JPS63291395A - Light source device - Google Patents

Light source device

Info

Publication number
JPS63291395A
JPS63291395A JP12379887A JP12379887A JPS63291395A JP S63291395 A JPS63291395 A JP S63291395A JP 12379887 A JP12379887 A JP 12379887A JP 12379887 A JP12379887 A JP 12379887A JP S63291395 A JPS63291395 A JP S63291395A
Authority
JP
Japan
Prior art keywords
cavity
lamps
lamp
light source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12379887A
Other languages
Japanese (ja)
Inventor
Tetsuo Ono
哲郎 小野
Kenji Sekine
健治 関根
Seiichi Murayama
村山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12379887A priority Critical patent/JPS63291395A/en
Priority to US07/155,507 priority patent/US4933602A/en
Publication of JPS63291395A publication Critical patent/JPS63291395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To improve the face uniformity of the light output of lamps by arranging multiple lamps in a flat plate-shaped cavity and providing a slender power feeding hole along the axial direction of a wave guide near the center of its wide face. CONSTITUTION:Multiple straight tube type lamps 2 are arranged in a flat plate- shaped cavity 1. Rare gas, metal such as Hg, Cd, Zn, As, or their halogenide, iodine, and heavy hydrogen are sealed in the lamps 2. The microwave power enters the cavity 1 from a microwave power supply 6 through a wave guide 5 and a power feeding hole 4, and the lamps 2 are lit by the high-frequency induction discharge. The feeding hole 4 is slenderly opened so as to connect the center vicinity of the upper face of the cavity 1 and the center axial direction of the wave guide 5. The power is uniformly fed in the cavity 1. The face uniformity of the light output of the lamps can be thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光源装置に係り、特にマイクロ波を用いた平面
照射に好適な光源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light source device, and more particularly to a light source device suitable for planar irradiation using microwaves.

〔従来の技術〕[Conventional technology]

マイクロ波を用いた光源装置の例としては米国特許3,
872,349号(υn1tad 5tates Pa
tent。
Examples of light source devices using microwaves include U.S. Patent 3,
No. 872,349 (υn1tad 5tates Pa
tent.

3.872,349)がある、上記従来例は、マイクロ
波の電源に空胴共振器を接続し、上記空胴共振器の内部
にランプを設置している。上記空胴共振器内には電磁波
の定在波が生じ、上記定在波の山の部分にランプを設置
すると、上記ランプ内に誘導放電を生じ発光する。上記
装置の利点は、上記ランプに電極を必要としないことで
ある。したがって、ランプの構造は極めて単純になる。
In the above-mentioned conventional example, which is available in Japanese Patent No. 3,872,349), a cavity resonator is connected to a microwave power source, and a lamp is installed inside the cavity resonator. A standing wave of electromagnetic waves is generated within the cavity resonator, and when a lamp is installed at the peak of the standing wave, an induced discharge is generated within the lamp and light is emitted. An advantage of the device is that no electrodes are required in the lamp. Therefore, the structure of the lamp becomes extremely simple.

また、電極の消耗や電極からの不純物の放出もなくなる
ので、ランプの寿命も伸び、さらに、ランプ内に封入す
る物質に対しても、電極との反応を考える必要がないた
め1選択の自由度が大きくなる。
In addition, there is no need to wear out the electrodes or release impurities from the electrodes, which extends the life of the lamp.Furthermore, there is no need to consider reactions with the electrodes for the substances sealed in the lamp, giving you greater freedom in selecting substances. becomes larger.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術で使用されるランプの形状は、直管状ある
いは球状であるが、平面を一様に照らすことには配慮さ
れていない、一方、現在は半導体製造プロセスなどで、
光源を利用することが多くなっている。このような特殊
利用では、しばしば平面を一様に照射することが要求さ
れる。
The shape of the lamp used in the above-mentioned conventional technology is straight tube or spherical, but it does not take into account uniform illumination of a flat surface.
Light sources are increasingly being used. Such special applications often require uniform illumination of a plane.

