JPS63291907A - Polypropylene - Google Patents

Polypropylene

Info

Publication number
JPS63291907A
JPS63291907A JP12883287A JP12883287A JPS63291907A JP S63291907 A JPS63291907 A JP S63291907A JP 12883287 A JP12883287 A JP 12883287A JP 12883287 A JP12883287 A JP 12883287A JP S63291907 A JPS63291907 A JP S63291907A
Authority
JP
Japan
Prior art keywords
ethylene
propylene
titanium
polypropylene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12883287A
Other languages
Japanese (ja)
Inventor
Takao Sakai
酒井 孝夫
Masayuki Tomita
雅之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP12883287A priority Critical patent/JPS63291907A/en
Publication of JPS63291907A publication Critical patent/JPS63291907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain polypropylene having excellent orientation properties, rigidity, transparency, antistatic properties and blocking resistance, by subjecting propylene and a small amount of ethylene to random copolymerization with a stereoregular catalyst. CONSTITUTION:Propylene and a small amount of ethylene are subjected to random copolymerization with a stereoregular polymerization catalyst to give a polypropylene having 0.1-1.5wt.%, especially 0.3-1.4wt.% ethylene and <=0.6wt.% extract content with boiling normal butanol. For example, a combination of (A) a solid Ti catalytic component comprising Mg, Ti, a halogen and an electron donor (e.g. ethyl acetate or methyl acrylate) as essential components and (B) an organoaluminum compound (e.g. triethylaluminum) is preferable as the polymerization catalyst.

Description

【発明の詳細な説明】 〔発明の背景〕 技術分野 本発明は、延伸性、剛性、透明性、帯電防止性、耐ブロ
ッキング性に優れたポリプロピレンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] Technical Field The present invention relates to polypropylene having excellent stretchability, rigidity, transparency, antistatic properties, and anti-blocking properties.

従来技術 ポリプロピレンは剛性が優れており、その延伸物は、O
PPフィルム、延伸テープ、フラットヤーン、インフレ
ーションフィルム等として広く用いられている。
Conventional polypropylene has excellent rigidity, and its stretched products have O
It is widely used as PP film, stretched tape, flat yarn, blown film, etc.

ポリプロピレンには、プロピレンの単独重合体からなる
ホモポリマーと少量のエチレンを共重合させたランダム
共重合体とがある。
Polypropylene includes a homopolymer made of a propylene homopolymer and a random copolymer made by copolymerizing a small amount of ethylene.

ホモポリマーは剛性が優れるので、剛性を必要とする用
途には通常ホモポリマーが用いられるが、ホモポリマー
は帯電防止性、延伸性等が良くない。
Since homopolymers have excellent rigidity, homopolymers are usually used for applications that require rigidity, but homopolymers have poor antistatic properties, stretchability, and the like.

一方、エチレンをランダム共重合させることにより延伸
性を改良できることが特開昭56−32512号および
特開昭59−135209号および特開昭59−149
909号各公報で提案されている。エチレンを共重合さ
せることにより、帯電防止性も改良できるが、延伸フィ
ルムでの耐ブロッキング性およびインフレーションフィ
ルムでの開口性が悪くなる。
On the other hand, JP-A-56-32512, JP-A-59-135209 and JP-A-59-149 indicate that stretchability can be improved by random copolymerization of ethylene.
It is proposed in each publication No. 909. Although antistatic properties can be improved by copolymerizing ethylene, blocking resistance in stretched films and opening properties in blown films deteriorate.

耐ブロッキング性の改良方法として冷キシレン可溶物を
少なくする方法(特開昭51−24685号、同53−
7786号および同54−118486号各公報)提案
られているが、ホモポリマーと同等の剛性を発揮する少
量のエチレン含量の範囲では耐ブロッキング性と冷キシ
レン可溶分の対応関係が必ずしも成立せず、したがって
耐ブロッキング性及び帯電防止性のともに優れたポリプ
ロピレンは未だ開発されていない。
A method of reducing cold xylene solubles as a method for improving blocking resistance (JP-A No. 51-24685, No. 53-
No. 7786 and No. 54-118486), but the correspondence between blocking resistance and cold xylene soluble content does not necessarily hold within the range of a small amount of ethylene content that exhibits the same stiffness as a homopolymer. Therefore, polypropylene with excellent blocking resistance and antistatic properties has not yet been developed.

〔発明の概要〕[Summary of the invention]

要旨 そこで本発明者らは耐ブロッキング性および帯電防止性
に優れたポリプロピレンの開発を目的として検討した結
果、本発明に到達した。
Summary The present inventors conducted studies aimed at developing polypropylene with excellent blocking resistance and antistatic properties, and as a result, they arrived at the present invention.

すなわち本発明によるポリプロピレンは、プロピレンと
少量のエチレンとを立体規則性重合触媒によってランダ
ム共重合させて得られ、エチレン含a量が0.1〜1.
5重量%でありかつ沸騰ノルマルブタノール抽出分が0
.6重量%以下であること、を特徴とするものである。
That is, the polypropylene according to the present invention is obtained by random copolymerization of propylene and a small amount of ethylene using a stereoregular polymerization catalyst, and has an ethylene content a of 0.1 to 1.
5% by weight and boiling normal butanol extractable content is 0.
.. It is characterized by being 6% by weight or less.

効果 本発明によるポリプロピレンまたはそのフィルムは、延
伸性、剛性、透明性、帯電防止性、耐ブロッキング性に
優れたものである。
Effects The polypropylene or film thereof according to the present invention has excellent stretchability, rigidity, transparency, antistatic property, and blocking resistance.

