JPS6329192A - Thermal siphon type heat pipe - Google Patents

Thermal siphon type heat pipe

Info

Publication number
JPS6329192A
JPS6329192A JP16975386A JP16975386A JPS6329192A JP S6329192 A JPS6329192 A JP S6329192A JP 16975386 A JP16975386 A JP 16975386A JP 16975386 A JP16975386 A JP 16975386A JP S6329192 A JPS6329192 A JP S6329192A
Authority
JP
Japan
Prior art keywords
liquid
gas
flow path
passage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16975386A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
鈴木 洋明
Michio Murase
道雄 村瀬
Shunji Nakao
中尾 俊次
Shigeto Murata
重人 村田
Shigeo Hatamiya
重雄 幡宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16975386A priority Critical patent/JPS6329192A/en
Publication of JPS6329192A publication Critical patent/JPS6329192A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To alleviate restriction of dropping of liquid with a blowing gas and improve a limiting characteristic of thermal transportation by a method wherein a thermal transporting passage between an evaporation part and a condensation part is divided into two sections and a metering part having a minimum sectional area is arranged at a lower part of one flow passage. CONSTITUTION:Heat is applied to an evaporater part 3 from an external source to evaporate a working fluid or boil it, the generated gas may blow up both gas passage 11 and liquid passage 10. However, a metering part 12 is arranged at a lower part, a gas flow rate v2 at the upper end is lower than a flow rate v1 at the upper end of the gas passage 11 and even when liquid generated at a condensation part 1 may not be dropped, the liquid can be dropped from the upper end of the liquid passage 10. When liquid is held at the liquid passage 10, the gas flow rate blowing up within the liquid passage 10 is decreased, and the liquid can drop from the upper end of the liquid passage 10. With such a mechanism as above, finally only the gas is blown up in the gas passage 11 and only the liquid drops at the liquid passage 10 to make a stable condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱サイフオン型ヒートパイプに係り、特に、熱
輸送の限界特性を向上させるのに好適な〔従来の技術〕 r従来の装置は特開昭51−60057号公報に記載の
ように、凝縮部の流路を液体流路と気体流路とに二分し
、凝縮部の下端で液体流路の流動抵抗を増大した構造と
なっていた。これは熱媒体の移動を一定方向に安定させ
ることを目的としたもので。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thermosiphon type heat pipe, and is particularly suitable for improving the critical characteristics of heat transport. As described in Japanese Patent Publication No. 51-60057, the flow path of the condensing section is divided into two into a liquid flow path and a gas flow path, and the flow resistance of the liquid flow path is increased at the lower end of the condensing section. . The purpose of this is to stabilize the movement of the heat medium in a certain direction.

熱輸送量が増大したときに発生する吹き上げ気体による
液体の落下抑制(CCFL)により発生する熱輸送量の
限界については考慮されていなかった。
No consideration was given to the limit on the amount of heat transport caused by suppression of liquid fall due to blown up gas (CCFL), which occurs when the amount of heat transport increases.

また、吹き上げ気体による液体の落下抑制を緩和するこ
とを目的とした発明は特開昭53−34157号に記載
のように、凝縮部の下部に、ロート壁に連絡口をもつロ
ート状の液体流路を設けたものがあるが構造が複雑とな
っていた。
In addition, an invention aimed at alleviating the suppression of liquid falling due to blown up gas is disclosed in JP-A No. 53-34157, in which a funnel-shaped liquid flow with a communication port in the funnel wall is provided at the lower part of the condensing section. There are some with roads, but the structure is complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、熱輸送量が増大したときに発生する吹
き上げ気体による液体の落下抑制(CCFL)について
考慮がされておらず、熱輸送量にCCFLによる限界が
存在するか、又は、CCFLを緩和するために構造が複
雑となる問題があった。
The above-mentioned conventional technology does not take into consideration liquid fall control (CCFL) due to blown up gas that occurs when the amount of heat transport increases, and either there is a limit to the amount of heat transport due to CCFL, or CCFL is relaxed. Therefore, there was a problem that the structure was complicated.

本発明の目的は吹き上げ気体による液体の落下抑制を緩
和して熱輸送の限界特性を向上させることにある。
An object of the present invention is to improve the critical characteristics of heat transport by alleviating the suppression of liquid falling due to blown up gas.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、蒸発部と凝縮部との間の熱輸送部の流路を
液体流路と気体流路とに二分し、液体流路の下端に断面
積を流路内で最小とした絞りを設けることにより達成さ
れる。
The above purpose is to divide the flow path of the heat transport section between the evaporation section and the condensation section into a liquid flow path and a gas flow path, and to install a throttle with the smallest cross-sectional area in the flow path at the lower end of the liquid flow path. This is achieved by providing

〔作用〕[Effect]

本発明の作用をヒートパイプの起動時を例にとって説明
する。蒸発部で発生した気体は、当初気体流路と液体流
路の両方を吹き上げるが、液体流路では下部に断面積を
流路内で最小とした絞りが設けられているため、液体流
路の上端における気体流速は気体流路上端における流速
よりも小さくなり5気体流路上端では吹き上げる気体に
より、液体が落下できない場合でも、液体流路上端から
は液体が落下することができる。これによって、液体流
路内の流動抵抗が増大し、液体流路を吹き上げる気体流
速が低下し、液体流路上端からは。
The operation of the present invention will be explained by taking as an example the time of starting a heat pipe. The gas generated in the evaporation section initially blows up both the gas flow path and the liquid flow path, but the liquid flow path is equipped with a constriction at the bottom with the smallest cross-sectional area within the flow path. The gas flow velocity at the upper end is smaller than the flow velocity at the gas flow top end, and the liquid can fall from the liquid flow top end even if the liquid cannot fall due to the gas blown up at the gas flow top end. As a result, the flow resistance in the liquid flow path increases, and the gas flow rate that blows up the liquid flow path decreases, and from the end of the liquid flow path.