本発明の目的は、平面を一様に照射できる光源装置を得
ることにある。
An object of the present invention is to obtain a light source device that can uniformly illuminate a plane.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、空胴を平板上とし、その中に複数本のラン
プを配し、かつ、その広い面の中央付近に導波管の軸方
向に沿った細長い電力供給用の穴を開けることで達成で
きる。
The above purpose is to make the cavity on a flat plate, arrange multiple lamps inside it, and make a long and narrow hole for power supply along the axial direction of the waveguide near the center of the wide surface. It can be achieved.

〔作用〕[Effect]

電力供給穴を細長くすることで、空胴内のより広いはん
いに均一に電力を供給できる。これによりランプ光出力
の面均−性が良くなる。
By making the power supply hole elongated, power can be uniformly supplied to a wider area within the cavity. This improves the surface uniformity of the lamp light output.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の全体構成図である。平板形の空胴1の
中に直管形ランプ2が複数本配置されている。ランプ2
の中には、たとえば希ガス、希ガスとHg、Cd、Zn
、Asなどの各種金属あるいはこれらのハロゲン化物、
ヨウ素9重水素などが封入されている。紫外線を利用す
る場合は、ランプ2は石英などの紫外線透過物質でつく
る。ランプ2は高周波の誘導放電で点灯するので電極を
つける必要がない、マイクロ波電力は、マイクロ波電源
6から導波管5と電力供給穴4を通して、空胴1に入る
。マイクロ波電源6は、たとえば周波数2.45GHz
  、波長12.24mのマグネトロンである。空胴1
の少なくとも一面は光を取り出すため、金網3になって
いる。本構成により。
FIG. 1 is an overall configuration diagram of the present invention. A plurality of straight tube lamps 2 are arranged in a flat plate-shaped cavity 1. lamp 2
Among them, for example, rare gases, rare gases and Hg, Cd, Zn.
, various metals such as As or their halides,
Contains iodine, deuterium, etc. When using ultraviolet light, the lamp 2 is made of an ultraviolet-transmissive material such as quartz. Since the lamp 2 is lit by high-frequency induced discharge, there is no need to attach electrodes.Microwave power enters the cavity 1 from the microwave power source 6 through the waveguide 5 and the power supply hole 4. The microwave power source 6 has a frequency of 2.45 GHz, for example.
, a magnetron with a wavelength of 12.24 m. Cavity 1
At least one side of the screen is made of wire mesh 3 to extract light. Due to this configuration.

複数本のランプ2が同時に点灯し、平面を照射すること
ができる。
A plurality of lamps 2 can be lit at the same time to illuminate a flat surface.

第2図は第1図の空WA1部分のA−A断面図である0
本発明に従い、電力供給穴4は細長く、かつ、空胴1の
上面(広い面)の中央付近と導波管5の中心軸方向を結
合するように開いている。電力供給穴4をこのように開
けることにより、空胴1内に均一に電力が供給されラン
プ2の光出力の面均−性が良くなる。
Figure 2 is a sectional view taken along line A-A of the empty WA1 portion in Figure 1.
According to the present invention, the power supply hole 4 is elongated and opened so as to connect the vicinity of the center of the upper surface (wide surface) of the cavity 1 and the central axis direction of the waveguide 5. By opening the power supply hole 4 in this manner, power is uniformly supplied into the cavity 1, and the surface uniformity of the light output of the lamp 2 is improved.

次に、マイクロ波電源6としてマグネトロン(周波数2
.45±0.01GHz)を用い実験を行なった結果を
述べる。導波管2は断面が10.9am X 5 、5
 txでJTS規格番号WRJ−2に相当する。空胴1
は厚さ61で他の辺はa = 35 cs 。
Next, a magnetron (frequency 2
.. 45±0.01 GHz). The waveguide 2 has a cross section of 10.9 am x 5,5
tx and corresponds to JTS standard number WRJ-2. Cavity 1
has a thickness of 61 and the other sides are a = 35 cs.

