JPS63292029A - Torque sensor - Google Patents

Torque sensor

Info

Publication number
JPS63292029A
JPS63292029A JP12858087A JP12858087A JPS63292029A JP S63292029 A JPS63292029 A JP S63292029A JP 12858087 A JP12858087 A JP 12858087A JP 12858087 A JP12858087 A JP 12858087A JP S63292029 A JPS63292029 A JP S63292029A
Authority
JP
Japan
Prior art keywords
cylinders
cylinder
magnetic
coils
torsion bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12858087A
Other languages
Japanese (ja)
Inventor
Eishin Nagano
永野 英信
Yoshikazu Ikeki
池木 美一
Hiroshi Matsuoka
浩史 松岡
Shuzo Hiragushi
周三 平櫛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP12858087A priority Critical patent/JPS63292029A/en
Publication of JPS63292029A publication Critical patent/JPS63292029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To obtain a sensor, which is characterized by excellent productivity and excellent durability and is not subject to the effect of temperature, by providing a torsion bar in an input shaft, and detecting the change in electromagnetic couplings accompanied by the relative rotation of magnetic cylinders, which are provided on both sides. CONSTITUTION:A torsion bar 1b is provided in the middle of an input shaft 1. Magnetic cylinders 11 and 12 are fixed to one side of the bar 1b. A magnetic cylinder 13 is fixed to the other side. Annular coils 21-23, which are electromagnetically formed with said cylinders, respectively, are fixed at the outer surface sides of the cylinders. The cylinders 12 and 13 have asymmetric shapes with respect to the axial center of the shaft 1. When, rotary torque is applied to an upper shaft part 1a of the shaft 1, the bar 1b is twisted in correspondence with the torque. The cylinder 12 is relatively rotated with respect to the cylinder 13. Then, the electromagnetic coupling with the cylinders are changed in correspondence with the amount of rotation. Since the electromagnetic coupling states of the cylinders 11 and 12 and the coils 21 and 22 are not changed, the applied torque can be detected based on the difference in signals obtained from the coils 21 and 23. The effects of temperature changes are offset since the difference between the coils 21 and 23 is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトルクセンサに関し、特に自動車の電動パワー
ステアリング装置に通用するのに好適なトルクセンサに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a torque sensor, and particularly to a torque sensor suitable for use in an electric power steering device of an automobile.

〔従来技術〕[Prior art]

自動車の操舵輪に加える操作力を補助するパワーステア
リング装置として電動式のものが開発されつつある。こ
れは操舵輪に加えられたトルクを検出し、検出トルクに
応じて、舵取機構に設けた電動機を回転させる構成とし
たものである。 。
2. Description of the Related Art Electric power steering devices are being developed to assist the operating force applied to the steering wheels of automobiles. This is configured to detect torque applied to the steering wheels and rotate an electric motor provided in the steering mechanism in accordance with the detected torque. .

ところで、このトルク検出手段としては操舵輪に連なる
入力軸に歪ゲージを固着し、入力軸の検出変位を測定す
ることによって検出するもの、或いは入力軸の中途にト
ーションバーを介装し、この捩れ変位をその周囲に配し
たマイクロスイッチで検出するもの等が知られているが
、前者は温度の影響を受は易く精度上の難点があり、後
者は入力軸周りにマイクロスインチ配置のための大きな
スペースを要し、実用性に欠ける。
By the way, as this torque detection means, a strain gauge is fixed to the input shaft connected to the steering wheel, and detection is performed by measuring the detected displacement of the input shaft, or a torsion bar is inserted in the middle of the input shaft, and this torsion is detected. Devices that detect displacement using microswitches placed around the input shaft are known, but the former is easily affected by temperature and has problems with accuracy, while the latter uses a microswitch placed around the input shaft. It takes up a lot of space and is impractical.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの問題を解決できるものとして特開昭第56−9
4232号に記されるように入力軸の回転を電磁的に検
出するものが知られているが、それに用いる導電性材料
製の部体は高精度の切欠加工を要するため生産技術上、
また経済上の難点があり、また温度の影響を受けてこの
部体或いはその周囲に配するコイルの組込が難しいとい
う問題点があった。
Unexamined Japanese Patent Publication No. 56-9 as a solution to these problems
As described in No. 4232, a device that electromagnetically detects the rotation of the input shaft is known, but the parts made of conductive material used therein require high-precision notch machining, which is difficult to produce due to production technology.
In addition, there are economical disadvantages, and there is also the problem that it is difficult to assemble a coil disposed in or around this part due to the influence of temperature.

