JPS63291408A - Insulating-gas-filled transformer - Google Patents

Insulating-gas-filled transformer

Info

Publication number
JPS63291408A
JPS63291408A JP12600387A JP12600387A JPS63291408A JP S63291408 A JPS63291408 A JP S63291408A JP 12600387 A JP12600387 A JP 12600387A JP 12600387 A JP12600387 A JP 12600387A JP S63291408 A JPS63291408 A JP S63291408A
Authority
JP
Japan
Prior art keywords
tank
parts
gas
protruding parts
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12600387A
Other languages
Japanese (ja)
Inventor
Toshiaki Murakami
俊明 村上
Akira Tanaka
明 田中
Hideo Hirose
広瀬 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12600387A priority Critical patent/JPS63291408A/en
Publication of JPS63291408A publication Critical patent/JPS63291408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To make a tank have a structure which is free from defects in intensity, while minimizing the whole structure of its device and obtain a insulating- gas-filled transformer having the high safety for an internal tension and also having a long lifetime for cyclic operations by causing board thickness reinforcing parts of protruding parts for securing insulating distances as well as an outgoing opening part for taking out leads to be integrated in one or by making each reinforcing part serve a double purpose. CONSTITUTION:Protruding parts 14 of a tank 1 having cross sections of semicircle forms and also having each distance of a constant value from a winding end part 5a are formed at positions facing end parts 5a of a high tension winding 5. An outgoing opening 15 for taking out leads is mounted at a top part of the protruding parts 14. Then, there is a structure where board thickness reinforcing parts 16 of the protruding parts 14 themselves share the board thickness reinforcing part of the opening 15. Thus, a simple structure which allows the reinforcing parts of both the protruding parts and the outgoing opening to be integrated into one improves the intensity of the tank and makes the safety for internal tension high and also a lifetime for cyclic operations long.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高圧のSFaガスなどの絶縁ガスを充填した
圧力容器内に、鉄心とこの鉄心に巻装した内外の低圧、
高圧巻線から成る変圧器本体を収納したガス絶縁変圧器
に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention provides an iron core and an internal and external low pressure wound around the iron core in a pressure vessel filled with high pressure insulating gas such as SFa gas. ,
This invention relates to a gas-insulated transformer that houses a transformer body made of high-voltage windings.

(従来の技術) 近年、油入変圧器に代って、不燃性、防爆性という長所
を有するガス絶縁変圧器が注目を浴びており、数10K
V、数10MVA程度の比較的電圧の低い小容量の変圧
器においては既に実用化され広く普及している。
(Prior art) In recent years, gas insulated transformers, which have the advantages of being non-flammable and explosion-proof, have been attracting attention in place of oil-immersed transformers.
Small-capacity transformers with relatively low voltages such as V and several tens of MVA have already been put into practical use and are widely used.

最近、このようなガス絶縁変圧器の優れた長所に鑑み、
より高電圧、大容量の変圧器例えば275KV、300
MVA級変圧器への適用拡大が研究されているが、この
場合の最大の技術的課題は、いかに巻線に対する冷却能
力を向上させ、高い絶縁能力を巻線に持たせられるかと
いう点にある。
Recently, in view of the excellent advantages of such gas insulated transformers,
Higher voltage, larger capacity transformer e.g. 275KV, 300KV
Research is underway to expand its application to MVA class transformers, but the biggest technical challenge in this case is how to improve the cooling capacity of the windings and provide the windings with high insulation capacity. .

このようなガス絶縁変圧器における巻線の冷却方式とし
ては、巻線内に冷却ダクトを内蔵させ、絶縁特性の優れ
た冷媒を送込んで巻線損失から発生する熱を直接的に冷
却するいわばヒートパイプ方式のものが考えられている
The method for cooling the windings in such gas-insulated transformers is to build a cooling duct inside the windings and feed a refrigerant with excellent insulation properties to directly cool the heat generated from winding losses. A heat pipe type is being considered.

