JPS63291052A - Positive type photoresist composition - Google Patents

Positive type photoresist composition

Info

Publication number
JPS63291052A
JPS63291052A JP12734587A JP12734587A JPS63291052A JP S63291052 A JPS63291052 A JP S63291052A JP 12734587 A JP12734587 A JP 12734587A JP 12734587 A JP12734587 A JP 12734587A JP S63291052 A JPS63291052 A JP S63291052A
Authority
JP
Japan
Prior art keywords
polymer
dry etching
resist
etching resistance
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12734587A
Other languages
Japanese (ja)
Inventor
Mikio Yajima
幹男 谷島
Shigemitsu Kamiya
神谷 重光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP12734587A priority Critical patent/JPS63291052A/en
Publication of JPS63291052A publication Critical patent/JPS63291052A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To obtain superior pattern shape and dry etching resistance in an exposure system using far UV as a light source by using a resist compsn. contg. an alkali-soluble resin and a polymer contg. a monomer having a specified structure. CONSTITUTION:A positive type photoresist compsn. prepd. by uniformly dissolving an alkali-soluble resin A and a polymer B contg. >=10mol.% monomer represented by formula I in a solvent in 50:50-98:2 weight ratio of A:B is used. In formula I, R1 is H, 1-4C alkyl, cyano, Cl or Br and R2 is 1-22C haloalkyl. Novolak resin obtd. by condensing a phenol compd. with aldehyde in the presence of an acidic catalyst may be used as the resin A. The resist compsn. ensures superior pattern shape and dry etching resistance in an exposure system using far UV, especially KrF (krypton-fluorine) excimer laser light as a light source.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主に半導体集積回路やフォトマスクなどのパ
ターン形成に用いられるアルカリ現像型の感放射線レジ
ストに関し、さらに詳しくは、遠紫外線を光源とする微
細パターン形成能力に優れたポジ型フォトレジストに関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an alkali-developable radiation-sensitive resist mainly used for pattern formation of semiconductor integrated circuits and photomasks. The present invention relates to a positive photoresist that has excellent ability to form fine patterns.

(従来の技術) 半導体集積回路においては、高集積化のために1μn1
以下の寸法のパターンを形成する必要が生じてきた0こ
のような微細パターンを形成するために、露光装置の改
良がおこなわれている。主にレンズの性能向上によって
現在一般に使用されている縮小投影露光装置の解像度は
1μn1以下となっているが、0.6ないし0.5μm
程度が限界であることが明らかになった。しかも、レン
ズの改良は開口数を大きくするため焦点深度が小さくな
る欠点があった。ところが集積回路の設計寸法が光学的
解像度に近づきつつあるため、こうした領域においても
正確にパターンを形成できる露光方式の必要性が高まっ
ている。
(Prior art) In semiconductor integrated circuits, 1μn1 is used for high integration.
It has become necessary to form patterns with the following dimensions. In order to form such fine patterns, improvements have been made to exposure apparatuses. Mainly due to improvements in lens performance, the resolution of reduction projection exposure equipment currently in common use is 1 μn1 or less, but it is now 0.6 to 0.5 μm.
It became clear that there was a limit. Moreover, improvements in lenses have the drawback of increasing the numerical aperture, resulting in a reduced depth of focus. However, as the design dimensions of integrated circuits are approaching optical resolution, there is an increasing need for exposure methods that can accurately form patterns even in these areas.

光学的解像度をさらに改良するための方法のうち現在の
ところ最も有力なものとして露光光源の短波長化がある
。この手法にはレンズの開口数を大きくする場合のよう
に焦点深度が低下する問題がない。
Among the methods for further improving the optical resolution, the most effective method at present is to shorten the wavelength of the exposure light source. This method does not have the problem of reduced depth of focus, which occurs when the numerical aperture of the lens is increased.

また、レジストパターンを基板に転写するだめのエソナ
ング技術として、エツチング液の中に基板を浸漬する湿
式法にかわって、プラズマによる反応性イオンエツチン
グ(R[)が主流となってきたため、レジストに対して
以下のような性能が要求されるようになった。すなわち
、R,TEでは基板の深さ方向にのみエツチングが進行
する傾向があるため、レジストパターンの側壁が傾いて
いると正確にパターン寸法を転写できない。そこで、レ
ジストにはより矩形に近いパターンを形成する性能が要
求される。
In addition, reactive ion etching (R[) using plasma has become mainstream, replacing the wet method of immersing the substrate in an etching solution, as an etching technique for transferring the resist pattern onto the substrate. As a result, the following performance is now required. That is, in R and TE, etching tends to proceed only in the depth direction of the substrate, so if the side walls of the resist pattern are inclined, the pattern dimensions cannot be accurately transferred. Therefore, resists are required to have the ability to form patterns that are more nearly rectangular.