本発明は斯かる問題点を解決するためになされたもので
あって、入力軸中にトーションバーを設け、その両側に
設けた磁性体円筒の相対回転に伴う電磁気的結合の変化
を検出することでトルクを求めるようにして、生産性に
優れ、温度のi5Wを受けず、また耐久性に優れたトル
クセンサを提供することを目的とする。
The present invention has been made to solve such problems, and includes providing a torsion bar in the input shaft and detecting changes in electromagnetic coupling due to relative rotation of magnetic cylinders provided on both sides of the torsion bar. An object of the present invention is to provide a torque sensor which has excellent productivity, is not affected by temperature i5W, and has excellent durability.

〔問題点を解決するための手段〕 本発明に係るトルクセンサは、トーションバーを中途に
介装してある回転自在の軸体におけるトーションバーの
一方側に第1.第2磁性体円筒を、他方側に第3磁性体
円筒をこの順序で固着してあり、これら磁性体円筒の外
周側に、主として第1゜第2.第3の磁性体円筒の夫々
と電磁的に結合する第1.第2.第3の環状コイルを固
設してあり、前記第2又は第3の磁性体円筒は第2及び
/若しくは第3の環状コイルとの電磁的結合に関与する
部分が前記軸体の軸心に関して非対称な形状を有し、第
2の環状コイルに対する第1.第3の環状コイルの電磁
的結合の差を、トーションバーの一方側又は他方側に加
わるトルクの情報として検出すべくなしてあることを特
徴とする。
[Means for Solving the Problems] The torque sensor according to the present invention includes a rotatable shaft body in which a torsion bar is interposed in the middle, and a first torsion bar on one side of the torsion bar. A second magnetic cylinder is fixed to the other side, and a third magnetic cylinder is fixed to the other side in this order, and the first magnetic cylinder, the second magnetic cylinder, and the third magnetic cylinder are mainly attached to the outer peripheral side of these magnetic cylinders. The first magnetic cylinder is electromagnetically coupled to each of the third magnetic cylinders. Second. A third annular coil is fixedly installed, and a portion of the second or third magnetic cylinder that is involved in electromagnetic coupling with the second and/or third annular coil is relative to the axis of the shaft body. having an asymmetrical shape, the first . It is characterized in that the difference in electromagnetic coupling between the third annular coils is detected as information on the torque applied to one side or the other side of the torsion bar.

〔作用〕[Effect]

