施例によれば、原子吸光分光光度計や分光蛍光光度
計等の分光光度計において、定量分析する際の被測定物
質の濃度領域や分光特性等によって濃度値と吸光度値や
蛍光強度値等の分光光度計の指示値との関係曲線、すな
わち、検量線が濃度軸方向に湾曲する状態の場合でも共
存物質による干渉を補正する分析法である標準添加法に
て正確度の高い定量分析結果(濃度)を得るのに効果が
ある。
According to this embodiment, in a spectrophotometer such as an atomic absorption spectrophotometer or a spectrofluorophotometer, the concentration value, absorbance value, fluorescence intensity value, etc. Highly accurate quantitative analysis results using the standard addition method, which is an analysis method that corrects for interference caused by coexisting substances even when the calibration curve curves in the direction of the concentration axis. It is effective in obtaining (concentration).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、原子吸光分光光
度計や分光蛍光光度計等の分光光度計で、被測定物質の
定量分析を行う際に共存物質による化学的あるいは物理
的等の干渉を補正して正確度の高い定量分析結果(濃度
)を得るために一般化されている分析法の標準添加法に
おいて、吸光度値や蛍光強度値等の分光光度計の指示値
が添加した既知濃度値の関数あるいは添加した既知濃度
値が吸光度値や蛍光強度値等の分光光度計の指示値の関
数とする曲線近似による検量線作成機能、最小二乗法に
よる検量線作成機能を分光光度計の標準添加法信号処理
機楕にあわせて備えた標準添加曲線外挿法の機能を有し
ているので、従来の標準添加法技術である標準添加直線
外挿法では定量分析が全く不可能で、かつ、精度の高い
分析結果(濃度)を得ることが困難であった検量線が濃
度軸方向に湾曲する状態の場合でも標準添加法での定量
分析を可能とするとともに、精度の高い定量分析結果を
得ることができ、標準添加法による測定可能な濃度レン
ジ、標準添加法の汎用性、被測定物質の定量分析の操作
性を大幅に向上させることができるという効果がある。
As explained above, according to the present invention, when performing quantitative analysis of a substance to be measured using a spectrophotometer such as an atomic absorption spectrophotometer or a spectrofluorophotometer, chemical or physical interference caused by coexisting substances can be detected. In the standard addition method, which is a generalized analytical method to correct quantitative analysis results (concentration) and obtain highly accurate quantitative analysis results (concentration), the indicated value of the spectrophotometer, such as absorbance value or fluorescence intensity value, is the known concentration added. Standard spectrophotometer functions include a function to create a calibration curve by curve approximation, in which the added known concentration value is a function of the indicated value of the spectrophotometer, such as absorbance value or fluorescence intensity value, and a function to create a calibration curve by the least squares method. Since it has the standard addition curve extrapolation function that is included with the addition method signal processor ellipse, quantitative analysis is completely impossible with the standard addition linear extrapolation method, which is the conventional standard addition method technology, and , it is now possible to perform quantitative analysis using the standard addition method even when the calibration curve is curved in the direction of the concentration axis, which was difficult to obtain highly accurate analysis results (concentration). This has the effect of significantly improving the measurable concentration range by the standard addition method, the versatility of the standard addition method, and the operability of quantitative analysis of the analyte.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分光光度計の一実施例を示すブロック
図、第2図、第3図、第4図および第5図は本発明の一
実施例による標準添加法と従来の標準添加法とを比較し
て例示した線図、第6図。 第7図および第8図は原子吸光分光光度計における濃度
と吸光度の関係曲線図である。 1・・・ホローカソードランプ、2・・・カーボン製試
料管、3・・・分光器、4・・・光電子増倍管、5・・
・前置増幅器、6・・・アナログ/ディジタル変換器、
7・・・標準添加曲線外挿法の信号処理機能を備えたマ
イクも5図 冨6図 溝7度(PP爪〕
FIG. 1 is a block diagram showing an embodiment of the spectrophotometer of the present invention, and FIGS. 2, 3, 4, and 5 show the standard addition method according to the embodiment of the present invention and the conventional standard addition method. FIG. 6 is a diagram illustrating a comparison between the two methods. FIGS. 7 and 8 are relationship curve diagrams between concentration and absorbance in an atomic absorption spectrophotometer. 1... Hollow cathode lamp, 2... Carbon sample tube, 3... Spectrometer, 4... Photomultiplier tube, 5...
・Preamplifier, 6...Analog/digital converter,
7...Microphone equipped with signal processing function of standard addition curve extrapolation method (5 figures, 6 figures, groove 7 degrees (PP claw))

Claims (1)