具体的には、クリプトン−7ノ素(KrF)エキシマ−
・レーザーを光源とする露光システムが実用化されよう
としている。しかし、この光源を用いた場合、従来の水
銀灯のように広い波長範囲にわたって露光することがで
きず、248 nmを中心に数nmのバンド幅しかない
ため、この発光波長におけるレジストの吸光度の大小が
パターン形成性に大きく影響することがわかってきた。
Specifically, krypton-7 (KrF) excimer
- Exposure systems that use lasers as light sources are about to be put into practical use. However, when using this light source, it is not possible to expose over a wide wavelength range like a conventional mercury lamp, and the band width is only a few nm around 248 nm, so the absorbance of the resist at this emission wavelength is It has been found that this has a large effect on pattern formation.

従来、超高圧水銀灯用に用いられてきたレジスト層K 
r Fエキシマ−・レーザーに適用できるかどうかが検
討されてきたが、要求を満足できるものはなかった。問
題点は、基本的に耐ドライエツチング性と解像力に集約
される。まず、自己現像型等のドライプロセス化できる
レジストは耐ドライエツチング性と解像力に問題があっ
た。ポリスチレン誘導体系のレジストは、スチレン骨格
が248 amの光を強く吸収するためレジスト層の上
層しか架橋せず、現像時にパターンが剥がれたり、パタ
ーン形状が強いオーバーハングとなる等の問題があった
。また、ポリアクリル酸エステル誘導体系のレジストは
、248 nmの吸収が少ないのでポリスチレン誘導体
のような問題はないが、耐ドライエツチング性が悪い。
Resist layer K conventionally used for ultra-high pressure mercury lamps
The applicability of this method to rF excimer lasers has been studied, but none has been able to meet the requirements. The problems basically boil down to dry etching resistance and resolution. First, resists that can be subjected to a dry process such as self-developing type have problems in dry etching resistance and resolution. In polystyrene derivative-based resists, the styrene skeleton strongly absorbs light at 248 am, so that only the upper layer of the resist layer is crosslinked, resulting in problems such as peeling off of the pattern during development and strong overhanging of the pattern shape. Further, resists based on polyacrylic acid ester derivatives have low absorption at 248 nm, so they do not have the same problems as polystyrene derivatives, but they have poor dry etching resistance.

さらにアルカリ可溶性のフェノール樹脂とキノンジアジ
ド化合物からなるレジストの場合、耐ドライエツチング
性は良いが、フェノール樹脂は248 nn+の吸収が
少ないもののキノンジアジド化合物が露光の前後とも強
い吸収を有するので、形成されるパターン断面形状がピ
ラミッド状になってしまうという問題があった。
Furthermore, in the case of a resist made of an alkali-soluble phenolic resin and a quinonediazide compound, the dry etching resistance is good, but although the phenolic resin has low absorption of 248 nn+, the quinonediazide compound has strong absorption both before and after exposure, so the pattern formed is There was a problem that the cross-sectional shape became pyramid-shaped.

(発明の解決しようとする問題点) 本発明者らは、前記欠点を解決すべく鋭意研究の結果、
アルカリ可溶性樹脂と一般式(I)であらわされる単量
体をふくむ重合体とからなるレジスト組成物を用いれば
、遠紫外線、特にK r Fエキシマ−・レーザーを光
源とする露光システムにおけるパターン形状と耐ドライ
エツチング性の問題を解決できることを見出し、この知
見に基づき本発明を完成するに到った。
(Problems to be solved by the invention) As a result of intensive research to solve the above-mentioned drawbacks, the present inventors have found that
By using a resist composition consisting of an alkali-soluble resin and a polymer containing a monomer represented by the general formula (I), it is possible to improve the pattern shape in an exposure system using deep ultraviolet light, especially K r F excimer laser, as a light source. It was discovered that the problem of dry etching resistance could be solved, and based on this knowledge, the present invention was completed.