さらに、液体が落下できるようになる。このようなメカ
ニズムにより、気体流路と液体流路とを吹き上げる気体
流速の差が拡大し、最終的には気体流路では気体のみが
吹き上げ、液体流路では液体のみが落下する状態で安定
となる。ヒートパイプの通常運転時の動作を従来の装!
!!(特開昭51−60057号公報)と比較すると、
従来の装置では液体を管壁の外周を伝わらせて落下させ
るようになっているため、気液界面の面積が大きくなっ
ており、吹き上げる気体によって液体の落下が抑制され
やすいが、本発明では液体を液体流路下端に設けた絞り
から、集中的に落下させるために、気液界面の面積が小
さくなり、吹き上げ気体による液体の落下抑制が緩和さ
れている。このように、本発明ではヒートパイプ内部の
流路を二分し一方の流路の下部に断面積を流路内で最小
とした絞りを設ける簡単な構造により、吹き上げ気体に
よる液体の落下抑制を緩和することができる。
In addition, it allows liquid to fall. Due to this mechanism, the difference in gas flow velocity that blows up the gas flow path and the liquid flow path increases, and eventually a stable state is reached in which only gas blows up in the gas flow path and only liquid falls in the liquid flow path. Become. Conventional heat pipe operation during normal operation!
! ! (Japanese Patent Application Laid-open No. 51-60057),
In conventional devices, the liquid travels along the outer periphery of the tube wall and falls, so the area of the gas-liquid interface is large, and the liquid falling is easily suppressed by the blown up gas.However, in the present invention, the liquid is Since the liquid is caused to fall intensively from the constriction provided at the lower end of the liquid flow path, the area of the gas-liquid interface is reduced, and the suppression of the liquid falling due to the blown up gas is relaxed. In this way, the present invention has a simple structure in which the flow path inside the heat pipe is divided into two and a constriction with the smallest cross-sectional area in the flow path is provided at the bottom of one of the flow paths, thereby alleviating the suppression of liquid falling due to blown up gas. can do.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。本実
施例では、高熱源からの加熱により作動流体が蒸発する
蒸発部3と被加熱体と接することにより作動流体が凝縮
する凝縮部1との間の熱輸送部2を液体流路1oと気体
流路11とに二分し、液体流路10の下部には断面積を
流路内で最小とした絞り12が設けられている。本実施
例の動作を、ヒートパイプを起動させるときを例にとっ
て、第2図及び第3図を用いて説明する。第3図は吹き
上げ気体により落下できる液体の流速が制限される。い
わゆる、CCFL特性を示したもので、ある気体流速以
上では液体が落下できないことを示している。第2図の
(a)に示すように、蒸発部3に外部から熱を加えて作
動流体を蒸発、又は、沸騰させると、発生した気体は気
体流路11と液体流路10の両方を吹き上げるが、液体
流路1oでは下部に絞り12が設けられているため、液
体流路1oの上端における気体流速vzは気体流路11
の上端における流速v1よりも小さくなり、第3図に示
すように、気体流路11の上端からは凝縮部1で凝縮に
より発生した液体が落下できない場合でも、液体流路1
0の上端からは液体が落下することができる。第2図の
(b)に示すように液体流路10に液体が保持されてく
ると液体流路10内の流動抵抗が増大し、液体流路を吹
き上げる気体流速が低下し、液体流路10の上端からは
さらに液体が落下できるようになる。このようなメカニ
ズムにより、気体流路11と液体流路10とを吹き上げ
る気体流速の差が拡大し、最終的には第2図(c)に示
すように気体流路11では気体のみが吹き上げ、液体流
路1oでは液体のみが落下する状態で安定となる0本実
施例で使用する作動流体は凝縮性ガス熱媒であればよく
、例えば、水、フレオン、アンモニア等が挙げられる。
An embodiment of the present invention will be described below with reference to FIG. In this embodiment, a heat transport section 2 between an evaporation section 3 in which the working fluid evaporates due to heating from a high heat source and a condensation section 1 in which the working fluid condenses when it comes into contact with a heated object is connected to the liquid flow path 1o and the gas flow path 1o. The liquid flow path 10 is divided into two parts, and a throttle 12 whose cross-sectional area is the smallest in the flow path is provided at the bottom of the liquid flow path 10 . The operation of this embodiment will be explained using FIGS. 2 and 3, taking as an example the case where the heat pipe is activated. In FIG. 3, the flow rate of the liquid that can fall is limited by the blown up gas. This shows the so-called CCFL characteristic, which indicates that liquid cannot fall above a certain gas flow rate. As shown in FIG. 2(a), when heat is applied to the evaporator 3 from the outside to evaporate or boil the working fluid, the generated gas blows up both the gas flow path 11 and the liquid flow path 10. However, since the throttle 12 is provided at the lower part of the liquid flow path 1o, the gas flow velocity vz at the upper end of the liquid flow path 1o is equal to that of the gas flow path 11.
Even if the liquid generated by condensation in the condensation section 1 cannot fall from the upper end of the gas flow path 11, as shown in FIG.
Liquid can fall from the top of 0. As shown in FIG. 2(b), when the liquid is retained in the liquid flow path 10, the flow resistance within the liquid flow path 10 increases, the gas flow rate that blows up the liquid flow path decreases, and the liquid flow path 10 More liquid will be able to fall from the top. Due to such a mechanism, the difference in gas flow velocity that blows up the gas flow path 11 and the liquid flow path 10 increases, and eventually only the gas blows up in the gas flow path 11, as shown in FIG. 2(c). In the liquid flow path 1o, the working fluid becomes stable when only the liquid falls.The working fluid used in this embodiment may be any condensable gas heat medium, and examples thereof include water, freon, ammonia, and the like.