第6図、第7図にこのような方式のガス絶縁変圧器とし
て従来から知られている構造の一例を示す。
FIGS. 6 and 7 show an example of a conventionally known structure of such a gas insulated transformer.

第6図に示すように、タンク1には絶縁媒体としてSF
6ガス等の絶縁ガスが高圧で封入され、このタンク1の
内部には鉄心2が設けられている。
As shown in FIG. 6, tank 1 contains SF as an insulating medium.
An insulating gas such as 6 gas is sealed at high pressure, and an iron core 2 is provided inside the tank 1.

この鉄心2の主脚2aの外側には、絶縁筒3を介して低
圧巻線4,5が内外に同心的に巻装され、両巻線の間は
絶縁バリア6によって絶縁を保たれている。低圧巻線4
及び高圧巻線5はアルミニウム箔等から成る金属シート
7と樹脂フィルム等から成る絶縁シート8を重ねて巻回
して成る箔状巻線として構成されている。
On the outside of the main leg 2a of this iron core 2, low-voltage windings 4 and 5 are wound concentrically inside and outside via an insulating cylinder 3, and insulation is maintained between the two windings by an insulating barrier 6. . Low voltage winding 4
The high-voltage winding 5 is configured as a foil-like winding formed by overlapping and winding a metal sheet 7 made of aluminum foil or the like and an insulating sheet 8 made of resin film or the like.

また、低圧及び高圧巻線4,5には、その軸方向に延び
る冷却ダクト9が巻込まれて内蔵されている。この冷却
ダクト9内は、フロン113や70リナートFC75等
の冷媒が通るように中空となっており、タンク1の外部
に設けられた冷却器10により冷却、凝縮された冷媒が
ポンプ11により導液管12と絶縁パイプ13を介して
循環するようになっている。
Further, a cooling duct 9 extending in the axial direction is wound around and built into the low voltage and high voltage windings 4 and 5. The inside of this cooling duct 9 is hollow so that a refrigerant such as Freon 113 or 70 Linate FC75 passes through it. It is designed to circulate through a tube 12 and an insulated pipe 13.

以上説明したような従来のガス冷却変圧器はセパレート
式箔巻変圧器とよばれ、この種の変圧器としてはUSP
−4039990が知られている。
The conventional gas-cooled transformer as explained above is called a separate foil-wound transformer, and this type of transformer is
-4039990 is known.

ところで、このような従来のガス絶縁変圧器において、
一般に気体の絶縁耐力はガス圧を高くすることにより高
くなることから、ガス絶縁変圧器のタンク構造は圧力容
器としての機能を有する必要がある。
By the way, in such a conventional gas insulated transformer,
Generally, the dielectric strength of gas increases as the gas pressure increases, so the tank structure of a gas insulated transformer needs to function as a pressure vessel.

従って、一般には、第7図(A>(B)に示すように、
円筒形のタンク本体1aに鏡板1bを合せ持つことが普
通である。また、最近、タンクの小型化を計りつつ、外
周部の高圧巻線5との絶縁距離を充分前るためにタンク
1の一部に外側への突出部14を持つタンク構造も開発
され、広く普及している。ざらに、タンク1においては
、高圧、低圧巻線4,5のリードの引出し開口部15を
有している。そして、このような突出部14やリードの
引出し開口部15の縁部においては、圧力容器の規格か
ら、突出や開口によって低下する強度を補強するために
、板厚を増加させた板厚補強部16.17を設けること
が要求されている。
Therefore, generally, as shown in FIG. 7 (A>(B)),
It is common to have a cylindrical tank body 1a and an end plate 1b. In addition, recently, a tank structure has been developed in which a part of the tank 1 has an outward protrusion 14 in order to provide a sufficient insulation distance from the high-voltage winding 5 on the outer periphery while reducing the size of the tank. It is widespread. Generally speaking, the tank 1 has an opening 15 for leading out the leads of the high-voltage and low-voltage windings 4 and 5. At the edges of such protrusions 14 and lead drawer openings 15, in accordance with pressure vessel standards, plate thickness reinforcement parts are made with increased plate thickness in order to reinforce the strength that decreases due to protrusions and openings. 16.17 is required.