軸体の一方側に回転トルクを加えるとトーションバーが
トルクに応じて捩れ、第2磁性体円筒は第3磁性体円筒
に対して相対回転する。第2又は第3の磁性体円筒は軸
体の軸心に対して非対称であるので、これらと第2.第
3の環状コイルとの電磁的結合が回転量に応じて変化す
る。第1.第2の磁性体円筒と第1.第2の環状コイル
との電磁的結合状態は変化がないので、第1.第3の環
状コイルから得られる信号の差分で印加トルクが検出で
きることになる。温度変化に伴う影響は第1環状コイル
と第3環状コイルとの差を求めるので相殺される。
When rotational torque is applied to one side of the shaft, the torsion bar is twisted in accordance with the torque, and the second magnetic cylinder rotates relative to the third magnetic cylinder. Since the second or third magnetic cylinder is asymmetrical with respect to the axis of the shaft body, the second or third magnetic cylinder is asymmetrical with respect to the axis of the shaft body. The electromagnetic coupling with the third annular coil changes depending on the amount of rotation. 1st. A second magnetic cylinder and a first magnetic cylinder. Since the state of electromagnetic coupling with the second annular coil remains unchanged, the state of electromagnetic coupling with the second annular coil remains unchanged. The applied torque can be detected by the difference between the signals obtained from the third annular coil. Effects due to temperature changes are canceled out by determining the difference between the first and third annular coils.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係るトルクセンサの構造を示す半裁
 断面図、第2図はその内側部材の斜視図である。図に
おいてlは入力軸であり、図の右側に操舵輪が取付けら
れ、また左側に操向輪に連なるラックと噛合するビニオ
ン(いずれも図示せず)に連結されている。入力軸1は
操舵輪側の上軸部1aとビニオン側の下軸部1cとがト
ーションバー1bを介して同軸的に連結されてなるもの
であり、上軸部1aが車体に固定されている筒状のケー
ス2に軸受3を介して回転自在に支承されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a half-cut sectional view showing the structure of a torque sensor according to the present invention, and FIG. 2 is a perspective view of its inner member. In the figure, l is an input shaft, to which a steering wheel is attached on the right side of the figure, and connected to a binion (both not shown) that meshes with a rack connected to the steering wheel on the left side. The input shaft 1 has an upper shaft part 1a on the steering wheel side and a lower shaft part 1c on the binion side, which are coaxially connected via a torsion bar 1b, and the upper shaft part 1a is fixed to the vehicle body. It is rotatably supported by a cylindrical case 2 via a bearing 3.

上軸部1aの下端部(図面の左側)の外径は下軸部1c
の上端部(図面の右側)の孔への挿入のために小径とし
てあるが、上軸部1aの大径部の下端部には非磁性体よ
りなるスリーブ4aを外嵌固着し、その外周に磁性体よ
りなる第1.第2の円筒11゜12を入力軸と同心的に
外嵌固着してある。
The outer diameter of the lower end (left side in the drawing) of the upper shaft portion 1a is the lower shaft portion 1c.
Although the diameter is small for insertion into the hole at the upper end (on the right side of the drawing), a sleeve 4a made of a non-magnetic material is fitted and fixed to the lower end of the large diameter part of the upper shaft part 1a, and the sleeve 4a is fixed to the outer periphery of the sleeve 4a. The first part is made of a magnetic material. A second cylinder 11° 12 is externally fitted and fixed concentrically with the input shaft.

上側の第1円筒11は上下端縁が入力軸1の軸心に垂直
な平面にあり、円周方向のいずれの位置も等長である。
The upper and lower first cylinders 11 have upper and lower edges on a plane perpendicular to the axis of the input shaft 1, and have the same length at all positions in the circumferential direction.

下側の第2円筒12は上端縁は第1円筒同様に入力軸1
の軸心に垂直な平面にあるが、下端縁は軸心には非垂直
、また軸心に関し、非対称な形状となっている。即ち周
方向の一部から1周の螺旋を描く形状を有している。
The upper end edge of the lower second cylinder 12 is connected to the input shaft 1 like the first cylinder.
However, the lower edge is not perpendicular to the axis and has an asymmetrical shape with respect to the axis. That is, it has a shape that draws one spiral from a part in the circumferential direction.