【特許請求の範囲】[Claims] 1、原子吸光分光光度計や分光蛍光光度計等の分光光度
計が有する標準添加法による定量分析のための信号処理
機構の検量線作成機能に、吸光度値や蛍光強度値等の分
光光度計の指示値が濃度値の関数あるいは濃度値が吸光
度値や蛍光強度値等の分光光度計の指示値の関数となる
曲線近似による検量線作成機能および最小二乗法による
検量線作成機能をあわせて備え、濃度値と吸光度値や蛍
光強度値等の分光光度の指示値との関係曲線、すなわち
、検量線が濃度軸方向に湾曲する状態の場合でも標準添
加法にて精度の高い定量分析結果を得るともに、標準添
加法での測定可能な濃度レンジを大幅に拡大させた構成
としてあることを特徴とする分光光度計。
1. The calibration curve creation function of the signal processing mechanism for quantitative analysis using the standard addition method of spectrophotometers such as atomic absorption spectrophotometers and spectrofluorophotometers has the ability to generate absorbance values, fluorescence intensity values, etc. It is equipped with a function to create a calibration curve by curve approximation, where the indicated value is a function of the concentration value, or a concentration value is a function of the indicated value of the spectrophotometer, such as absorbance value or fluorescence intensity value, and a function to create a calibration curve by the least squares method. Even when the relationship curve between the concentration value and the spectrophotometric indicator value such as absorbance value or fluorescence intensity value, that is, the calibration curve curves in the direction of the concentration axis, the standard addition method can be used to obtain highly accurate quantitative analysis results. , a spectrophotometer characterized by having a configuration that greatly expands the measurable concentration range using the standard addition method.
JP17162886A 1986-07-23 1986-07-23 Spectrophotometer Pending JPS6329234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17162886A JPS6329234A (en) 1986-07-23 1986-07-23 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17162886A JPS6329234A (en) 1986-07-23 1986-07-23 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPS6329234A true JPS6329234A (en) 1988-02-06

Family

ID=15926706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17162886A Pending JPS6329234A (en) 1986-07-23 1986-07-23 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS6329234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026385A (en) * 2007-07-19 2009-02-05 Sony Corp Optical pickup device and optical disk device using the same
JP2009524832A (en) * 2006-01-24 2009-07-02 ライフ テクノロジーズ コーポレーション Device and method for quantifying analytes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524832A (en) * 2006-01-24 2009-07-02 ライフ テクノロジーズ コーポレーション Device and method for quantifying analytes
JP2009026385A (en) * 2007-07-19 2009-02-05 Sony Corp Optical pickup device and optical disk device using the same
US8064320B2 (en) 2007-07-19 2011-11-22 Sony Corporation Optical pickup and optical disc apparatus using the same

Similar Documents

Publication Publication Date Title
Thomas A primer on multivariate calibration
Rasberry et al. Calibration for interelement effects in X-ray fluorescence analysis
Donati et al. Fundamentals and new approaches to calibration in atomic spectrometry
CN108680523B (en) Method for measuring object to be measured by using multiple fitting modes to link standard curve
Mann et al. Spectrophotometric analysis by cross-correlation
Kara et al. Determination of acidity constants of acid–base indicators by second-derivative spectrophotometry
Espinosa-Mansilla et al. Simultaneous determination of pesticides by multivariate spectral analysis and derivative spectrophotometry
Nørgaard A multivariate chemometric approach to fluorescence spectroscopy
Beerstecher Micromethod for Estimation of Potassium by Paper Chromatography
Pulgarín et al. Rapid simultaneous determination of four non-steroidal anti-inflammatory drugs by means of derivative nonlinear variable-angle synchronous fluorescence spectrometry
Ingle et al. Difficulties with determining the detection limit with nonlinear calibration curves in spectrometry
JP4237891B2 (en) Background correction method for fluorescent X-ray analyzer and fluorescent X-ray analyzer using the method
JPS6329234A (en) Spectrophotometer
CN108303388B (en) Method for in-situ quantitative characterization of complex organic matter and metal ion complexing process
Ensafi et al. Sensitive spectrophotometric kinetic determination of osmium by catalysis of the pyrogallol red-bromate reaction
Rutan et al. Pulsed photoacoustic spectroscopy and spectral deconvolution with the Kalman filter for determination of metal complexation parameters
CN109725083A (en) Based on gas-chromatography-isotopic dilution infrared spectroscopy compounds content mete-wand method
Muravyov et al. Colorimetric scales for chemical analysis on the basis of transparent polymeric sensors
Ford Seagoing photoelectric colorimeter
CN103994981B (en) A kind of method of aluminium composition in quick mensuration bee product
Hirt et al. Use of micrometer baly cells with Beckman and Cary ultraviolet spectrophotometers
Zhao et al. A new spectrum technique based on direct detection of light intensity absorbed
Chugunova Metrology of Fluorescent Analysis in Russia and Abroad
Fix et al. Determination of saccharin in watts nickel plating solutions by first derivative ultraviolet spectrometry
Andrew et al. The photometric determination of silicon in steels