(問題点を解決するための手段) かくして本発明によれば、アルカリ可溶性樹脂(蜀と一
般式(I)であらわされる単量体を少なくとも10モモ
ル含有する重合体(E)を溶剤に均一に溶解してなり、
かつA:Bの重量比が50 : 50から98=2の範
囲にあることを特徴とするポジ型フォトレジスト組成物
が提供される。
(Means for Solving the Problems) Thus, according to the present invention, a polymer (E) containing at least 10 moles of an alkali-soluble resin (Shu and a monomer represented by general formula (I)) is uniformly added to a solvent. It dissolves,
A positive photoresist composition is provided, characterized in that the weight ratio of A:B is in the range of 50:50 to 98=2.

I CH2−C−C= O(I) 身 −R2 (式中のR1は水素、炭素数1〜4のアルキル基。I CH2-C-C=O(I) body -R2 (R1 in the formula is hydrogen or an alkyl group having 1 to 4 carbon atoms.

シアノ基、塩素または臭素のいずれかを、R2は炭素数
1〜22のハロアルキル基をあられす)本発明における
アルカリ可溶性樹脂としては、まずノボラックが挙げら
れる。これは通常フェノール化合物とアルデヒド類を酸
性触媒下で縮合させて得られる。フェノール化合物とし
ては、フェノール、クレゾール、キシレノール、t−ブ
チルフェノール等のアルギルフェノール、ビスフェノー
ル、ナフトール等を単独で用いてもよいし、組み合わせ
て用いてもよい。アルデヒド類としては、ホルムアルデ
ヒドが一般的であるが、そのほかのアルデヒドであって
もよい。酸性触媒としては、塩酸、硫酸、燐酸等の無機
酸又はシーウ酸、p−トルエンスルフォン酸等の有機酸
が用いられるが、使用するフェノールとアルデヒド類の
反応性の大小に応じて酸性の強弱を選択する必要がある
Examples of the alkali-soluble resin in the present invention include novolak. This is usually obtained by condensing a phenol compound and an aldehyde under an acidic catalyst. As the phenol compound, phenol, cresol, xylenol, argylphenol such as t-butylphenol, bisphenol, naphthol, etc. may be used alone or in combination. As the aldehyde, formaldehyde is generally used, but other aldehydes may also be used. As the acidic catalyst, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, etc., or organic acids such as sialic acid, p-toluenesulfonic acid, etc. are used, but the strength of the acidity can be adjusted depending on the reactivity of the phenol and aldehyde used. You need to choose.

本発明におけるアルカリ可溶性樹脂としては、ビニルフ
ェノール、イソプロペニルフェノールの単独重合体ある
いは共重合体も使用可能である。
As the alkali-soluble resin in the present invention, homopolymers or copolymers of vinylphenol and isopropenylphenol can also be used.

共重合体の場合には、フェノール性水酸基を持たないス
チレン誘導体は、248 nmの吸収を増大させるので
好ましくないが、アクリル酸エステル類、アクリロニト
リル等の単量体はアルカリ溶解性を失わない範囲で所望
の割合で共重合に用いることができる。ただし、これら
の共重合体は耐ドライエツチング性を低下させるので、
50モル%未満の範囲で用いるのが良い。
In the case of copolymers, styrene derivatives that do not have phenolic hydroxyl groups are not preferred because they increase absorption at 248 nm, but monomers such as acrylic esters and acrylonitrile may be used as long as they do not lose their alkali solubility. It can be used in copolymerization in any desired proportion. However, these copolymers reduce dry etching resistance, so
It is preferable to use it in a range of less than 50 mol%.

アルカリ可溶性樹脂のうち、ノボラックの分子量として
は、数平均分子量が800〜2000、好ましくは90
0〜1600のものがよい。RIE工程においては、レ
ジスト表面の温度が上昇するため、分子量が小さすぎる
と耐熱性が悪化してパターンが流れてしまう。逆に分子
量が太きすぎるとレジストの耐熱性はよいが解像力が劣
る。ビニルフェノール、イソプロペニルフェノールノ単
独重合体あるいは共重合体の場合には数平均分子量が1
000〜50000のものがよい。
Among the alkali-soluble resins, the number average molecular weight of novolak is 800 to 2000, preferably 90.
A value of 0 to 1600 is preferable. In the RIE process, the temperature of the resist surface increases, so if the molecular weight is too small, the heat resistance will deteriorate and the pattern will flow. Conversely, if the molecular weight is too large, the resist will have good heat resistance but poor resolution. In the case of vinylphenol, isopropenylphenol homopolymers or copolymers, the number average molecular weight is 1.
000 to 50,000 is preferable.