下軸部1cの上端部には非磁性体よりなる第2スリーブ
4bを外嵌固着し、その外周に磁性体よりなる第3の円
筒13が入力軸1と同心的に外嵌固着してある。円筒1
3は円筒12と上下が反対の同形状をなし、円筒12.
13は第1.2図に示すようにトーションバ−1bに回
転力が加わっていない状態において両対向縁が平行とな
るように周方向の位置を定めてスリーブ4a、 4bに
嵌着されている。ケース2には外周に3本の周設溝を形
成してあるボビン5が内嵌固着されており各溝はその軸
長方向中心位置が円筒11.12.13夫々の軸長方向
中心と略一致するよう定められておりここに円筒状のコ
イル21、22.23を巻回収納してある。これによっ
て各コイル21.22.23は主として円筒11.12
.13の夫々と電磁的に結合する。コイル21.22.
23のターン数は適宜でよいが、第1.第3のコイル2
1.23は同ターン数としておくのが便宜である。
A second sleeve 4b made of a non-magnetic material is fitted and fixed to the upper end of the lower shaft portion 1c, and a third cylinder 13 made of a magnetic material is fitted and fixed to the outside of the second sleeve 4b concentrically with the input shaft 1. . Cylinder 1
3 has the same shape as the cylinder 12 with the top and bottom opposite to each other, and the cylinder 12.
As shown in Fig. 1.2, the torsion bar 13 is fitted into the sleeves 4a and 4b with its position determined in the circumferential direction so that both opposing edges are parallel when no rotational force is applied to the torsion bar 1b. . A bobbin 5 having three circumferential grooves formed on its outer periphery is fitted and fixed in the case 2, and the center position of each groove in the axial direction is approximately the same as the axial center of each cylinder 11, 12, 13. The coils 21, 22, and 23 in a cylindrical shape are wound and stored therein. As a result, each coil 21.22.23 is mainly cylindrical 11.12.
.. It is electromagnetically coupled with each of 13. Coil 21.22.
The number of turns of 23 may be set as appropriate, but the number of turns of 1. third coil 2
It is convenient to set 1.23 as the same number of turns.

第3図は本発明センサの電気回路を略示するブロック図
である。第2コイル22は発振器6に接続されており、
第1.第3コイル21.23は夫々の誘起電圧を差動増
幅回路の−、十端子夫々に与えている。但し第3コイル
23出力はポテンシオメータ8を介して差動増幅回路7
に与えている。差動増幅回路7出力を本発明センサの出
力としている。
FIG. 3 is a block diagram schematically showing the electrical circuit of the sensor of the present invention. The second coil 22 is connected to the oscillator 6,
1st. The third coils 21 and 23 apply respective induced voltages to the - and ten terminals of the differential amplifier circuit. However, the output of the third coil 23 is sent to the differential amplifier circuit 7 via the potentiometer 8.
is giving to The output of the differential amplifier circuit 7 is used as the output of the sensor of the present invention.

次に本発明センサの動作について説明する。発振器6の
駆動によりコイル22に発生した磁束はコイル21.2
3にも鎮交し、これらに誘起電圧を生ぜしめる。
Next, the operation of the sensor of the present invention will be explained. The magnetic flux generated in the coil 22 by driving the oscillator 6 is the magnetic flux generated in the coil 21.2.
3, and generates an induced voltage across them.

コイル21.23のターン数を等しくし、コイル22と
コイル21.23夫々との距離を等しくし、円筒11゜
13の体積を同程度としておいたとしてもコイル21゜
23の出力は等しくなり難いが、操舵輪を回転操作して
いない状態、つまりトーションバー1bに回転力が加わ
っていない状態下で、ポテンシオメータ8の調整により
差動増幅回路7出力が0になるよう調整する。
Even if the number of turns of the coils 21 and 23 are made equal, the distances between the coils 22 and 21 and 23 are made equal, and the volumes of the cylinders 11 and 13 are made to be approximately the same, it is difficult to make the outputs of the coils 21 and 23 equal. However, the output of the differential amplifier circuit 7 is adjusted to 0 by adjusting the potentiometer 8 when the steering wheel is not rotated, that is, when no rotational force is applied to the torsion bar 1b.

本発明のセンサはこのような状態で使用されるのである
The sensor of the present invention is used under such conditions.