ところで、このようなタンク構造においては、突出部1
4と引出し開口部15の両開口部がリードの配置関係か
ら接近するため、突出部14と引出し開口部15の間の
タンク壁(第7図(A>中ハツチング部18)部におい
ては、内圧負荷時に、タンク壁面における板厚の不連続
という条件が相乗的に影響する結果、応力が集中し、タ
ンク構造の強度上の弱点となる。また、変圧器の稼働時
の温度上昇による内圧変動に対する疲労寿命が短くなる
問題がある。
By the way, in such a tank structure, the protrusion 1
4 and drawer opening 15 are close to each other due to the arrangement of the leads. When loaded, the condition of discontinuity in plate thickness on the tank wall has a synergistic effect, resulting in stress concentration, which becomes a weak point in the strength of the tank structure.Also, it is difficult to resist internal pressure fluctuations due to temperature rise during transformer operation. There is a problem of shortened fatigue life.

(発明が解決しようとする問題点) 以上のように、従来、そのタンクに絶縁距離確保用の突
出部と引出し開口部を有するガス絶縁変圧器においては
、突出部と開口部の間が強度的な弱点となる問題点が存
在していた。
(Problems to be Solved by the Invention) As described above, in conventional gas insulated transformers whose tanks have protrusions and drawer openings for ensuring insulation distance, the strength between the protrusions and the openings is high. There were some problems and weaknesses.

本発明は、このような問題点を解決するために提案され
たものであり、その目的は、装置全体の小型化を計りな
がら、しかも強度的な欠陥がないようなタンク構造とす
ることにより、内圧に対して安全性が高く、繰返し寿命
の長いガス絶縁変圧器を提供することである。
The present invention was proposed to solve these problems, and its purpose is to reduce the size of the entire device while creating a tank structure that does not have any strength defects. It is an object of the present invention to provide a gas insulated transformer that is highly safe against internal pressure and has a long repeated life.

[発明の構成] (問題点を解決するための手段) 本発明によるガス絶縁変圧器は、タンクの高圧巻線の端
部に対向する部分に突出部を設け、この突出部近傍にリ
ード引出し用の引出し開口部を設け、突出部の板厚補強
部と引出し開口部の板厚補強部を一体化又は兼用したこ
とを構成の特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The gas insulated transformer according to the present invention has a protrusion in a portion facing the end of the high-voltage winding of the tank, and a lead drawer in the vicinity of the protrusion. The structure is characterized in that a drawer opening is provided, and the plate thickness reinforcing part of the protruding part and the plate thickness reinforcing part of the drawer opening are integrated or used together.

(作用) 以上のような構成を有する本発明においては、絶縁距離
を確保するための突出部の板厚補強部とリード引出し用
の引出し開口部の板厚補強部とを一体化又は兼用するこ
とにより、タンク壁面における板厚の不連続の問題を解
消できるため、強度的な弱点のないタンク構造が可能と
なっている。
(Function) In the present invention having the above configuration, the plate thickness reinforcing part of the protruding part for ensuring the insulation distance and the plate thickness reinforcing part of the drawer opening for drawing out the lead can be integrated or used together. This solves the problem of discontinuity in plate thickness on the tank wall, making it possible to create a tank structure without any weak points in terms of strength.

(実施例) 以下、本発明によるガス絶縁変圧器の一実施例を図面を
用いて具体的に説明する。なお、第6図及び第7図に示
した従来技術と同一部分には同一符号を付し説明を省略
する。
(Example) Hereinafter, one example of the gas insulated transformer according to the present invention will be specifically described using the drawings. Note that the same parts as in the prior art shown in FIGS. 6 and 7 are designated by the same reference numerals, and the explanation thereof will be omitted.