(発明の詳細な説明〕 ポリプロピレン 本発明によるポリプロピレンは、プロピレンと少量のエ
チレンとを立体規則性触媒によってランダム共重合させ
たものであって、そのエチレン含有量(エチレン含有量
といっても、重合したエチレンの含有量であることはい
うもでもない)が0.1〜1.5重量%、好ましくは0
.2〜1.5重量%、特に好ましくは0゜3〜1.4重
量%、のちのである。エチレンの含有量が0.1WHk
%未満のものは帯電防止性が改善されず、1.5重量%
を超えるものは剛性が不足する。本発明におけるエチレ
ン含量は、C1C13−Nスペクトル(日本電子社製F
X−200)によって測定した値である。
(Detailed Description of the Invention) Polypropylene The polypropylene according to the present invention is obtained by randomly copolymerizing propylene and a small amount of ethylene using a stereoregular catalyst, and the ethylene content (the ethylene content is defined as It goes without saying that the content of ethylene is 0.1 to 1.5% by weight, preferably 0.
.. 2 to 1.5% by weight, particularly preferably 0.3 to 1.4% by weight. Ethylene content is 0.1WHk
If it is less than 1.5% by weight, the antistatic properties will not be improved.
Anything exceeding this will lack rigidity. The ethylene content in the present invention is determined by the C1C13-N spectrum (F
This is a value measured by X-200).

本発明によるポリプロピレンは、また、その沸騰ノルマ
ル−ブタノール抽出分が0. 6ii量%以下、好まし
くは0.5重量%以下、特に好ましくは0.4重量%以
下、のちのである。沸騰ノルマルブタノール抽出分が0
.7重量%を超えるものは、耐ブロッキング性が改善さ
れない。本発明における沸騰ノルマルブタノール抽出分
は、ポリマー10gをキシレン4リツトルに溶解し、つ
いで23℃迄徐冷し、23℃のバス中に一夜放置した後
に濾過し、ψ液を濃縮、乾固、乾燥して得た冷キシレン
可溶部1g:をノルマル−ブタノール400m1でソッ
クスレー抽出器による4時間の抽出に付し、抽出後、ノ
ルマル−ブタノールを濃縮、乾固、乾燥して秤量した値
である。
The polypropylene according to the invention also has a boiling normal-butanol extractable content of 0. 6ii% by weight or less, preferably 0.5% by weight or less, particularly preferably 0.4% by weight or less. Boiling normal butanol extract content is 0
.. If it exceeds 7% by weight, blocking resistance will not be improved. The boiling normal butanol extract in the present invention is obtained by dissolving 10 g of the polymer in 4 liters of xylene, then gradually cooling it to 23°C, leaving it in a bath at 23°C overnight, filtering it, concentrating the ψ liquid, solidifying it, and drying it. The obtained cold xylene soluble portion (1 g) was extracted with 400 ml of n-butanol using a Soxhlet extractor for 4 hours, and after extraction, the n-butanol was concentrated, dried, and weighed.

本発明によるポリプロピレンは、メルトフローレート(
MFR)(ASTM−1238に準拠)が0.1〜10
0程度、好ましくは0.2〜50程度、であることがふ
つうである。また、沸騰ノルマルヘプタン不溶分が95
tIF量%以上、好ましくは96重量%以上、であるこ
とがふつうである。
The polypropylene according to the invention has a melt flow rate (
MFR) (according to ASTM-1238) is 0.1 to 10
It is usually about 0, preferably about 0.2 to 50. In addition, boiling normal heptane insoluble matter is 95
The amount of tIF is usually at least 96% by weight, preferably at least 96% by weight.

本発明によるポリプロピレンは、プロピレンと少量のエ
チレンとを立体規則性重合触媒によってランダム共重合
させることによって得られるところから、その分子構造
は一〇H2−CH(CH3)一単位と−CH2−CH2
一単位とがランダムに配列されてなるものと解される。
Since the polypropylene according to the present invention is obtained by random copolymerization of propylene and a small amount of ethylene using a stereoregular polymerization catalyst, its molecular structure consists of one unit of 10H2-CH(CH3) and one unit of -CH2-CH2.
It is understood that one unit is randomly arranged.

本発明のポリプロピレンには、ポリオレフィンに使用さ
れる添加剤例えば種々の酸化防止剤、安定剤、耐ブロッ
キング剤、帯電防止剤、加工助剤、着色剤を使用できる
Additives used in polyolefins, such as various antioxidants, stabilizers, antiblocking agents, antistatic agents, processing aids, and colorants, can be used in the polypropylene of the present invention.

ポリプロピレンの製造 本発明によるポリプロピレンは、上記のように、プロピ
レンと少量のエチレンとをプロピレンの立体規則性触媒
によってランダム共重合させることによって得られるも
のである。
Production of Polypropylene The polypropylene according to the present invention is obtained by random copolymerization of propylene and a small amount of ethylene using a propylene stereoregular catalyst, as described above.

プロピレンの立体規則性重合触媒による重合は周知であ
り、本発明によるポリプロピレンはそのようなプロピレ
ンの重合に際して少量のエチレンをほぼ均等にプロピレ
ンに加えて共重合させればよい。
Polymerization of propylene using a stereoregular polymerization catalyst is well known, and the polypropylene of the present invention may be copolymerized by adding a small amount of ethylene almost evenly to propylene during such propylene polymerization.