而して第1,2図に示す如く円筒13(又は12)の上
端縁(又は下端縁)が時計方向に上側へ偏位する螺旋状
としている場合は操舵輪を時計方向(実線)に回転する
とトーションバー1bの働きによって円筒12は円筒1
3に対して時計方向へ相対的に回転し、その下端縁と、
円筒13の上端縁との距離が小さくなり、その結果、円
筒12と13との電磁的結合、従ってまたコイル22と
23との電磁的結合が大となり、コイル23の出力電圧
が高くなるがこれに対してコイル21と22との電磁的
結合は不変であるからコイル21出力は一定であるので
、差動増幅回路7出力は前記相対回転差に見合う正の値
となる。
As shown in Figures 1 and 2, if the upper edge (or lower edge) of the cylinder 13 (or 12) is spirally deviated upward in the clockwise direction, the steering wheel is rotated clockwise (solid line). Then, cylinder 12 becomes cylinder 1 due to the action of torsion bar 1b.
rotated clockwise relative to 3, and its lower edge and
The distance from the upper edge of the cylinder 13 becomes smaller, and as a result, the electromagnetic coupling between the cylinders 12 and 13, and therefore the electromagnetic coupling between the coils 22 and 23 becomes larger, and the output voltage of the coil 23 becomes higher. On the other hand, since the electromagnetic coupling between the coils 21 and 22 remains unchanged, the output of the coil 21 is constant, and therefore the output of the differential amplifier circuit 7 takes a positive value commensurate with the above-mentioned relative rotation difference.

一方、操舵輪を反時計方向(破線)に回転すると円筒1
2の下端縁と円筒13の上端縁との距離が大きくなり、
前述したところと逆に差動増幅回路7出力は相対回転量
に見合う負の値となる。
On the other hand, when the steering wheel is rotated counterclockwise (dashed line), the cylinder 1
The distance between the lower edge of cylinder 13 and the upper edge of cylinder 13 increases,
Contrary to what was described above, the output of the differential amplifier circuit 7 takes a negative value commensurate with the amount of relative rotation.

前記相対回転量は入力軸1に操舵輪に加えた回転トルク
によって定まるから結局差動増幅回路7出力でトルク測
定が行えたことになる。
Since the amount of relative rotation is determined by the rotational torque applied to the input shaft 1 to the steered wheels, it follows that the torque can be measured using the output of the differential amplifier circuit 7.

そしてコイル21.22.23の部分の温度が変化した
場合も、コイル21.22.23が同温度である限りそ
の出力変化に及ぼす影響は等しいから両者の出力の差を
求めることで温度補償が行える。
Even if the temperature of the coils 21, 22, and 23 changes, as long as the coils 21, 22, and 23 are at the same temperature, the effect on the output change is the same, so temperature compensation can be performed by finding the difference between the outputs of the two. I can do it.

なお磁性体円筒12.13の対向端縁の形状は上述の実
施例に限るものではなく、その相対回転によって第2及
び/又は第3のコイルとの電磁的結合が変化するもので
あれば、つまり入力軸1の軸心に対して中心対称でない
ものであればよい。けだし両者の相対回転でコイル23
の出力電圧が変化すればよいからである。同様の理由で
百円1m12.13の両者がそのような形状を有する必
要はなくどちらか一方で足りる。
Note that the shape of the opposing edges of the magnetic cylinders 12 and 13 is not limited to the above-mentioned embodiments, but as long as the electromagnetic coupling with the second and/or third coil changes with the relative rotation thereof, In other words, it is sufficient if it is not centrally symmetrical with respect to the axis of the input shaft 1. The coil 23 is rotated by the relative rotation between the two.
This is because it is sufficient if the output voltage of the output voltage changes. For the same reason, it is not necessary for both 100 yen 1 m 12.13 to have such a shape, and either one is sufficient.

更にこの機能を得るには対向端縁の形状を軸心非対称と
するのみならず他の部分の形状でこれを達成してもよい
Furthermore, in order to obtain this function, it is possible to achieve this not only by making the shape of the opposing edge asymmetrical about the axis, but also by the shape of other parts.