また、凝縮部1.熱輸送部2.及び、蒸発部3の材料と
しては熱伝導性のよい金属、例えば、ステンレスを用い
ればよい0本実施例に基づく設計の一例として、作動流
体に大気圧の水を用い、熱輸送部2の直径を0.1  
m、長さを3mとして、気体流路11と液体流路10の
断面積比を9対1にした場合には、液体流路10を落下
できる水の最大流量は気体流路11側と液体流′Jl!
110側との圧力バランスから決定され、最大で0゜9
7kg/s、熱輸送量としては2.2 MWとなる。一
方、従来の装置では液体を管壁の外周を伝わらせて落下
させるようになっているため気液界面の面積が大きくな
っており、吹き上げる気体によって水の落下が抑制され
やすく1本実施例と同一の形状で同一の作動流体を使用
した場合には落下できる水の最大流量は吹き上げ気体に
よる水の落下抑制の特性によって決定され、最大で0.
16kg/s=熱輸送量としては0.36  MWであ
り1本実施例と比べて約−となる、なお1本実施例の絞
り12はオリフイス、又は、ノズルを用いればよく、そ
の流路断面積は液体流路10の断面積の90%よりも小
さくすることが望ましい。また、絞り12としてオリフ
ィスを用いた場合には、順流に対する流動抵抗を低下し
、逆流に対する流動抵抗を増大させるように第4図に示
すように逆流に対して末広がりのテーパ形状(a)、又
は、ベルマウス形状(b)とすることが望ましい、この
ように、本実施例によれば、ヒートパイプ内部の流路を
二分し、一方の流路の下部の断面積を流路内で最小とす
る簡単な構造により、吹き上げ気体による液体の落下抑
制を緩和でき、熱輸送の限界特性が向上する。
In addition, the condensing section 1. Heat transport section 2. As a material for the evaporation part 3, a metal with good thermal conductivity, such as stainless steel, may be used.As an example of a design based on this embodiment, water at atmospheric pressure is used as the working fluid, and the diameter of the heat transport part 2 is 0.1
m, the length is 3 m, and the cross-sectional area ratio of the gas flow path 11 and the liquid flow path 10 is 9:1, the maximum flow rate of water that can fall through the liquid flow path 10 is between the gas flow path 11 side and the liquid flow path. Flow'Jl!
Determined from the pressure balance with the 110 side, maximum 0°9
7 kg/s, and the heat transport amount is 2.2 MW. On the other hand, in conventional devices, the liquid travels along the outer periphery of the tube wall and falls, so the area of the gas-liquid interface is large, and the blown up gas tends to suppress the water from falling. When the same shape and the same working fluid are used, the maximum flow rate of water that can fall is determined by the characteristics of suppressing water fall due to blown up gas, and the maximum flow rate is 0.
16 kg/s = heat transport amount is 0.36 MW, which is approximately - compared to the first embodiment.The orifice 12 in the first embodiment may be an orifice or a nozzle, and the flow path is interrupted. It is desirable that the area be smaller than 90% of the cross-sectional area of the liquid flow path 10. In addition, when an orifice is used as the restrictor 12, it may have a tapered shape (a) that widens toward the end against reverse flow, as shown in FIG. 4, to reduce flow resistance against forward flow and increase flow resistance against reverse flow. , it is desirable to have a bellmouth shape (b). As described above, according to this embodiment, the flow path inside the heat pipe is divided into two, and the cross-sectional area of the lower part of one flow path is made the smallest in the flow path. With this simple structure, the suppression of liquid falling due to blown up gas can be alleviated, and the critical characteristics of heat transport can be improved.

本発明の他の実施例を第5図により説明する。Another embodiment of the present invention will be described with reference to FIG.