一般式(I)の化合物はアクリル酸、α−アルキルアク
リル酸(例えばメタクリル酸)、α−シアノアクリル酸
、α−クロロアクリル酸、α−ブロモアクリル酸等のエ
ステルであって、エステル残基としてハロアルキル基を
有するものである。これらのうち酸としては、メタクリ
ル酸、α−シアノアクリル酸、α−クロロアクリル酸が
248 nmの吸収が少なく感度も良いという点で好ま
しい。
The compound of general formula (I) is an ester of acrylic acid, α-alkyl acrylic acid (e.g. methacrylic acid), α-cyanoacrylic acid, α-chloroacrylic acid, α-bromoacrylic acid, etc., and as an ester residue It has a haloalkyl group. Among these acids, methacrylic acid, α-cyanoacrylic acid, and α-chloroacrylic acid are preferable because they have low absorption at 248 nm and good sensitivity.

R2のハロアルキル基の炭素数は1〜8が好ましい0こ
の範囲のものは感度が良好でレジストの耐熱性もよい。
The number of carbon atoms in the haloalkyl group of R2 is preferably 1 to 8.Those within this range have good sensitivity and resist heat resistance.

ハロアルキル基のハロゲンとしてはフッ素、塩素または
臭素があげられる。 R2の具体例としては−CH20
F2C’HF21−CH2(CF2)3C!HF2.−
C(CH3)2CF2CHF2.−C(CH3)2(C
F2)3CHF2.−CH2CF2CFHCF3.−C
H(CH3)CF2CFHCF3.−CH(CH2CH
3)CF2CFHCF3.−CH(CH2CF2CHa
)CF2CFHCF3.−C(CH3)2CF2CFH
CF3.−C(CH3)(C2H5)CF2CFHCF
3.−CH2C(CH3)2CF2CFHCF3 、 
 CH2CH20mF2m CFa (”は0〜21の
整数をあられす)、  −CH2CH2X、−CH2C
F2. −CH2CX3. −CH2CI(2CH2X
、  −CH2CH2CH2X。
Examples of the halogen in the haloalkyl group include fluorine, chlorine, and bromine. A specific example of R2 is -CH20
F2C'HF21-CH2(CF2)3C! HF2. −
C(CH3)2CF2CHF2. -C(CH3)2(C
F2)3CHF2. -CH2CF2CFHCF3. -C
H(CH3)CF2CFHCF3. -CH(CH2CH
3) CF2CFHCF3. -CH(CH2CF2CHa
) CF2CFHCF3. -C(CH3)2CF2CFH
CF3. -C(CH3)(C2H5)CF2CFHCF
3. -CH2C(CH3)2CF2CFHCF3,
CH2CH20mF2m CFa (" is an integer from 0 to 21), -CH2CH2X, -CH2C
F2. -CH2CX3. -CH2CI(2CH2X
, -CH2CH2CH2X.

−CH2CH2CH22,CH2CH2CX3. −C
H2CH2CH2CH2X。
-CH2CH2CH22, CH2CH2CX3. -C
H2CH2CH2CH2X.

CH2CH2CH2CH2X 臭素又はこれらの混合物)等があげられる。CH2CH2CH2CH2X (bromine or a mixture thereof), etc.

一般式(I)の単量体は、他の単量体と共重合して用い
ることができる0共重合する単量体として  1はα、
β−不飽和カルボン酸及びα、β−不飽和カルボン酸エ
ステル類、α、β−不飽和カルポン酸ハライド、アクリ
ロニトリル、アクロレインなどを挙げることができる。
The monomer of general formula (I) can be used by copolymerizing with other monomers. 0 As a copolymerizable monomer, 1 is α,
Examples include β-unsaturated carboxylic acids and α,β-unsaturated carboxylic acid esters, α,β-unsaturated carboxylic acid halides, acrylonitrile, and acrolein.