更にまた前述の実施例では回転方向に応じて正負の出力
を得ることとしたが、第4図に示すように磁性体円筒1
2.13の対向軸縁を入力軸の軸心に対してθ(≠90
°)となるような構成としてもよく、この場合は両端縁
が周方向に平行となっている図示の状態から時計方向9
反時計方向に回転した場合に百円筒12.13間の距離
が等しく変化するので、回転方向によらず、回転量にの
み依存する出力が得られる。
Furthermore, in the above embodiment, positive and negative outputs were obtained depending on the rotation direction, but as shown in FIG.
2. The opposing shaft edge of 13 is set at θ (≠90
It may be configured so that
When rotating counterclockwise, the distance between the hundred cylinders 12 and 13 changes equally, so an output that depends only on the amount of rotation is obtained, regardless of the direction of rotation.

なお、本発明のトルクセンサは自動型の電動パワーステ
アリンク装置に限らず、広<一般に使用−でき、また回
転量自体の測定にも通用できることは言うまでもない。
It goes without saying that the torque sensor of the present invention can be used not only in automatic electric power steering link devices but also in a wide variety of general applications, and can also be used to measure the amount of rotation itself.

〔効果〕〔effect〕

以上の如き本発明のセンサにおいては本質的に非接触式
のセンサであるので耐久性に優れている。
Since the sensor of the present invention as described above is essentially a non-contact type sensor, it has excellent durability.

また磁性体円筒は一端部を所要の形状(実施例では単純
な斜面)に形成するだけであるので、加工が容易であり
、また高度な加工精度を必要としない。また磁性体円筒
及びコイルの組付は単なる嵌め込みだけであり、何らの
困難も伴わない9また第2.第3の磁性体円筒の周方向
位置合せは必要ではあるが、コイル出力回路での調整(
実施例ではポテンシオメータ〉等で対処できるので厳密
な位置合せを必要としない。
Further, since the magnetic cylinder only has one end formed into a desired shape (a simple slope in the embodiment), it is easy to process and does not require high processing accuracy. Furthermore, the assembly of the magnetic cylinder and the coil is simply a matter of fitting, and there is no difficulty in assembling the magnetic cylinder and the coil. Circumferential alignment of the third magnetic cylinder is necessary, but adjustment in the coil output circuit (
In the embodiment, this can be done using a potentiometer or the like, so strict positioning is not required.

更に第1磁性体円筒及び第1の環状コイルを設けたので
温度補償が行われ、これによる影1はない。
Furthermore, since the first magnetic cylinder and the first annular coil are provided, temperature compensation is performed, and there is no shadow 1 caused by this.

更に環状コイルはケース側に取付けられるので入力軸の
昇温による昇温が少ない。更にまた各部材を同心的に積
層配置する構造を有しているので小スペースで済むなど
本発明は優れた効果を奏する。
Furthermore, since the annular coil is attached to the case side, there is little temperature rise due to temperature rise of the input shaft. Furthermore, since each member is concentrically stacked and arranged, the present invention has excellent effects such as requiring only a small space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明センサの構造を示す半裁断面図、第2図
はその内部の構造を示す斜視図、第3図は本発明のセン
サの電気回路を略示するブロック図・第4図は他の実施
例の内部構造を示す斜視図である。
Fig. 1 is a half-cut sectional view showing the structure of the sensor of the present invention, Fig. 2 is a perspective view showing its internal structure, Fig. 3 is a block diagram schematically showing the electric circuit of the sensor of the invention, and Fig. 4 is a FIG. 7 is a perspective view showing the internal structure of another embodiment.