触媒 プロピレンの立体規則性重合触媒としては、たとえば、
下記の(A)、(B)の組合せからなるものがある。
Examples of stereoregular polymerization catalysts for propylene include:
There are some combinations of (A) and (B) below.

(A)  マグネシウム、チタン、lXXロジンび電子
供与体を必須成分とする固体状チタン触媒成分。
(A) A solid titanium catalyst component containing magnesium, titanium, and an IXX rosin electron donor as essential components.

(B)  有機アルミニウム化合物 成分(A) 好ましい固体状チタン触媒成分(A)は、マグネシウム
、チタン、ハロゲンおよび電子供与体を必須成分とする
ものである。ここで、「必須成分とする」ということは
、固体状チタン触媒成分(A)がこれらの特定の三成分
のみからなる場合の外に、これら三成分の組合せの効果
を少なくとも維持しあるいはこれを不当に損なわない限
り、追加の成分を含んでよいことを意味する。そのよう
な追加の成分は、たとえば、ノ為ロゲン化ケイ素化合物
である。
(B) Organoaluminum compound component (A) A preferred solid titanium catalyst component (A) contains magnesium, titanium, halogen, and an electron donor as essential components. Here, "making it an essential component" means not only that the solid titanium catalyst component (A) consists only of these three specific components, but also that it at least maintains the effect of the combination of these three components or This means that additional ingredients may be included so long as they do not unduly detract. Such additional components are, for example, phenohalogenated silicon compounds.

マグネシウムはハロゲン化マグネシウムによって、チタ
ンはハロゲン化チタンによって、/XXロジンこれらの
化合物によって、成分(A)に導入することがふつうで
ある。
Magnesium is usually introduced into component (A) by means of magnesium halides, titanium by means of titanium halides, and /XXrosin by means of these compounds.

(1)  ハロゲン化マグネシウム ハロゲン化マグネシウムは、ジハロゲン化マグネシウム
が好ましく、塩化マグネシウム、臭化マグネシウムおよ
びヨウ化マグネシウムを用いることができる。さらに好
ましくはこれは塩化マグネシウムであり、さらに実質的
に無水であることが望ましい。
(1) Magnesium halide The magnesium halide is preferably magnesium dihalide, and magnesium chloride, magnesium bromide, and magnesium iodide can be used. More preferably it is magnesium chloride, more preferably substantially anhydrous.

また、ハロゲン化マグネシウムは、酸化マグネシウム、
水酸化マグネシウム、ハイドロタルサイト、マグネシウ
ムのカルボン酸塩、アルコキシマグネシウム、アリロキ
シマグネシウム、アルコキシマグネシウムハライド、ア
リロキシマグネシウムハライド、有機マグネシウム化合
物を電子供与体、ハロシラン、アルコキシシラン、シラ
ノール、AI化合物、ハロゲン化チタン化合物、チタン
テトラアルコキシド等で処理して得られる/Xロゲン化
マグネシウムであってもよい。
In addition, magnesium halides include magnesium oxide,
Magnesium hydroxide, hydrotalcite, magnesium carboxylate, alkoxymagnesium, allyloxymagnesium, alkoxymagnesium halide, allyloxymagnesium halide, organomagnesium compound as an electron donor, halosilane, alkoxysilane, silanol, AI compound, halogenated It may also be magnesium chloride obtained by treatment with a titanium compound, titanium tetraalkoxide, or the like.

(2)  ハロゲン化チタン ハロゲン化チタンとしては、三価および四価のチタンの
ハロゲン化合物が代表的である。好ましいチタンのハロ
ゲン化化合物は、一般式7式% 化水素残基、Xはハロゲン)で示されるような化合物の
うちnm011または2の四価のハロゲン化チタン化合
物である。具体的には、TlC14、Ti  (OBu
)C13、T i  (OB u ) 2 CI 2な
どを例示することができるが、特に好ましいのはTiC
1およびT i (OB u) Cl 3などのテトラ
ハロゲン化チタンやモノアルコキシトリハロゲン化チタ
ン化合物である。
(2) Titanium halide Typical titanium halides are trivalent and tetravalent titanium halogen compounds. Preferred titanium halogenated compounds are tetravalent halogenated titanium compounds of nm011 or 2 among compounds represented by the general formula 7 (% hydrogen hydride residue, X is halogen). Specifically, TlC14, Ti (OBu
) C13, T i (OB u ) 2 CI 2, etc., but particularly preferred is TiC
1 and T i (OB u) Cl 3 and other tetrahalogenated titanium and monoalkoxytrihalogenated titanium compounds.

(3)  電子供与体 この好ましい固体触媒成分(A)の必須成分である電子
供与体としては、脂肪族カルボン酸エステル、芳香族カ
ルボン酸エステル、酸ハロゲン化物等を用いることがで
きる。
(3) Electron Donor As the electron donor which is an essential component of this preferred solid catalyst component (A), aliphatic carboxylic acid esters, aromatic carboxylic acid esters, acid halides, etc. can be used.

具体的には、酢酸エチル、アクリル酸メチル、安息香酸
メチル、安息香酸エチル、トルイル酸メチル、トルイル
酸エチル、オルソフタル酸ジエチル、オルソフタル酸ジ
ノルマルブチル、オルソフタル酸ジノルマルヘプチル、
メタフタル酸ジノルマルブチル、酢酸メチルセロソルブ
、酢酸セロソルブ、酢酸クロライド、オルソフタル酸ジ
クロライド、メタフタル酸ジクロライド、バラフタル酸
ジクロライド等がある。
Specifically, ethyl acetate, methyl acrylate, methyl benzoate, ethyl benzoate, methyl toluate, ethyl toluate, diethyl orthophthalate, di-n-butyl orthophthalate, di-n-heptyl orthophthalate,
Examples include di-n-butyl metaphthalate, methyl cellosolve acetate, cellosolve acetate, acetic chloride, orthophthalic acid dichloride, metaphthalic acid dichloride, balaphthalic acid dichloride, and the like.