本実施例の構成* 第1図(A>(B)に示す実施例において、タンク1に
は、高圧巻線5の端部5aに対向する位置に、この巻線
端部5aから一定値の距離を持つ断面半円形状の突出部
14が形成されている。この突出部14の頂部にはリー
ド引出し用の引出し開口部15が設けられている。従っ
て、突出部14の板厚補強部16がそのまま開口部15
の補強部を兼ねた構成となっている。
Configuration of this embodiment* In the embodiment shown in FIG. A protrusion 14 having a semicircular cross section with a distance is formed.A drawer opening 15 for pulling out the lead is provided at the top of the protrusion 14.Thus, the thickness reinforcement part 16 of the protrusion 14 is the opening 15 as it is.
The structure also serves as a reinforcing section.

本実施例の作用* 以上のような構成を有する本実施例の作用は次の通りで
ある。
Effects of this embodiment* The effects of this embodiment having the above-described configuration are as follows.

まず、第2図(A>は、第6図及び第7図に示した従来
技術の一部を示す斜視図であり、この従来のタンク構造
に対して、圧力を負荷し、第2図(A>中吏−吏一部(
板厚補強部周辺)に発生する無次元応力(応力/耐力)
を、第2図(B)に示す。
First, FIG. 2 (A> is a perspective view showing a part of the conventional technology shown in FIGS. 6 and 7. Pressure is applied to this conventional tank structure, and FIG. A> Middle official - part of the official (
Dimensional stress (stress/yield strength) generated around the reinforced part of the plate
is shown in FIG. 2(B).

第2図(B)中■に示すように、圧力容器の規格に基づ
いて普通に設計した板厚を有する従来のタンク構造では
、間口部の板厚補強部’17.16においての無次元応
力が0.3〜0.4程度であるのに対して、両補強部に
挟まれる一般部においての無次元応力は、0.9〜1.
0にも達している。これは、−股部において、板厚の不
連続から発生する応力の集中が作用することによる。
As shown in Figure 2 (B), in a conventional tank structure with a plate thickness normally designed based on pressure vessel standards, dimensionless stress is generated at the plate thickness reinforcement part '17.16 at the frontage. is about 0.3 to 0.4, while the dimensionless stress in the general part sandwiched between both reinforcing parts is about 0.9 to 1.
It has even reached 0. This is due to the concentration of stress generated from the discontinuity in plate thickness acting at the crotch.

一方、第3図(A)は、第1図(A>(B)に示した本
実施例の一部を示す斜視図であり、この従来のタンク構
造に対して、圧力を負荷し、第2図(A>中愛−愛一、
k−に一部(板厚補強部周辺)に発生する無次元応力(
応力/耐力)を、第3図(B)に示す。
On the other hand, FIG. 3 (A) is a perspective view showing a part of the present embodiment shown in FIG. 1 (A>(B)). Figure 2 (A>Nakaai-Aiichi,
Non-dimensional stress (
stress/yield strength) is shown in FIG. 3(B).

第3図(B)中■に示すように、本実施例にあける愛−
愛一部及びに−に一部に沿っての無次元応力分布は、最
大でも0.5程度と、降伏応力の半分程度にまで低減可
能となっている。従って、タンク1の内圧破壊に対する
安全率が従来のほぼ2倍に向上する。また、可動時の温
度上昇による内圧変動に対する疲労寿命も、本実施例に
よれば10倍程度長くなることが明らかとなっている。
As shown in Figure 3 (B) middle ■, there is a love for this example.
The dimensionless stress distribution along the axial and axial sections can be reduced to about 0.5 at most, which is about half of the yield stress. Therefore, the safety factor against internal pressure breakdown of the tank 1 is improved to approximately twice that of the conventional system. Furthermore, it has been revealed that the fatigue life against internal pressure fluctuations due to temperature rise during operation is approximately 10 times longer according to this embodiment.

*他の実施例* なお、本発明は、前記実施例に限定されるものではなく
、例えば、第4図(A)(B)及び第5図(A>(B)
に示す実施例が考えられる。
*Other Examples* It should be noted that the present invention is not limited to the above-mentioned embodiments, and for example, Fig. 4 (A) (B) and Fig. 5 (A>(B)
The following embodiments can be considered.