Claims (1)

【特許請求の範囲】 1、トーションバーを中途に介装してある回転自在の軸
体におけるトーションバーの一方側に第1、第2磁性体
円筒を、他方側に第3磁性体円筒をこの順序で固着して
あり、これら磁性体円筒の外周側に、主として第1、第
2、第3の磁性体円筒の夫々と電磁的に結合する第1、
第2、第3の環状コイルを固設してあり、前記第2又は
第3の磁性体円筒は第2及び/若しくは第3の環状コイ
ルとの電磁的結合に関与する部分が前記軸体の軸心に関
して非対称な形状を有し、第2の環状コイルに対する第
1、第3の環状コイルの電磁的結合の差を、トーション
バーの一方側又は他方側に加わるトルクの情報として検
出すべくなしてあることを特徴とするトルクセンサ。 2、第2、第3の磁性体円筒はその対向部が前記軸体の
軸心に対して非垂直な平行線を有している特許請求の範
囲第1項記載のトルクセンサ。
[Claims] 1. A rotatable shaft having a torsion bar interposed in the middle, with first and second magnetic cylinders on one side of the torsion bar and a third magnetic cylinder on the other side. The first, second and third magnetic cylinders are fixed to each other in order and are electromagnetically coupled to the outer peripheral side of these magnetic cylinders.
Second and third annular coils are fixedly installed, and a portion of the second or third magnetic cylinder that is involved in electromagnetic coupling with the second and/or third annular coil is located on the shaft body. It has an asymmetrical shape with respect to the axis, and the difference in electromagnetic coupling between the first and third annular coils with respect to the second annular coil is to be detected as information on the torque applied to one side or the other side of the torsion bar. A torque sensor characterized by: 2. The torque sensor according to claim 1, wherein opposing portions of the second, second, and third magnetic cylinders have parallel lines that are not perpendicular to the axis of the shaft body.
JP12858087A 1987-05-26 1987-05-26 Torque sensor Pending JPS63292029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12858087A JPS63292029A (en) 1987-05-26 1987-05-26 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12858087A JPS63292029A (en) 1987-05-26 1987-05-26 Torque sensor

Publications (1)

Publication Number Publication Date
JPS63292029A true JPS63292029A (en) 1988-11-29

Family

ID=14988266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12858087A Pending JPS63292029A (en) 1987-05-26 1987-05-26 Torque sensor

Country Status (1)

Country Link
JP (1) JPS63292029A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289338U (en) * 1988-12-27 1990-07-16
JPH0364868U (en) * 1989-10-31 1991-06-25
KR100550227B1 (en) * 2003-02-21 2006-02-08 엘에스전선 주식회사 Torque Sensing Device Of Electric Power Steering For An Automobile
JP2007121162A (en) * 2005-10-28 2007-05-17 Showa Corp Torque sensor and electric power steering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289338U (en) * 1988-12-27 1990-07-16
JPH0364868U (en) * 1989-10-31 1991-06-25
KR100550227B1 (en) * 2003-02-21 2006-02-08 엘에스전선 주식회사 Torque Sensing Device Of Electric Power Steering For An Automobile
JP2007121162A (en) * 2005-10-28 2007-05-17 Showa Corp Torque sensor and electric power steering device

Similar Documents

Publication Publication Date Title
US5796014A (en) Torque sensor
US6880411B2 (en) Torque sensor and electric power steering system having same
KR0169569B1 (en) Torque sensor
CN100425960C (en) Magnetostrictive torque sensor
JPS6336124A (en) Torque sensor
JPS63292029A (en) Torque sensor
US6318188B1 (en) Torque detector
JPH0721433B2 (en) Torque sensor
JPH0446185Y2 (en)
JP2008203176A (en) Torque sensor and electric power steering apparatus using the same
US6370968B1 (en) Unconnected capacitor type torque sensor
JP3358074B2 (en) Angle detector
CN112141211B (en) Torque sensor, steering angle sensor, and corresponding integrated sensor and monitoring system
JP2509092B2 (en) Torque sensor
JPH0442016A (en) Displacement sensor
JPH0446186Y2 (en)
US4464645A (en) Angular displacement transducer of the variable reluctance type
JPH01107122A (en) Apparatus for detecting torque of rotary shaft
KR20030031611A (en) Torque sensor
JPH08327473A (en) Torque sensor
JP3673139B2 (en) Torque sensor
JP2001281080A (en) Torque sensor
JP3645782B2 (en) Torque sensor
JP2000241265A (en) Torque sensor
JP3047934B2 (en) Torque detector