第5図(a)では絞り12の上流側に圧力計20が下流
側に圧力計21が付加さ九ている。本実施例のヒートパ
イプでは、液体流路10の内部に液体が保持されるため
に、第5図(b)に示すような圧力バランスが成り立っ
ている。絞り12前後の圧力差をΔPaとするとΔPa
は次式で表される。
In FIG. 5(a), a pressure gauge 20 is added on the upstream side of the throttle 12, and a pressure gauge 21 is added on the downstream side. In the heat pipe of this embodiment, since the liquid is held inside the liquid flow path 10, a pressure balance as shown in FIG. 5(b) is established. If the pressure difference before and after the throttle 12 is ΔPa, then ΔPa
is expressed by the following formula.

ここで、Ko:絞りにおける圧力損失係数(−)ωl:
液体流量(kg/s) ρl:液体の密度(kg/ボ) Ao:絞りの断面積(ポ) (1)式をω!で解くと、 本実施例では、演算装置22において、圧力計20によ
る圧力P1から圧力計21による圧力P2を引いてΔP
oを求め、圧力P2から圧力と液体の密度との関係式に
基づいてρ1を求める。AoとKoの値はあらかじめ実
測された値が記憶装置23に記憶されている。演算装置
22では以上のΔPa、px、Ao、Koの値を用いて
(2)式の計算を行い、ω1を求める。さらに、圧力P
xにおけ求めて表示装!!24に表示する。演算装!!
!22と記憶装置23はデジタル回路により構成しても
よいし、また市販のマイクロコンピュータを用いてもよ
い、このように、本実施例では吹き上げ気体による液体
の落下抑制を緩和することにより、熱輸送の限界特性が
向上するほかに、圧力の測定から熱輸送量を求めてこの
値を監視できる効果がある。
Here, Ko: Pressure loss coefficient (-) ωl at the throttle:
Liquid flow rate (kg/s) ρl: Liquid density (kg/bo) Ao: Cross-sectional area of the aperture (po) (1) Expression is ω! In this embodiment, in the arithmetic unit 22, the pressure P2 measured by the pressure gauge 21 is subtracted from the pressure P1 measured by the pressure gauge 20, and ΔP is obtained.
o is determined, and ρ1 is determined from the pressure P2 based on the relational expression between pressure and the density of the liquid. The values of Ao and Ko are actually measured values and stored in the storage device 23 in advance. The arithmetic unit 22 uses the above values of ΔPa, px, Ao, and Ko to calculate equation (2) to obtain ω1. Furthermore, the pressure P
Display device for searching at x! ! Displayed on 24. Arithmetic device! !
! 22 and the storage device 23 may be configured by digital circuits, or may use commercially available microcomputers.In this way, in this embodiment, by relaxing the suppression of liquid falling due to blown up gas, heat transport is improved. In addition to improving the critical characteristics of , it also has the effect of determining the amount of heat transport from pressure measurements and monitoring this value.

本発明のさらに他の実施例を第6図から第8図により説
明する。本実施例は自然循環型原子炉の崩壊熱除去系に
本発明のヒートパイプを適用したものである。第6図は
自然循環型原子炉及び蓄水タンク111の縦断面を示し
たものである。蓄水タンク111には多数のヒートパイ
プ31が挿入されており、ヒートパイプ31は連結管3
2により格納容器120外部のヒートパイプ3oに連結
されている。このような原子炉において、例えば。
Still other embodiments of the present invention will be described with reference to FIGS. 6 to 8. In this example, the heat pipe of the present invention is applied to a decay heat removal system of a natural circulation nuclear reactor. FIG. 6 shows a vertical cross section of the natural circulation reactor and the water storage tank 111. A large number of heat pipes 31 are inserted into the water storage tank 111, and the heat pipes 31 are connected to the connecting pipe 3.
2 is connected to a heat pipe 3o outside the containment vessel 120. In such a nuclear reactor, e.g.

計装配管などの破断により原子炉容器101内の冷却水
が流出すると、原子炉容器101内の水位が低下し、制
御棒105が炉心102に挿入され。
When the cooling water in the reactor vessel 101 flows out due to a rupture in the instrumentation pipe or the like, the water level in the reactor vessel 101 decreases, and the control rods 105 are inserted into the reactor core 102.

炉心102はスクラムするが、核分裂生成物の崩壊によ
り引き続き炉心102において熱が発生するために、こ
の熱を除去する必要がある。このような冷却材喪失事故
時における蓄水タンク111の動作を第7図により説明
する。第7図の(a)は通常運転時の状態を示したもの
で、上昇管112及び注水管113内の冷却水は共に低
温に保たれているために、蓄水タンク111と原子炉容
器101との間で冷却水の循環はない、冷却材喪失事故
が起こり、第7図cb)に示すように原子炉容器101
内の水位が上昇管112の下端より低くなると、原子炉
容器101内の蒸気が上昇管112を通って蓄水タンク
111に流入し、蓄水タンク111内の冷却水を加熱す
るとともに、蓄水タンク111内の圧力と原子炉容器1
01内の圧力が均圧化される。蓄水タンク111内の水
位は原子炉容器101内の水位より高く保持されている
ため、蓄水タンク111内の圧力と原子炉容器101内
の圧力が均圧化されると、蓄水タンク111内の冷却水
は注水管113を通って重力落下し、原子炉容器101
内へ自動的に供給される。
Although the core 102 scrams, the decay of the fission products continues to generate heat in the core 102 that needs to be removed. The operation of the water storage tank 111 at the time of such a coolant loss accident will be explained with reference to FIG. FIG. 7(a) shows the state during normal operation, and since the cooling water in the riser pipe 112 and the water injection pipe 113 are both kept at a low temperature, the water storage tank 111 and the reactor vessel 101 There is no circulation of cooling water between the reactor vessel 101 and a loss of coolant accident occurs, as shown in Fig.
When the water level in the reactor vessel 101 becomes lower than the lower end of the riser pipe 112, steam in the reactor vessel 101 flows into the water storage tank 111 through the riser pipe 112, heating the cooling water in the water storage tank 111, and Pressure inside tank 111 and reactor vessel 1
The pressure inside 01 is equalized. Since the water level in the water storage tank 111 is maintained higher than the water level in the reactor vessel 101, when the pressure in the water storage tank 111 and the pressure in the reactor vessel 101 are equalized, the water level in the water storage tank 111 The cooling water inside the reactor vessel 101 falls by gravity through the water injection pipe 113.
automatically supplied to the inside.