成分(B) 成分(B)として用いられる有機アルミニウム化合物は
、一般式AlRnX3−n (ここで、Rは炭素数1〜
12の炭化水素残基、Xはハロゲンまたはアルコキシ基
、nはOwn≦3を示す)で表わされるものが好適であ
る。
Component (B) The organoaluminum compound used as component (B) has the general formula AlRnX3-n (where R has 1 to 1 carbon atoms)
12 hydrocarbon residues, X is a halogen or alkoxy group, and n represents Own≦3) is preferred.

このような有機アルミニウム化合物は、具体的には、た
とえば、トリエチルアルミニウム、トリーn−プロピル
アルミニウム、トリーn−ブチルアルミニウム、トリイ
ソブチルアルミニウム、トリーローヘキシルアルミニウ
ム、トリイソヘキシルアルミニウム、トリオクチルアル
ミニウム、ジエチルアルミニウムハイドライド、ジイソ
ブチルアルミニウムハイドライド、ジエチルアルミニウ
ムモノクロライド、エチルアルミニウムセスキクロライ
ド、ジエチルアルミニウムモノエトキサイドなどである
。勿論、これらの有機アルミニウム化合物を2F!以上
併用することもできる。
Such organoaluminum compounds are specifically, for example, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-lowhexylaluminum, triisohexylaluminum, trioctylaluminum, diethylaluminium. hydride, diisobutylaluminum hydride, diethylaluminum monochloride, ethylaluminum sesquichloride, diethylaluminum monoethoxide, and the like. Of course, these organic aluminum compounds are 2F! The above can also be used together.

場合によっては、重合中に第三成分を添加することがで
きる。
Optionally, a third component can be added during the polymerization.

第三成分としては、芳香族モノカルボン酸エステル、有
機ケイ素化合物、アミン類、アセタール類、ケタール類
等がある。
Examples of the third component include aromatic monocarboxylic acid esters, organosilicon compounds, amines, acetals, ketals, and the like.

具体的には安息香酸メチル、安息香酸エチル、トルイル
酸メチル、トルイル酸エチル、ジフェニルジメトキシシ
ラン、フェニルトリメトキシシラン、メチルターシャリ
−ブチルジメトキシシラン、2、 2.4.4−テトラ
メチルピペリジン、ジフェニルジメトキシメタン、ジフ
ェニルメトキシメタン等がある。これらの第三成分を2
種以上併用することもできる。
Specifically, methyl benzoate, ethyl benzoate, methyl toluate, ethyl toluate, diphenyldimethoxysilane, phenyltrimethoxysilane, methyltert-butyldimethoxysilane, 2, 2.4.4-tetramethylpiperidine, diphenyl. Examples include dimethoxymethane and diphenylmethoxymethane. These third components are 2
It is also possible to use more than one species in combination.

重合 重合は、液相、気相のいずれの相においても行なうこと
ができる。液相重合を行なう場合は、ヘキサン、ヘプタ
ンのような不活性溶媒を反応媒体とする方法およびプロ
ピレンそれ自身を反応媒体とする方法のいずれであって
もよい。触媒の使用量は、反応容積1リットル当り、A
成分をチタン原子に換算して0.0001〜1.0ミリ
モル、(B)成分を(A)成分中のチタン原子1モルに
対し1〜2000モル、好ましくは5〜500モル、と
なるようにする。触媒成分(A)および(B)は、重合
時に接触させても良いし、重合前に接触させても良い。
Polymerization Polymerization can be carried out in either liquid phase or gas phase. When liquid phase polymerization is carried out, either a method using an inert solvent such as hexane or heptane as the reaction medium or a method using propylene itself as the reaction medium may be used. The amount of catalyst used is A per 1 liter of reaction volume.
The component is 0.0001 to 1.0 mmol in terms of titanium atoms, and the amount of component (B) is 1 to 2000 mol, preferably 5 to 500 mol, per 1 mol of titanium atom in component (A). do. Catalyst components (A) and (B) may be brought into contact during polymerization or may be brought into contact before polymerization.

重合前の触媒成分(A)および(B)の接触は、不活性
ガス雰囲気下であっても良いし、プロピレンのようなオ
レフィン雰囲気下であっても良い。
The catalyst components (A) and (B) may be contacted before polymerization under an inert gas atmosphere or under an olefin atmosphere such as propylene.

プロピレンとエチレンの供給方法は、混合ガスとして供
給する方式でも、プロピレン定圧条件下にエチレンを定
量的に供給する方式でもよい。
The method of supplying propylene and ethylene may be a method of supplying a mixed gas or a method of quantitatively supplying ethylene under a constant pressure of propylene.

重合の温度は、好ましくは10℃〜100℃、特に好ま
しくは40℃〜90℃、が良い。圧力は常圧〜50kg
/cj、好ましくは2〜50kg/cj、が良い。
The polymerization temperature is preferably 10°C to 100°C, particularly preferably 40°C to 90°C. Pressure is normal pressure ~ 50kg
/cj, preferably 2 to 50 kg/cj.