b=25am(第2図参照)である、ランプ2は直径2
0 m ’、長さ30〔で、Ar  2.5Torrと
Hgが封入しである。このランプを、電給供給穴4がつ
いている面から3mはなして第2図に示す配置と同じに
7本等間際で並べた。ランプ2が軸方向を被う長さく第
2図中d)は22t5である。以上の条件で、電力供給
穴4の大きさを変えて、ランプ2の紫外線出力(Hg#
線254nm)の面分布を測定した0wII定したラン
プは中央のランプ2−1と一番はじのランプ2−2で、
X方向に検出器を動かして紫外線を測定した。検出器は
受光面の大きさが1 rm X 6 waのホトダイオ
ードである。
b = 25 am (see Figure 2), lamp 2 has a diameter of 2
0 m', length 30 [, and filled with Ar 2.5 Torr and Hg. Seven of these lamps were arranged at a distance of 3 m from the surface on which the power supply hole 4 was attached, and equally spaced in the same arrangement as shown in FIG. The length d) of the lamp 2 in the axial direction is 22t5. Under the above conditions, by changing the size of the power supply hole 4, the ultraviolet output of the lamp 2 (Hg #
The lamps for which the surface distribution of the line (254 nm) was measured were the central lamp 2-1 and the first lamp 2-2.
The ultraviolet light was measured by moving the detector in the X direction. The detector is a photodiode with a light-receiving surface size of 1 rm x 6 wa.

ホトダイオード前面に、波長25’ 4 n mの光の
みを通す干渉フィルターと、厚さ3.51でホトダイオ
ードと同じ大きさのスリットを重ねて置いた。
In front of the photodiode, an interference filter that only passes light with a wavelength of 25'4 nm and a slit with a thickness of 3.51 mm and the same size as the photodiode were placed overlappingly.

紫外線の強度はランプ最冷部の温度により変わってしま
う、温度差による誤差を防ぐためにランプ2の一部を空
M1の外に出して、この部分の温度を40℃一定に保っ
た。測定の結果を第3図と第4図に示す、第3図は電力
供給穴の大きさをe=5cs+、 f = 10cs*
(f / d =0.45)とした場合、第4図はe=
=5m、f=17cm(f/d=0.77)とした場合
の紫外線強度分布である。グラフかられかるように、電
力供給穴4の長さfを、ランプが導波管の軸方向を被う
長さdの約4分の3以上開けることにより、良い紫外線
面均一性が得られる。
The intensity of ultraviolet rays changes depending on the temperature of the coldest part of the lamp.To prevent errors due to temperature differences, a part of the lamp 2 was exposed outside the air M1, and the temperature of this part was kept constant at 40°C. The measurement results are shown in Figures 3 and 4. In Figure 3, the size of the power supply hole is e = 5cs +, f = 10cs *
(f / d = 0.45), Fig. 4 shows e =
This is the ultraviolet light intensity distribution when = 5 m and f = 17 cm (f/d = 0.77). As can be seen from the graph, good uniformity of the ultraviolet light surface can be obtained by making the length f of the power supply hole 4 more than about three quarters of the length d that the lamp covers in the axial direction of the waveguide. .

次に、電力供給穴4の長さfは171一定として、幅e
をlcn、3as、5Qlと変えて実験した。
Next, assuming that the length f of the power supply hole 4 is constant 171, the width e
Experiments were conducted by changing lcn, 3as, and 5Ql.

その結果、eが小さくなると空胴1に電力が入りにくく
なることがわかった。e=3m、すなわち、導波管の接
続面幅10.96mの約10分の3以上にすれば、少し
電力は入りにくいが均一性はe=51と同等になる。θ
=11ではうまく電力が入らなかった。
As a result, it was found that as e becomes smaller, it becomes difficult for electric power to enter the cavity 1. If e=3 m, that is, approximately 3/10 or more of the width of the connecting surface of the waveguide, 10.96 m, it will be a little harder to input power, but the uniformity will be equivalent to e=51. θ
Power did not come on properly at =11.