また、上昇管112を通って流入する蒸気で蓄水タンク
111内の冷却水が加熱されると、注水管113の内部
と外部とで温度差が生じ、注水管113に具備した放熱
器114が自動的に作動する。原子炉容器101内への
冷却水の供給によって、第7図(c)に示すように、原
子炉容器101内の水位が回復し、水位が上昇管112
の下端より高くなると、上昇管112を通しての蓄水タ
ンク111内への蒸気流入がなくなるため、注水管11
3を通しての原子炉容器101内への冷却水の供給も自
動的に停止されが、この時、注水管113内の冷却水は
高温化されている。このため、注水管113内の冷却水
は放熱器114によって冷却され、低温化した冷却水は
密度が大きくなって下降するのに対し、上昇管112内
の冷却水は放熱器が設けられていないため、温度が高く
密度が小さいことにより上昇し、原子炉容器101、上
昇管112.蓄水タンク111.注水管113及び原子
炉容器101を*mする自然環境が確立される。第8図
に第6図のヒートパイプ30、ヒートパイプ31及び連
結管32の縦断面図を示す、蓄水タンク111には第1
図に示したものと同じ構成から成るヒートパイプ31が
多数取り付けられており、このヒートパイプ31は連結
管32によって第6図に示した格納容器120の外部に
あるヒートパイプ30に連結されている。
Moreover, when the cooling water in the water storage tank 111 is heated by the steam flowing in through the riser pipe 112, a temperature difference occurs between the inside and outside of the water injection pipe 113, and the radiator 114 provided in the water injection pipe 113 is heated. Operates automatically. By supplying cooling water into the reactor vessel 101, the water level inside the reactor vessel 101 recovers, as shown in FIG. 7(c), and the water level rises to the riser pipe 112.
When the water rises above the lower end, steam no longer flows into the water storage tank 111 through the riser pipe 112, so the water injection pipe 11
3 into the reactor vessel 101 is also automatically stopped, but at this time, the cooling water in the water injection pipe 113 is at a high temperature. For this reason, the cooling water in the water injection pipe 113 is cooled by the radiator 114, and the lower temperature cooling water increases in density and descends, whereas the cooling water in the rising pipe 112 is not provided with a radiator. Therefore, due to the high temperature and low density, the reactor vessel 101, riser pipe 112. Water storage tank 111. A natural environment surrounding the water injection pipe 113 and the reactor vessel 101 is established. FIG. 8 shows a vertical cross-sectional view of the heat pipe 30, heat pipe 31, and connecting pipe 32 in FIG.
A large number of heat pipes 31 having the same configuration as shown in the figure are attached, and these heat pipes 31 are connected to a heat pipe 30 outside the containment vessel 120 shown in FIG. 6 by a connecting pipe 32. .

連結管32の内部は仕切板34によって二分されている
。ヒートパイプ30の内部構造は第1図に示したものと
同じになっており、凝縮部には熱の放出を促進するため
に放熱器33が取り付けられている。放熱器33はフィ
ンによって構成されており、その材質は熱伝導性のよい
金属1例えば、ステンレスが用いられる。冷却材喪失事
故が起こり、第7図で説明したように原子炉容器101
゜上昇管1121菩水タンク111.注水管113、及
び、原子炉容器101を循環する自然循環が確立される
と、ヒートパイプ31内部の作動流体、例えば、水は、
蓄水タンク111からの熱によって蒸発し、発生した蒸
気は連結管32を通ってヒートパイプ30に導かれ、放
熱器33の取り付けられた凝縮部で熱をうばわれて凝縮
する。このような状態のときには、第2図に示したメカ
ニズムに基づき、絞りを設けた流路では水のみが落下し
、絞りを設けない流路では蒸気のみが吹き上げるように
なる。このように1本実施例では気体の流路と液体の流
路が分離されるために、吹き上げ気体による液体の落下
抑制が緩和され、熱輸送の限界特性が向上する。また、
蓄水タンク111の内部に多数のヒートパイプ31を挿
入しているために。
The inside of the connecting pipe 32 is divided into two by a partition plate 34. The internal structure of the heat pipe 30 is the same as that shown in FIG. 1, and a radiator 33 is attached to the condensing section to promote heat release. The heat radiator 33 is constituted by a fin, and its material is a metal 1 with good thermal conductivity, such as stainless steel. A loss of coolant accident occurs, and as explained in Figure 7, reactor vessel 101
° Rising pipe 1121 Bodhisattva tank 111. When the natural circulation that circulates through the water injection pipe 113 and the reactor vessel 101 is established, the working fluid inside the heat pipe 31, for example, water,
The generated steam is evaporated by the heat from the water storage tank 111 and is led to the heat pipe 30 through the connecting pipe 32, where the heat is absorbed and condensed in the condensing section to which the radiator 33 is attached. In such a state, based on the mechanism shown in FIG. 2, only water falls in the flow path provided with the throttle, and only steam blows up in the flow path without the restriction. As described above, in this embodiment, since the gas flow path and the liquid flow path are separated, the suppression of liquid falling due to the blown up gas is alleviated, and the limit characteristics of heat transport are improved. Also,
This is because a large number of heat pipes 31 are inserted inside the water storage tank 111.