具体的には、(メタ)アクリル酸アルキルエステル類、
(メタ)アクリル酸−β−ヒドロキシエチル、(メタ)
アクリル酸クロライド、α−クロロアクリル酸アルキル
エステル類、(メタ)アクリル酸、(メタ)アクリル酸
無水物、α−クロロアクリル酸、無水マレイン酸、マレ
イン酸アルキルエステル類、フタル酸、フタル酸アルキ
ルエステル類、クロトン酸、クロトン酸アルキルエステ
ル類、イタコン酸、イタコン酸アルキルエステル類等が
挙げられるOまた、上記のα、β−不飽和カルボン酸の
エステル残基にグリシジル基のような反応性の基を用い
ることもできる。
Specifically, (meth)acrylic acid alkyl esters,
(meth)acrylic acid-β-hydroxyethyl, (meth)
Acrylic acid chloride, α-chloroacrylic acid alkyl esters, (meth)acrylic acid, (meth)acrylic acid anhydride, α-chloroacrylic acid, maleic anhydride, maleic acid alkyl esters, phthalic acid, phthalic acid alkyl esters crotonic acid, crotonic acid alkyl esters, itaconic acid, itaconic acid alkyl esters, etc. Also, reactive groups such as glycidyl groups are added to the ester residues of the above α,β-unsaturated carboxylic acids. You can also use

重合体(Blは、一般式(I)の単量体の割合が10〜
100モル優になるような組成にする必要がある。メタ
−およびα−ハロアクリル酸、同エステル類はこれらの
含有率の高い重合体を得ることができるが、一般式(I
)の単量体が10モル%未満では遠紫外線に対する感度
が充分でない。一般式(I)の単量体の割合は、30モ
ル饅以上の場合感度が高く、特に好ましい。
The polymer (Bl) has a monomer ratio of general formula (I) of 10 to
It is necessary to have a composition in which the amount is more than 100 moles. Meta- and α-haloacrylic acids and their esters can be used to obtain polymers with a high content of these acids, but the general formula (I
) If the monomer content is less than 10 mol %, sensitivity to deep ultraviolet rays is insufficient. When the proportion of the monomer of general formula (I) is 30 mol or more, sensitivity is high and it is particularly preferable.

なお、一般式(I)の化合物はアクリル酸、α−アルキ
ルアクリル酸、α−シアンアクリル酸、α−クロロアク
リル酸、α−ブロモアクリル酸とノ10ゲン化アルコー
ルとから合成される。ハロゲン化アルコールの合成に関
してはJ、 D、 Lazθrtθ、J。
The compound of general formula (I) is synthesized from acrylic acid, α-alkyl acrylic acid, α-cyanacrylic acid, α-chloroacrylic acid, α-bromoacrylic acid, and 10genated alcohol. J, D, Lazθrtθ, J for synthesis of halogenated alcohols.

Amer、Chem、Soc、、  77.910(1
955)などに記されている◇また重合体(B)はラジ
カル重合法によって製造される。
Amer, Chem, Soc,, 77.910 (1
955) etc. Polymer (B) is also produced by a radical polymerization method.

アルカリ可溶性樹脂(蜀に対する重合体(Blの配合組
成はA:Bが50:50〜98:2である。Bの割合が
50%を越えると耐ドライエツチング性が低下し、Bの
割合が2%未満では遠紫外線に対する感度が不充分であ
る。
The blending composition of alkali-soluble resin (polymer (Bl) is A:B of 50:50 to 98:2.If the ratio of B exceeds 50%, the dry etching resistance will decrease, and if the ratio of B exceeds 2. If it is less than %, the sensitivity to far ultraviolet rays is insufficient.

アルカリ可溶性樹脂および重合体は、単独の組み合わせ
で用いてもよいし、それぞれを併用してもよいことはも
ちろんである。また、一般式(I)の単量体が10モモ
ル以上となる範囲で本発明の重合体以外の重合体を併用
することもできるが、本発明の重合体を単独で用いるほ
うが解像力が良い点で好ましい。
Of course, the alkali-soluble resin and the polymer may be used alone or in combination. In addition, a polymer other than the polymer of the present invention can be used in combination with the monomer of the general formula (I) in an amount of 10 moles or more, but the point is that using the polymer of the present invention alone has better resolution. It is preferable.