重合は、好ましくは連続的に行なわれる。また、MFH
の調節は水素により有利に行なうことができる。
Polymerization is preferably carried out continuously. Also, MFH
can be advantageously adjusted with hydrogen.

実験例 以下実施例ならびに比較例は、本発明を更に明確に説明
するためのものであって、本発明はこれらの実施例によ
ってのみ限定されるものではない。
EXPERIMENTAL EXAMPLES The following examples and comparative examples are intended to explain the present invention more clearly, and the present invention is not limited only by these examples.

なお以下の例中の特性値は下記の方法で測定したもので
ある。
Note that the characteristic values in the following examples were measured by the following method.

MFRは、ASTM−イ238に準拠して測定した。透
明性は、ASTM  D−1003に準拠して、フィル
ムを4枚重ねて測定した。ブロッキング性は、2枚のフ
ィルムの接触面積が10cmとなる様に重ねて、2枚の
ガラス板の間におき、50H/c−の荷重をかけて、4
0℃の雰囲気中に7日間放置後、ショツパー型試験機を
用いて、引張速度500■m/分にて引き剥し、その最
大荷重を読みとって評価した。帯電防止性は、穴戸商金
製スタチックオネストメーターを使用し、温度23℃、
湿度50%の室内でコロナ放電処理面を測定し半減期を
読みとった。
MFR was measured in accordance with ASTM-I238. Transparency was measured by stacking four films in accordance with ASTM D-1003. The blocking property was measured by stacking two films so that the contact area was 10 cm, placing them between two glass plates, and applying a load of 50 H/c-.
After being left in an atmosphere at 0° C. for 7 days, it was peeled off at a tensile speed of 500 μm/min using a Schopper type tester, and the maximum load was read and evaluated. Antistatic properties were measured using a static honest meter made by Anato Shokin at a temperature of 23°C.
The corona discharge treated surface was measured in a room with 50% humidity to read the half-life.

実施例−1,2 1)チタン含有固体成分の製造 充分に窒素置換した390m1フラスコに脱水および脱
酸素したn−へブタン50m1を導入し、次いでM g
 C12(塩化マグネシウム)0.1モル、T1(OB
u)4けトラブトキシチタン)を0.2モル導入後、9
0℃にて2時間反応させてMgCl2の炭化水素溶液を
調製した。次いで、メチルハイドロジエンポリシロキサ
ン(20cps)を12m1加えて40℃で3時間反応
させたところ、約40gの灰白色のチタンマグネシウム
析出固体が析出した。このチタンマグネシウム析出固体
を充分に洗浄して分析したときる、この析出固体には1
2.1重量%のMgCl2が含まれていた。
Examples 1 and 2 1) Production of titanium-containing solid component 50 ml of dehydrated and deoxygenated n-hebutane was introduced into a 390 ml flask that had been sufficiently purged with nitrogen, and then Mg
C12 (magnesium chloride) 0.1 mol, T1 (OB
u) After introducing 0.2 mol of 4-butoxytitanium), 9
A hydrocarbon solution of MgCl2 was prepared by reacting at 0°C for 2 hours. Next, 12 ml of methylhydrodiene polysiloxane (20 cps) was added and reacted at 40° C. for 3 hours, resulting in the precipitation of about 40 g of off-white titanium-magnesium precipitated solid. When this titanium magnesium precipitated solid was thoroughly washed and analyzed, it was found that this precipitated solid had 1
It contained 2.1% by weight of MgCl2.

このチタンマグネシウム析出固体から20g(M g 
C12−2、42g )をサンプリングして、四塩化ケ
イ素7. 0ml (0,06モル)をn−へブタン2
5m1に希釈したものを室温下で1時間で滴下後、90
℃にて2時間反応させた。反応終了後、n−へブタン2
00m1で2回洗浄し、T iCl 4(四塩化チタン
)20mlで90℃/2時間の反応を2回繰り返した。
From this titanium-magnesium precipitated solid, 20 g (M g
C12-2, 42g) was sampled and silicon tetrachloride7. 0 ml (0.06 mol) of n-hebutane 2
After diluting it to 5ml and adding it dropwise at room temperature for 1 hour,
The reaction was carried out at ℃ for 2 hours. After the reaction is complete, n-hebutane 2
00ml twice, and the reaction was repeated twice with 20ml of TiCl4 (titanium tetrachloride) at 90°C for 2 hours.

その後、再びT iC1420mlを含む懸濁スラリー
中へ、酢酸セロソルブ0.10g(酢酸セロソルブ/M
g−0,025モル比)を含むn−へブタン溶液25m
1を50℃で30分で滴下後、80℃で3時間反応させ
た。反応終了後、n−へブタンにて可溶性チタンが認め
られなくなるまで洗浄して、目的とするチタン含有固体
成分スラリーを得た。このスラリーの一部を取り出して
分析したところ、固体中には4.51ffi量%のチタ
ンが含まれていることが判った。
Then, 0.10 g of cellosolve acetate (cellosolve acetate/M
25 m of n-hebutane solution containing g-0,025 molar ratio)
1 was added dropwise at 50°C over 30 minutes, and the mixture was reacted at 80°C for 3 hours. After the reaction was completed, the product was washed with n-hebutane until soluble titanium was no longer observed to obtain the desired titanium-containing solid component slurry. When a portion of this slurry was taken out and analyzed, it was found that the solid contained 4.51 ffi amount of titanium.