加熱部における伝熱面積が大きくなり、全体の熱輸送量
を大きくすることができる。また、本実施例のヒートパ
イプ30には第5図の実施例と同様に、圧力計20及び
21、演算装置!22、記憶装置23及び表示装置1!
24が取り付けられており、ヒートパイプ30の液体流
路の下部に取り付けられた絞りの前後の圧力差から、液
体流量及び熱輸送量を求めて表示することができる。こ
のように、内部の状態を監視できることは、S子炉の崩
壊熱除去系のような安全系では望ましい機能である。
The heat transfer area in the heating section becomes larger, and the overall amount of heat transport can be increased. In addition, the heat pipe 30 of this embodiment includes pressure gauges 20 and 21 and a calculation device, similar to the embodiment shown in FIG. 22, storage device 23 and display device 1!
24 is attached to the heat pipe 30, and the liquid flow rate and heat transport amount can be determined and displayed from the pressure difference before and after the throttle attached to the lower part of the liquid flow path of the heat pipe 30. Being able to monitor the internal state in this way is a desirable function in a safety system such as the decay heat removal system of an S reactor.

このように1本実施例では吹き上げ気体による液体の落
下抑制を緩和することにより、熱輸送の限界特性が向上
する効果、圧力の測定から熱輸送量を求めてこの値を監
視できる効果、加熱部における伝熱面積が大きくなり全
体の熱輸送量を大きくと九る効果がある。
In this way, this embodiment has the effect of improving the limit characteristics of heat transport by relaxing the suppression of liquid falling due to blown up gas, the effect of determining the amount of heat transport from pressure measurement and monitoring this value, and the effect of being able to monitor this value by determining the amount of heat transport from pressure measurement. This has the effect of increasing the heat transfer area and increasing the overall amount of heat transport.

本発明の、さらに他の実施例を第9図により説明する。Still another embodiment of the present invention will be described with reference to FIG.

第9図では液体流路10の外側に、超音波発振器と超音
波受信器から成る超音波センサ40が高さ方向に数個取
り付けら九でいる。第10図は水位と超音波の反射強度
との関係を示したもので、水位がセンサ位置よりも低い
場合には、超音波は金属表面で全反射されるため、反射
強度は大きい。水位がセンサ位置に達すると、超音波は
金属表面から水中に透過するようになり、反射強度は急
激に低下する。その後は水位の上昇に伴って反射強度は
除々に低下する、水位測定装置41では超音波センサ4
0で測定された反射強度から第10図の関係を用いて水
位を測定する。
In FIG. 9, several ultrasonic sensors 40 each consisting of an ultrasonic oscillator and an ultrasonic receiver are installed in the height direction outside the liquid flow path 10. FIG. 10 shows the relationship between the water level and the reflected intensity of ultrasonic waves. When the water level is lower than the sensor position, the ultrasonic waves are totally reflected by the metal surface, so the reflected intensity is large. When the water level reaches the sensor position, the ultrasonic waves will be transmitted from the metal surface into the water, and the reflected intensity will drop rapidly. After that, the reflection intensity gradually decreases as the water level rises.
The water level is measured from the reflection intensity measured at 0 using the relationship shown in FIG.

次に、水位から液体流量を求める方法について述べる。Next, a method for determining the liquid flow rate from the water level will be described.

気体流路11側の圧力損失ΔP□は気体流量ωgの関数
であり、ΔPt=fx(0g)で表さ九る。一方、液体
流路10側の圧力損失ΔP、は液体流量。□と水位Li
の関数の和であり、ΔP(=fz(ω1)+fδ(T、
、!>で表される。定常状態ではωg=ωf であり、
気体流路11側と液体流路lO#Iで圧力バランスが成
り立っているので、fx(ω1)=fz(ωz)+fδ
(Ll> となる。
The pressure loss ΔP□ on the side of the gas flow path 11 is a function of the gas flow rate ωg, and is expressed as ΔPt=fx(0g). On the other hand, the pressure loss ΔP on the liquid flow path 10 side is the liquid flow rate. □ and water level Li
It is the sum of the functions of ΔP(=fz(ω1)+fδ(T,
,! It is expressed as >. In steady state, ωg=ωf,
Since the pressure balance is established between the gas flow path 11 side and the liquid flow path lO#I, fx (ω1) = fz (ωz) + fδ
(Ll>).