次に空胴1の大きさを変えて実験した。前述の空胴1(
大きさa =35m、 b = 25cn)は、共振周
波数! = 2 、456 G Hz  を持つ。つま
り、マグネトロンの周波数で共振する。そこで、共振し
ない寸法(a = 33cm、 b = 25cm)に
変えて、同様の実験を行なった。その結果、電力供給穴
4の大きさがe=5cs、f=17amのときは、ラン
プ2は均一に光った。つまり1本発明は、空胴1が共振
する場合もしない場合も成り立つ。
Next, we experimented by changing the size of cavity 1. The aforementioned cavity 1 (
Size a = 35m, b = 25cn) is the resonant frequency! = 2, with 456 GHz. In other words, it resonates at the magnetron's frequency. Therefore, a similar experiment was conducted by changing the dimensions to non-resonant dimensions (a = 33 cm, b = 25 cm). As a result, when the size of the power supply hole 4 was e=5 cs and f=17 am, the lamp 2 illuminated uniformly. In other words, the present invention is applicable whether or not the cavity 1 resonates.

また電力供給穴4の位置は、中心から±51程度ずれて
も効果は変わらなかった。穴の幅を大きくすれば、もつ
とずらしてもかまわない。
Further, even if the position of the power supply hole 4 was shifted by about ±51 from the center, the effect did not change. If you make the hole wider, it doesn't matter if it is shifted.

第5図、第6図は電力供給穴4の開は方の別実流側であ
る。穴は一個でなく、複数個開けても面積がほぼ同じな
ら同様の効果が得られる。
5 and 6 show different actual flow sides of the opening of the power supply hole 4. The same effect can be obtained even if multiple holes are made instead of just one, as long as the area is approximately the same.

次にランプ2の並び方は、第2図に示した並び方と直角
方向でも、ななめでも良い、ランプ2の形状も直管に限
らず1球形のものを複数個波べてもよい、しかし、第2
図の並び方が、中央付近で強く発生するプラズマが左右
に広がるので最も良い。
Next, the arrangement of the lamps 2 may be perpendicular or diagonal to the arrangement shown in FIG. 2
The best way to arrange the figures is because the plasma that is generated strongly near the center spreads to the left and right.

また、複数本あるランプ2の形状封入物は全部同じにす
ると後のメインテナンスがやり易くなるので都合が良い
Furthermore, it is convenient if the plurality of lamps 2 have the same shape of enclosures, as this makes later maintenance easier.

次に、空胴1の厚さはマイクロ波波長の2分の1以下に
するのが良い、なぜならば、こうすると電界の波は厚さ
方向にはのらず、ランプ2をこの方向に動かしても明る
さが変わらないからである。
Next, the thickness of the cavity 1 should be less than half the microwave wavelength, because in this way the electric field waves will not propagate in the thickness direction, and the lamp 2 will move in this direction. This is because the brightness does not change.

つまり、ランプ2を金網3に極力近づけて、光の取り出
し効率を上げることができる。また、ランプ2を電力供
給口4から離すと、つまり金網3に近づけると、空胴1
内により均一に電力がとどくので光の均一性もよくなる
In other words, the light extraction efficiency can be increased by bringing the lamp 2 as close as possible to the wire mesh 3. Furthermore, when the lamp 2 is moved away from the power supply port 4, that is, when it is brought closer to the wire mesh 3, the cavity 1
Since the power is distributed more evenly within the interior, the uniformity of the light is also improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、空胴1内に電力が均一に入るので、ラ
ンプ2の光出力面均一性がよくなる。電力供給穴4の大
きさがe=53でf=10mと171を比較すると、ラ
ンプの紫外線出力の最大値と最小値の比は前者が42%
、後者が62%となり20%よくなる。
According to the invention, the uniformity of the power in the cavity 1 improves the uniformity of the light output surface of the lamp 2. When comparing power supply hole 4 size e=53 and f=10m with 171, the ratio of maximum and minimum UV output of the lamp is 42% in the former.
, the latter is 62%, which is 20% better.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成図、第2図と第5図と第6図
は第1図のA−A断面図、第3図と第4図は紫外線出力
の面分布である。
FIG. 1 is an overall configuration diagram of the present invention, FIGS. 2, 5, and 6 are sectional views taken along the line AA in FIG. 1, and FIGS. 3 and 4 are planar distributions of ultraviolet output.