2)重合 内容積200リツトルの撹拌式オートクレーブをプロピ
レンで充分置換した後、脱水脱酸素したノルマルヘプタ
ン70リツトルを導入し、トリエチルアルミニウム(B
)35.0g、ジフェニルジメトキシシラン11.3.
および前記固体組成物(A)2.0gを70℃でプロピ
レン雰囲気下で導入した。オートクレーブを75℃に昇
温した後、エチレン−プロピレン混合ガスを導入し、水
素濃度を0.25%に保ちながら7 kg / cj 
G迄昇圧し、更に7kg/cjGで3時間重合を行なっ
た。
2) After sufficiently purging a stirred autoclave with a polymerization internal volume of 200 liters with propylene, 70 liters of dehydrated and deoxidized normal heptane was introduced, and triethylaluminum (B
) 35.0 g, diphenyldimethoxysilane 11.3.
Then, 2.0 g of the solid composition (A) was introduced at 70° C. under a propylene atmosphere. After heating the autoclave to 75℃, ethylene-propylene mixed gas was introduced and the hydrogen concentration was maintained at 0.25% at a rate of 7 kg/cj.
The pressure was increased to G, and polymerization was further carried out at 7 kg/cjG for 3 hours.

重合終了後、生成重合体を含むスラリーを濾過して、白
色粉末重合体を得た。
After the polymerization was completed, the slurry containing the produced polymer was filtered to obtain a white powder polymer.

次に、該共重合体100重量部に酸化防止剤として2.
6−ジーt−ブチル−p−クレゾール0.10重量部、
「イルガノックス1010JO105重量部、塩酸捕捉
剤としてステアリン酸カルシウム0.05m量部、ブロ
ッキング防止剤として二酸化ケイ素0.10重量部、及
び、帯電防止剤としてステアリルモノグリセライド0.
50重量部、アルキルアミンのエチレンオキサイド付加
物0.10重量部を添加し、混合後、ベレット化した。
Next, 100 parts by weight of the copolymer was added with 2.0% antioxidant.
0.10 parts by weight of 6-di-t-butyl-p-cresol,
105 parts by weight of Irganox 1010 JO, 0.05 m part of calcium stearate as a hydrochloric acid scavenger, 0.10 part by weight of silicon dioxide as an anti-blocking agent, and 0.0 m part of stearyl monoglyceride as an antistatic agent.
50 parts by weight and 0.10 parts by weight of an ethylene oxide adduct of alkylamine were added, mixed, and pelletized.

このベレットを押出機を用いてシート状フィルムにし、
縦方向5倍、横方向10倍に延伸して、最終的に厚さ3
0μmの延伸フィルムを得た。延伸フィルムの片面には
、コロナ放電処理を施した。
This pellet is made into a sheet-like film using an extruder,
Stretched 5 times in the vertical direction and 10 times in the horizontal direction, finally reaching a thickness of 3
A stretched film of 0 μm was obtained. One side of the stretched film was subjected to corona discharge treatment.

得られた結果は、第1表に示した通りであった。The results obtained were as shown in Table 1.

実施例−3 1)チタン含有固体成分の製造 充分に窒素置換したフラスコに脱水および脱酸素したノ
ルマルへブタン100m1を導入し、次いでMgCl2
を0.1モルおよび Ti (0−nC4H9) 4を0.2モル導入して、
95℃にて2時間反応させた。反応終了後、40℃に温
度を下げ、次いでメチルハイドロジエンポリシロキサン
を15m)導入して、3時間反応させた。反応終了後、
生成した固体成分をノルマルヘプタンで洗浄し、その一
部分をとり出して組成分析をしたところ、Ti−15,
2重量%、Mg−4,2重量%であった。
Example 3 1) Production of titanium-containing solid component 100 ml of dehydrated and deoxygenated normal hemobutane was introduced into a flask that had been sufficiently purged with nitrogen, and then MgCl2
0.1 mol and 0.2 mol of Ti(0-nC4H9)4 were introduced,
The reaction was carried out at 95°C for 2 hours. After the reaction was completed, the temperature was lowered to 40° C., and then 15 m) of methylhydrodiene polysiloxane was introduced and reacted for 3 hours. After the reaction is complete,
The generated solid component was washed with n-heptane, a part of it was taken out, and the composition was analyzed, and it was found that Ti-15,
2% by weight, Mg-4, 2% by weight.

次に、充分に窒素置換したフラスコに脱水および脱酸素
したノルマルへブタンを100m1導入し、上記で合成
した成分をMg原子換算で0.03モル導入した。5i
C140,05モルを30℃で15分間で導入して、9
0℃で2時間反応させた。
Next, 100 ml of dehydrated and deoxygenated normal hemobutane was introduced into a flask that had been sufficiently purged with nitrogen, and 0.03 mol of the component synthesized above was introduced in terms of Mg atoms. 5i
9 by introducing 0.05 mol of C in 15 minutes at 30°C.
The reaction was carried out at 0°C for 2 hours.

反応終了後、精製したノルマルヘプタンで洗浄した。次
いで、ノルマルへブタン25m1にオルソCH(COC
i) 20,004モルを混合して、70℃で30分間
で導入し、90℃で1時間反応させた。反応終了後、精
製したノルマルへブタンテ洗浄した。次いでTiC14
1m1(Ti/Mg−0,31(モル比))を導入して
100℃で6時間反応させた。反応終了後、ノルマルヘ
プタンで洗浄して、触媒成分とした。
After the reaction was completed, it was washed with purified normal heptane. Then, ortho-CH (COC
i) 20,004 mol were mixed and introduced at 70°C for 30 minutes and reacted at 90°C for 1 hour. After the reaction was completed, the purified normal butante was washed. Then TiC14
1 ml (Ti/Mg-0.31 (molar ratio)) was introduced and reacted at 100°C for 6 hours. After the reaction was completed, it was washed with normal heptane to obtain a catalyst component.