fs(ωt)−fz(ω、)を新たにh (ω□)と表
わせば、ω、はh−x(fs(i))で表される。ただ
し、h−x(χ)は逆rM数である。演算装置42では
この関係を用いて水位から液体流量ωlを求め、さらに
定常時における蒸発潜熱を乗じて熱輸送量を求めて表示
装置43に表示する。このように1本実施例では吹き上
げ気体による液体の落下抑制を緩和することにより熱輸
送の限界特性が向上するほかに、ヒートパイプの外部か
ら水位を測定することにより熱輸送量を求めてこの値を
監視できる効果がある。
If fs(ωt)−fz(ω,) is newly expressed as h(ω□), ω is expressed as h−x(fs(i)). However, h−x(χ) is an inverse rM number. The arithmetic unit 42 uses this relationship to determine the liquid flow rate ωl from the water level, and further multiplies it by the latent heat of vaporization during steady state to determine the amount of heat transport, which is displayed on the display device 43. In this way, in this embodiment, in addition to improving the limit characteristics of heat transport by relaxing the suppression of liquid falling due to blown up gas, the heat transport amount is determined by measuring the water level from the outside of the heat pipe, and this value is calculated. It is effective in monitoring the

〔発明の効果〕〔Effect of the invention〕

−本発明によれば、簡単な構造により気体の流路と液体
の流路を分離することができるので、吹き上げ気体によ
る液体の落下抑制を緩和して、熱輸送の限界特性を向上
することができる。
- According to the present invention, it is possible to separate the gas flow path and the liquid flow path with a simple structure, so it is possible to alleviate the suppression of liquid falling due to blown up gas and improve the critical characteristics of heat transport. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図は第1図
の実施例の作動経過を示す説明図、第3図は落下液体と
吹上げ効果を示す図、第4図は第1図の実施例の部分詳
細縦断面図、第5図は本発明の他の実施例の縦断面図、
第6図は本発明のさらに他の実施例の縦断面図、第7図
は第6図の実施例の作動経過を示す説明図、第8図は第
6図の実施例の部分縦断面図、第9図は本発明の他の実
施例の縦断面図、第10図は水位と反射強度の関係を示
すグラフである。 1・・・凝縮部、2・・・熱輸送部、3・・・蒸発部、
10・・・液体流路、11・・・気体流路、12川絞り
、20゜21・・・圧力計、30.31・・・ヒートパ
イプ、32゛°連結9−40 ゛゛超音波+ バー  
       、fT?>代理人 弁理士 小川勝男 
ニー、゛□佑3図 高年図 1〇−表俸流2 1z−一一絞り 摺21を (卸           (シ〕 (C) 范5図 (α) (d) 圧力 も8図 (C) B牟 篇′V図 (α)           (氷〕 (C) 水位
Fig. 1 is a longitudinal sectional view of one embodiment of the present invention, Fig. 2 is an explanatory diagram showing the operation progress of the embodiment of Fig. 1, Fig. 3 is a diagram showing falling liquid and the blow-up effect, Fig. 4 is a partial detailed longitudinal cross-sectional view of the embodiment of FIG. 1, FIG. 5 is a longitudinal cross-sectional view of another embodiment of the present invention,
FIG. 6 is a longitudinal sectional view of still another embodiment of the present invention, FIG. 7 is an explanatory view showing the operation progress of the embodiment of FIG. 6, and FIG. 8 is a partial longitudinal sectional view of the embodiment of FIG. 6. , FIG. 9 is a longitudinal sectional view of another embodiment of the present invention, and FIG. 10 is a graph showing the relationship between water level and reflection intensity. 1... Condensation section, 2... Heat transport section, 3... Evaporation section,
10...Liquid channel, 11...Gas channel, 12 River aperture, 20゜21...Pressure gauge, 30.31...Heat pipe, 32゛° connection 9-40゛゛゛゛ultrasonic + bar
, fT? >Representative Patent Attorney Katsuo Ogawa
Knee, ゛□You 3 Figure Older Figure 1〇-Table Salary Flow 2 1z-11 Squeeze 21 (C) Fan 5 Figure (α) (d) Pressure also 8 Figure (C) B Figure V (α) (Ice) (C) Water level

Claims (1)