Claims (1)

【特許請求の範囲】 1、電気的に接続された、マイクロ波電源と導波管と空
胴、および、該空胴内に設置される複数本のランプから
なる装置において、該空胴を平板状とし、その広い面の
中央付近に導波管の軸に沿つて細長い電力供給穴を開け
たことを特徴とする光源装置。 2、前記細長い穴は、ランプが導波管軸方向を被う長さ
の4分の3以上にわたつて開いていることを特徴とする
第1項記載の光源装置。 3、前記細長い穴の幅は、導波管断面長辺の10分の3
以上であることを特徴とする第1項あるいは第2項記載
の光源装置。 4、前記平板状空胴の厚さは、マイクロ波の波長の2分
の1以下であることを特徴とする第1から第3項までの
いずれか1つの項記載の光源装置。
[Claims] 1. In a device consisting of a microwave power source, a waveguide, a cavity, and a plurality of lamps installed in the cavity, which are electrically connected, the cavity is formed into a flat plate. A light source device characterized in that a long and narrow power supply hole is formed near the center of the wide surface along the axis of the waveguide. 2. The light source device according to item 1, wherein the elongated hole is open over three quarters or more of the length of the lamp in the axial direction of the waveguide. 3. The width of the elongated hole is 3/10 of the long side of the waveguide cross section.
The light source device according to item 1 or 2, which is characterized by the above. 4. The light source device according to any one of items 1 to 3, wherein the thickness of the flat cavity is one-half or less of the wavelength of the microwave.
JP12379887A 1987-03-11 1987-05-22 Light source device Pending JPS63291395A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12379887A JPS63291395A (en) 1987-05-22 1987-05-22 Light source device
US07/155,507 US4933602A (en) 1987-03-11 1988-02-12 Apparatus for generating light by utilizing microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12379887A JPS63291395A (en) 1987-05-22 1987-05-22 Light source device

Publications (1)

Publication Number Publication Date
JPS63291395A true JPS63291395A (en) 1988-11-29

Family

ID=14869575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12379887A Pending JPS63291395A (en) 1987-03-11 1987-05-22 Light source device

Country Status (1)

Country Link
JP (1) JPS63291395A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535825A (en) * 1978-09-06 1980-03-13 Itsuki Ban Lighter equipped with watch
JPS61253762A (en) * 1985-05-07 1986-11-11 Canon Inc Lighting fixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535825A (en) * 1978-09-06 1980-03-13 Itsuki Ban Lighter equipped with watch
JPS61253762A (en) * 1985-05-07 1986-11-11 Canon Inc Lighting fixture

Similar Documents

Publication Publication Date Title
EP0819317B1 (en) Apparatus for producing light by exciting an electrodeless lamp with microwave energy and apparatus for producing high intensity visible light
US6031333A (en) Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity
US5361274A (en) Microwave discharge device with TMNMO cavity
US4266162A (en) Electromagnetic discharge apparatus with double-ended power coupling
US4933602A (en) Apparatus for generating light by utilizing microwave
US8766539B2 (en) Electrodeless lamps with grounded coupling elements and improved bulb assemblies
US6863773B1 (en) Linearly extended device for large-surface microwave treatment and for large surface plasma production
US20130113374A1 (en) Electrodeless lamps with grounded coupling elements
US8981644B2 (en) Lucent waveguide electromagnetic wave plasma light source
US9041291B2 (en) Lamp
US9805925B1 (en) Electrodeless high intensity discharge lamp with field suppression probes
JPS63291395A (en) Light source device
CA2218500A1 (en) Compact microwave lamp
RU2552848C2 (en) Plasma light source
US20030209995A1 (en) Electrode-less lamp equipment
JPS61104559A (en) Microwave electric-discharge light source
EP1347494A1 (en) Elongate Ultraviolet Light Source
CN105340056A (en) Lamp
JPS6463262A (en) Illuminant device
JPH04230950A (en) Electrodeless lamp and lamp cover
JPS63224193A (en) Light source device
JPH08153493A (en) Dielectric barrier discharge lamp device
JP3519116B2 (en) Microwave excitation light source device
JPH01264104A (en) Light source device
JPH01264103A (en) Light source device