T1含有量は、3.05重量%であった。The T1 content was 3.05% by weight.

2)重合 重合法および成形法は、実施例−1,2と同じである。2) Polymerization The polymerization method and molding method were the same as in Examples-1 and 2.

得られた結果は、第1表に示した通りであった。The results obtained were as shown in Table 1.

実施例−4 1)チタン含有固体成分の製造 充分に窒素置換したフラスコに脱水および脱酸素したノ
ルマルへブタン100m1を導入し、次いでMgCl2
を0.1モル、 T i (On B u) 4を0.195モル、次い
でn−C4H90Hを0.007モル導入して、90℃
にて2時間反応させた。反応終了後、40℃に温度を下
げ、次いでメチルハイドロジエンポリシロキサン(20
センチストークスのもの)を15m1導入して、3時間
反応させた。生成した固体成分・をノルマルヘプタンで
洗浄し、一部分をとり出して組成分析したところ、Ti
−14,2重量%、Mg−4,3重量%であった。
Example 4 1) Production of titanium-containing solid component 100 ml of dehydrated and deoxygenated normal hemobutane was introduced into a flask that had been purged with nitrogen, and then MgCl2
0.1 mol of Ti(On Bu) 4, 0.195 mol of Ti(On Bu)4, and then 0.007 mol of n-C4H90H were introduced, and the mixture was heated to 90°C.
The reaction was carried out for 2 hours. After the reaction was completed, the temperature was lowered to 40°C, and then methylhydrodiene polysiloxane (20°C
Centistokes) was introduced in an amount of 15 ml and allowed to react for 3 hours. The generated solid component was washed with n-heptane, a portion was taken out, and a composition analysis revealed that Ti
-14.2% by weight and Mg -4.3% by weight.

次に、充分に窒素置換したフラスコに脱水および脱酸素
したノルマルへブタンを501Ell導入し、上記で合
成した成分をMg原子換算で0.03モル導入した。ノ
ルマルヘプタン50m1とS I C140、05モル
とを混合して、30℃にて15分間で導入し、50℃に
昇温しで1時間反応させた。反応終了後、ノルマルへブ
タン1リツトルで2回洗浄した。次いで、S I C1
40,025モルとノルマルへブタン25m1とを混合
して30℃で15分間で導入して、30分間反応させた
。次いで、フタル酸ジヘブチル0.0015モルを導入
して、50℃で1時間反応させた。反応終了後、ノルマ
ルヘプタン1リツトルで2回洗浄した。次いで、T i
C1425mlを導入して、90℃で1時間反応させた
。反応終了後、ノルマルへブタンで充分に洗浄して、触
媒成分とした。その一部分を取り出して組成分析したと
ころ、T1含量−2,52重量%であった。
Next, 501 Ells of dehydrated and deoxygenated normal hebutane was introduced into a flask that had been sufficiently purged with nitrogen, and 0.03 mol of the component synthesized above was introduced in terms of Mg atoms. 50 ml of normal heptane and 0.5 mol of S I C were mixed and introduced at 30° C. for 15 minutes, and the mixture was heated to 50° C. and reacted for 1 hour. After the reaction was completed, it was washed twice with 1 liter of normal hebutane. Then, S I C1
A mixture of 40,025 mol and 25 ml of normal hemobutane was introduced at 30° C. over 15 minutes, and reacted for 30 minutes. Next, 0.0015 mol of dihebutyl phthalate was introduced, and the mixture was reacted at 50° C. for 1 hour. After the reaction was completed, it was washed twice with 1 liter of normal heptane. Then, T i
25 ml of C1 was introduced and the reaction was carried out at 90°C for 1 hour. After the reaction was completed, it was thoroughly washed with normal hemobutane and used as a catalyst component. A portion of it was taken out and analyzed for composition, and the T1 content was -2.52% by weight.

2)重合 重合法および成形法は、実施例−1,2と同じである。2) Polymerization The polymerization method and molding method were the same as in Examples-1 and 2.

得られた結果は、第1表に示した通りであった。The results obtained were as shown in Table 1.

比較例−1 実施例−3において重合時に供給するエチレン−プロピ
レン混合ガスをプロピレンのみに変えた以外は実施例−
3と同じである。
Comparative Example-1 Example-3 except that the ethylene-propylene mixed gas supplied during polymerization was changed to only propylene in Example-3.
Same as 3.

結果は、第1表に示す通りであった。The results were as shown in Table 1.

比較例−2,3 内容積200リツトルの撹拌式オートクレーブをプロピ
レンで充分置換した後、脱水脱酸素したノルマルヘプタ
ン70リツトルを導入し、ジエチルアルミニウムクロラ
イド40.0.および三塩化チタン(東邦チタニウム社
製TAC−132)20、orを65℃でプロピレン雰
囲気下で導入した。オートクレーブを70’Cに昇温し
た後、エチレン−プロピレン混合ガスを導入し、水素濃
度を2.0%に保ちながら7 kg / cd G迄昇
圧し、更に7kg/cjGで5時間重合を行なった。
Comparative Examples 2 and 3 After a stirred autoclave with an internal volume of 200 liters was sufficiently replaced with propylene, 70 liters of dehydrated and deoxygenated normal heptane was introduced, and 40.0 liters of diethyl aluminum chloride was added. and titanium trichloride (TAC-132 manufactured by Toho Titanium Co., Ltd.) 20, or, were introduced at 65° C. under a propylene atmosphere. After heating the autoclave to 70'C, ethylene-propylene mixed gas was introduced and the pressure was increased to 7 kg/cd G while keeping the hydrogen concentration at 2.0%, and polymerization was further performed at 7 kg/cd G for 5 hours. .