【特許請求の範囲】 1、密封した管と、その一端部で高熱源と接する蒸発部
と、他端部で被加熱体と接する凝縮部とからなる熱サイ
フオン型ヒートパイプにおいて、前記蒸発部と前記凝縮
部との間の熱輸送部の流路を二分し、一方の流路の下部
に断面積を流路内で最小とする絞りを設けたことを特徴
とする熱サイフオン型ヒートパイプ。 2、特許請求の範囲第1項において、 前記熱サイフオン型ヒートパイプを連結管により複数個
連結したことを特徴とする熱サイフオン型ヒートパイプ
。 3、特許請求の範囲第1項において、 絞りの上流側及び下流側の圧力を測定する手段、前記圧
力から液体流量及び熱輸送量を求める手段、及び、前記
液体流量及び熱輸送量を表示する手段を設けたことを特
徴とする熱サイフオン型ヒートパイプ。 4、特許請求の範囲第1項において、 前記絞りを設けた前記流路内の水位を超音波により測定
する手段、前記水位から液体流量及び熱輸送量を求める
手段、及び前記液体流量及び前記熱輸送量を表示する手
段を設けたことを特徴とする熱サイフオン型ヒートパイ
プ。
[Claims] 1. In a thermosiphon heat pipe consisting of a sealed tube, an evaporating section that contacts a high heat source at one end, and a condensing section that contacts a heated object at the other end, the evaporating section and A thermosiphon type heat pipe characterized in that the flow path of the heat transport section between the condensation section and the condensation section is divided into two, and a constriction is provided at the bottom of one of the flow paths to minimize the cross-sectional area within the flow path. 2. The thermosiphon type heat pipe according to claim 1, wherein a plurality of the thermosiphon type heat pipes are connected by a connecting pipe. 3. In claim 1, there is provided: means for measuring the pressure on the upstream and downstream sides of the throttle, means for determining the liquid flow rate and heat transfer amount from the pressure, and displaying the liquid flow rate and heat transfer amount. A thermosiphon type heat pipe characterized by being provided with a means. 4. In claim 1, means for measuring the water level in the flow path provided with the throttle using ultrasonic waves, means for determining the liquid flow rate and the heat transport amount from the water level, and the liquid flow rate and the heat transfer amount. A thermosiphon type heat pipe characterized by being provided with a means for displaying the amount of transportation.
JP16975386A 1986-07-21 1986-07-21 Thermal siphon type heat pipe Pending JPS6329192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16975386A JPS6329192A (en) 1986-07-21 1986-07-21 Thermal siphon type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16975386A JPS6329192A (en) 1986-07-21 1986-07-21 Thermal siphon type heat pipe

Publications (1)

Publication Number Publication Date
JPS6329192A true JPS6329192A (en) 1988-02-06

Family

ID=15892207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16975386A Pending JPS6329192A (en) 1986-07-21 1986-07-21 Thermal siphon type heat pipe

Country Status (1)

Country Link
JP (1) JPS6329192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915008A (en) * 1987-10-14 1990-04-10 Casio Computer Co., Ltd. Air flow response type electronic musical instrument
JP2019505757A (en) * 2016-01-19 2019-02-28 ザ・セクレタリー、デパートメント・オブ・アトミック・エナジー System, apparatus and method for passive decay heat transport
RU198845U1 (en) * 2019-12-11 2020-07-31 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Adjustable thermosyphon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915008A (en) * 1987-10-14 1990-04-10 Casio Computer Co., Ltd. Air flow response type electronic musical instrument
US5069107A (en) * 1987-10-14 1991-12-03 Casio Computer Co., Ltd. Electronic musical instrument in which a musical tone is controlled in accordance with a digital signal
JP2019505757A (en) * 2016-01-19 2019-02-28 ザ・セクレタリー、デパートメント・オブ・アトミック・エナジー System, apparatus and method for passive decay heat transport
RU198845U1 (en) * 2019-12-11 2020-07-31 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Adjustable thermosyphon

Similar Documents

Publication Publication Date Title
Stenger Experimental feasibility study of water-filled capillary-pumped heat-transfer loops
Duffey et al. The physics of rewetting in water reactor emergency core cooling
Hu et al. An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe
US4394346A (en) Water level gauge for a nuclear reactor
JP3513225B2 (en) Cryogenic liquid storage tank
Kukita et al. Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility
Kefer et al. Critical heat flux (CHF) and post-CHF heat transfer in horizontal and inclined evaoprator tubes
Klimenko et al. Investigation of forced flow boiling of nitrogen in a long vertical tube
Altman et al. Local and average heat transfer and pressure drop for refrigerants evaporating in horizontal tubes
Chang Some possible critical conditions in nucleate boiling
JPS6329192A (en) Thermal siphon type heat pipe
Beduz et al. Thermal overfill, and the surface vaporisation of cryogenic liquids under storage conditions
Miller The synergism between heat and mass transfer additive and advanced surfaces in aqueous LiBr horizontal tube absorbers
Armstrong et al. Boundary-limited thermal conductivity of hcp He 4
Eisenstein et al. Observations of a Critical Current in He 3-B
Morgan et al. Elimination of the geysering effect in missiles
Drayer et al. An experimental investigation of the individual boiling and condensing heat-transfer coefficients for hydrogen
KR102353004B1 (en) A test device and method for measuring average heat transfer coefficient reduction value of the heat transfer pipe
JP2003287392A (en) Boiling type heat transfer pipe
Mori et al. The effect of noncondensable gas on film condensation along a vertical plate in an enclosed chamber
CN207068485U (en) A kind of device for being used to monitor reactor core liquid level and vacuole
Yang et al. Experimental study of steam condensation heat transfer characteristics in a horizontal tube under rolling motion
US3411314A (en) Refrigerating apparatus with tubular evaporator
Johnston et al. Boiling heat transfer in a narrow eccentric annulus, Part I: dryout
JPH0469358B2 (en)