第4図<A>(8)に示す実施例は、リードの引出し開
口部15をタンク1の突出部14の軸方向端部に取付け
るものであり、本実施例の応力レベルは、第3図(B)
中■に示すように、前記実施例■より若干大きくなるが
、降伏応力の半分以内に収まっている。
In the embodiment shown in FIG. 4 <A> (8), the lead extraction opening 15 is attached to the axial end of the protrusion 14 of the tank 1, and the stress level of this embodiment is as shown in FIG. 3. (B)
As shown in middle (2), the stress is slightly larger than that of Example (2), but it is still within half of the yield stress.

また、第5図(A>  (B)に示す実施例は、突出部
14と開口部15の板厚補強部を一体化して板厚補強部
19としたものであり、本実施例の応力分布も、第2図
(B)中■に示すように、降伏対応力の半分以内に収ま
ることが判明している。
Further, in the embodiment shown in FIG. 5 (A>(B)), the plate thickness reinforcement part of the protruding part 14 and the opening part 15 are integrated to form a plate thickness reinforcement part 19, and the stress distribution of this embodiment is As shown in Figure 2 (B), it has been found that the yield capacity is within half of the yield response capacity.

[発明の効果] 以上説明したように、本発明によれば、突出部と引出し
開口部の補強部を一体化するという簡単な構成の改良に
より、従来に比へて大幅にタンク強度を向上でき、従っ
て内圧に対して安全性が高く、且つ繰返し寿命の長い優
れたガス絶縁変圧器を提供できる。
[Effects of the Invention] As explained above, according to the present invention, the strength of the tank can be significantly improved compared to the conventional structure by simply improving the structure of integrating the protruding portion and the reinforcing portion of the drawer opening. Therefore, it is possible to provide an excellent gas insulated transformer that is highly safe against internal pressure and has a long cycle life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A>(B)は本発明によるガス絶縁変圧器の第
1実施例を示す正面図と断面図、第2図(A>は従来の
ガス絶縁変圧器の一部を示す正面   −図、第2図(
B)は第2図(A>の従来例と本発明の第3実施例の各
応力分布を示すグラフ、第3図(A)は本発明の第1実
施例の一部を示す正面図、第3図(B)は本発明の第1
実施例と第2実施例の各対応力分布を示すグラフ、第4
図(A>(B)は本発明の第2実施例を示す正面図と断
面図、第5図(A>(B)は本実施例の第3実施例を示
す正面図と断面図、第6図は従来のガス絶縁変圧器を示
す断面図、第7図(A>(B)は同じ〈従来のガス絶縁
変圧器を示す正面図と断面図で必る。 1・・・タンク、1a・・・タンク本体、1b・・・タ
ンク鏡板、2・・・鉄心、3・・・絶縁筒、4・・・低
圧巻線、5・・・高圧巻線、6・・・絶縁バリア、7・
・・金属シート、8・・・絶縁シート、9・・・冷却ダ
クト、10・・・冷却器、11・・・ポンプ、12・・
・導液管、13・・・絶縁パイプ、14・・・突出部、
15・・・引出し開口部、16・・・突出部の板厚補強
部、17・・・引出し開口部の板厚補強部、18・・・
突出部と引出し開口部間のタンク壁、19・・・一体型
板厚補強部。
FIG. 1 (A>(B) is a front view and cross-sectional view showing a first embodiment of a gas insulated transformer according to the present invention, and FIG. 2 (A> is a front view showing a part of a conventional gas insulated transformer. Figure, Figure 2 (
B) is a graph showing the stress distribution of the conventional example of FIG. 2 (A>) and the third embodiment of the present invention, and FIG. FIG. 3(B) is the first embodiment of the present invention.
Graph showing each response force distribution of the example and the second example, 4th
Figures (A>(B) are front views and cross-sectional views showing the second embodiment of the present invention, and Figures (A>(B) are front views and cross-sectional views showing the third embodiment of the present invention. Figure 6 is a sectional view showing a conventional gas insulated transformer, and Figure 7 (A>(B) is the same (a front view and a sectional view showing a conventional gas insulated transformer). 1...Tank, 1a ...Tank body, 1b...Tank end plate, 2...Iron core, 3...Insulation tube, 4...Low voltage winding, 5...High voltage winding, 6...Insulation barrier, 7・
...Metal sheet, 8...Insulating sheet, 9...Cooling duct, 10...Cooler, 11...Pump, 12...
・Liquid guide pipe, 13... Insulated pipe, 14... Protrusion part,
15... Drawer opening, 16... Plate thickness reinforcement part of protruding part, 17... Plate thickness reinforcement part of drawer opening, 18...
Tank wall between protrusion and drawer opening, 19...integrated plate thickness reinforcement part.