重合終了後の処理および成形法は、実施例−1,2と同
じである。
The treatment and molding method after completion of polymerization are the same as in Examples 1 and 2.

結果は、m1表に示す通りであった。The results were as shown in the m1 table.

比較例−4 比較例−2,3において重合時に供給するエチレン−プ
ロピレン混合ガスをプロピレンのみに変えた以外は比較
例−2,3と同じである。
Comparative Example 4 Comparative Examples 2 and 3 were the same as Comparative Examples 2 and 3, except that the ethylene-propylene mixed gas supplied during polymerization was changed to only propylene.

結果は、第1表に示す通りであった。The results were as shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] プロピレンと少量のエチレンとを立体規則性重合触媒に
よってランダム共重合させて得られ、エチレン含有量が
0.1〜1.5重量%でありかつ沸騰ノルマルブタノー
ル抽出分が0.6重量%以下であることを特徴とするポ
リプロピレン。
It is obtained by random copolymerization of propylene and a small amount of ethylene using a stereoregular polymerization catalyst, and has an ethylene content of 0.1 to 1.5% by weight and a boiling normal butanol extractable content of 0.6% by weight or less. Polypropylene is characterized by:
JP12883287A 1987-05-26 1987-05-26 Polypropylene Pending JPS63291907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12883287A JPS63291907A (en) 1987-05-26 1987-05-26 Polypropylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12883287A JPS63291907A (en) 1987-05-26 1987-05-26 Polypropylene

Publications (1)

Publication Number Publication Date
JPS63291907A true JPS63291907A (en) 1988-11-29

Family

ID=14994507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12883287A Pending JPS63291907A (en) 1987-05-26 1987-05-26 Polypropylene

Country Status (1)

Country Link
JP (1) JPS63291907A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536290B2 (en) 2010-12-21 2013-09-17 Dow Global Technologies Llc Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US8604146B2 (en) 2010-12-21 2013-12-10 Dow Global Technologies Llc Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same
JP2015528518A (en) * 2012-08-07 2015-09-28 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Method for producing polypropylene having improved productivity
US9315592B2 (en) 2010-12-21 2016-04-19 W. R. Grace & Co.-Conn. Process for producing procatalyst composition with alkoxyalkyl ester internal electron donor and product
US9382342B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US9382343B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxypropyl ester internal electron donor and polymer from same
US9434796B2 (en) 2010-12-21 2016-09-06 W. R. Grace & Co.-Conn. Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536290B2 (en) 2010-12-21 2013-09-17 Dow Global Technologies Llc Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US8604146B2 (en) 2010-12-21 2013-12-10 Dow Global Technologies Llc Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same
US9315592B2 (en) 2010-12-21 2016-04-19 W. R. Grace & Co.-Conn. Process for producing procatalyst composition with alkoxyalkyl ester internal electron donor and product
US9382342B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same
US9382343B2 (en) 2010-12-21 2016-07-05 W. R. Grace & Co.-Conn. Procatalyst composition with alkoxypropyl ester internal electron donor and polymer from same
US9434796B2 (en) 2010-12-21 2016-09-06 W. R. Grace & Co.-Conn. Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same
JP2015528518A (en) * 2012-08-07 2015-09-28 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Method for producing polypropylene having improved productivity
US9512246B2 (en) 2012-08-07 2016-12-06 Borealis Ag Process for the preparation of polypropylene with improved productivity

Similar Documents

Publication Publication Date Title
JPS61218606A (en) Production of alpha-olefin polymer
JPH0343284B2 (en)
JP3508187B2 (en) Continuous production of propylene / ethylene block copolymer
JPS5812888B2 (en) Method for manufacturing polyolefin
JP3162441B2 (en) High rigidity propylene copolymer composition
JPS63291907A (en) Polypropylene
JPH0343407A (en) Production of olefin polymerizing catalyst and polymerization of olefin
JP3228971B2 (en) Method for producing olefin copolymer
JP3537534B2 (en) Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JP2699047B2 (en) Method for producing propylene polymer
JPH08337610A (en) Catalyst component for olefin polymerization, its productionand method for polymerizing olefin in the presence of this component
JPS63291906A (en) Polypropylene
JPH06287225A (en) Solid catalyst component for polymerizing olefins and polymerization method
JPH0446286B2 (en)
JPH06102696B2 (en) Method for producing α-olefin polymer
JPH02102205A (en) Manufacture of propene homopolymer or copolymer by using ziegler-natta catalyst system
JP2778130B2 (en) Method for producing olefin polymer
JP2935902B2 (en) Method for producing ethylene polymer
JP3279347B2 (en) Method for producing olefin polymer
JPS63248804A (en) Catalyst for polymerization of olefin
JP3427472B2 (en) Polypropylene for biaxially stretched film and biaxially stretched film
JP3279675B2 (en) Method for producing α-olefin polymer
JP3496996B2 (en) Method for producing solid catalyst component for olefin polymerization
JP3070368B2 (en) α-olefin polymer, α-olefin polymerization catalyst, and method for producing α-olefin polymer
JPH0422169B2 (en)