Claims (2)

【特許請求の範囲】[Claims] (1)所定圧力に加圧された絶縁ガスを充填した円筒形
圧力容器内に、鉄心及びこの鉄心の周囲に答申的に巻装
した内外の低圧・高圧巻線より成る変圧器本体を収納し
たガス絶縁変圧器において、前記タンク壁の高圧巻線端
部に対向する箇所にはタンク外側へ突出する突出部が形
成され、この突出部近傍にリード引出しのための引出し
開口部が設けられ、突出部の板厚補強部と引出し開口部
の板厚補強部が一体化又は兼用されたことを特徴とする
ガス絶縁変圧器。
(1) A transformer body consisting of an iron core and internal and external low-voltage and high-voltage windings wrapped around the iron core is housed in a cylindrical pressure vessel filled with insulating gas pressurized to a predetermined pressure. In the gas insulated transformer, a protrusion protruding to the outside of the tank is formed at a portion of the tank wall facing the end of the high-voltage winding, and a drawer opening for leading out the lead is provided near the protrusion. 1. A gas insulated transformer characterized in that a plate thickness reinforcing part of the section and a plate thickness reinforcing part of the drawer opening are integrated or used together.
(2)リード引出しのための引出し開口部が、突出部上
に設けられたものである特許請求の範囲第1項記載のガ
ス絶縁変圧器。
(2) The gas insulated transformer according to claim 1, wherein the drawer opening for drawing out the lead is provided on the protrusion.
JP12600387A 1987-05-25 1987-05-25 Insulating-gas-filled transformer Pending JPS63291408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12600387A JPS63291408A (en) 1987-05-25 1987-05-25 Insulating-gas-filled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12600387A JPS63291408A (en) 1987-05-25 1987-05-25 Insulating-gas-filled transformer

Publications (1)

Publication Number Publication Date
JPS63291408A true JPS63291408A (en) 1988-11-29

Family

ID=14924321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12600387A Pending JPS63291408A (en) 1987-05-25 1987-05-25 Insulating-gas-filled transformer

Country Status (1)

Country Link
JP (1) JPS63291408A (en)

Similar Documents

Publication Publication Date Title
JPS63291408A (en) Insulating-gas-filled transformer
CN214476903U (en) Insulating cylinder type gas insulation high-voltage resonance reactor
JPS6023951Y2 (en) transformer
JPS62239509A (en) Foil-wound transformer
JPS63208209A (en) Foil winding transformer
JPH0766045A (en) Gas insulation transformer
JPH06140258A (en) Stationary induction equipment winding
JPH0256906A (en) Transformer
JPS61194804A (en) Foil-wound transformer
JPS5885510A (en) Transformer
JPS605502A (en) Leaf-wound transformer
JPS59169115A (en) Tank for stationary induction electric apparatus
JPS62229813A (en) Foil-wound transformer
JPS6066412A (en) Foil-wound transformer
JPS5930493Y2 (en) transformer
JPS59181517A (en) Foil wound transformer
JPS62109307A (en) Foil wound transformer
JPS5889815A (en) Foil-wound transformer
JPH0378771B2 (en)
JPS5932118A (en) Transformer
JPS59191310A (en) Foil-wound transformer
JPH04162603A (en) Gas-insulated transformer
JPH0963858A (en) Electric machine and transportation thereof
JPH065435A (en) Stationary induction electric apparatus
JPH0412606B2 (en)