本発明のレジスト組成物は、固形物を有機溶剤に均一に
溶解して得られる。溶剤としては、グロパノール、ブタ
ノール等のアルコール類、メチルエチルケトン、メチル
イソブチルケトン、シクロヘキサノン等のケトン類、酢
酸エテル、酢酸ブチル、酢酸インアミル等の酢酸エステ
ル類、テトラヒドロフラン、ジオキサン等の環状エーテ
ル、ブチルセロソルブ、エチルセロソルブ、ブチルセロ
ソルブ等、さらにエチルセロソルブアセテート、ブチル
セロソルブアセテート、γ−ブチロラクトン等があげら
れる。また、キシレン、トルエン等の芳香族炭化水素を
混合してもよい。固形物の含有量は、通常10〜40重
量係程度である。
The resist composition of the present invention is obtained by uniformly dissolving a solid substance in an organic solvent. Examples of solvents include alcohols such as gropanol and butanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, acetate esters such as ethyl acetate, butyl acetate, and inamyl acetate, cyclic ethers such as tetrahydrofuran and dioxane, butyl cellosolve, and ethyl cellosolve. , butyl cellosolve, and further examples include ethyl cellosolve acetate, butyl cellosolve acetate, γ-butyrolactone, and the like. Further, aromatic hydrocarbons such as xylene and toluene may be mixed. The content of solids is usually about 10 to 40 parts by weight.

本発明のレジスト組成物には、界面活性剤、染料、増感
剤等の添加剤が配合されていてもよい。
The resist composition of the present invention may contain additives such as surfactants, dyes, and sensitizers.

本発明のレジスト組成物は、基板に回転塗布した後10
0℃前後で熱処理して1μm程度のレジスト膜を形成し
、ついで露光・現像してパターンを形成する。本発明の
組成物は、パターンを形成しようとする半導体基板の上
に塗布して単層レジストとして使用することができると
同時に、下層に別のレジストを塗布しておき2層または
6層レジストとしても使用できる。露光は、通常コンタ
クトアライナ−、プロジェクションアライナ−、ステッ
パー等の遠紫外線露光装置によって行うのが好適である
が、電子線、X線、イオンビーム等も用いることができ
る。現像は露光した基板を現像液の中に1分程度浸漬す
るか、基板の上に現像液を静置して行うのがよい。現像
液としては、水酸化ナトリウム、水酸化カリウム、メタ
ケイ酸ナトリウム等の無機アルカリ、水酸化テトラメチ
ルアンモニウム、コリン等の有機アルカリが用いられる
。また、アミン類、アルコール類、エーテル類、界面活
性剤等を混合して用いることもできる。
After the resist composition of the present invention is spin-coated onto a substrate,
A resist film of about 1 μm is formed by heat treatment at around 0° C., and then exposed and developed to form a pattern. The composition of the present invention can be used as a single-layer resist by coating it on a semiconductor substrate on which a pattern is to be formed, or can be used as a two-layer or six-layer resist by coating another resist as an underlying layer. can also be used. Exposure is normally preferably carried out using a deep ultraviolet exposure device such as a contact aligner, projection aligner, or stepper, but electron beams, X-rays, ion beams, etc. can also be used. Development is preferably carried out by immersing the exposed substrate in a developer for about 1 minute, or by leaving the developer still on the substrate. As the developer, inorganic alkalis such as sodium hydroxide, potassium hydroxide, and sodium metasilicate, and organic alkalis such as tetramethylammonium hydroxide and choline are used. Moreover, amines, alcohols, ethers, surfactants, etc. can also be used in combination.

(発明の効果) かくして本発明によれば、遠紫外線、特にKrFエキシ
マ−・レーザーを光源とする露光システムにおけるパタ
ーン形状と耐ドライエツチング性に優れたポジ型フォト
レジスト組成物が提供される。
(Effects of the Invention) Thus, according to the present invention, a positive photoresist composition is provided which has excellent pattern shape and dry etching resistance in an exposure system using deep ultraviolet light, particularly a KrF excimer laser, as a light source.

以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、実施例、及び比較例中の部及び係はとくに断り
のないかぎり重量基準である。
The present invention will be explained in more detail with reference to Examples below. Note that parts and sections in Examples and Comparative Examples are based on weight unless otherwise specified.

実施例1 式(II)の単量体 CH2=CH 1(■) 0−C−0−CH2CH2(CF2)IICF3107
r(0,15モル)とメタクリル酸メチル85f(0,
85モル)とアゾビスイソブチロニドリル(AIBN 
)  0.669 (4,0mmol)  とベンゼン
642yをフラスコに入れ、室温で溶解したのち窒素を
60分吹き込み、引き続き窒素気流1フラスコ中温度を
80℃に上げ5時間攪拌しながら重合を行った。反応物
を攪拌しながら5!のメタノール中に注ぎ、析出した重
合体を濾別し真空乾燥して97yの重合体を得た。GP
Cによるポリスチレン換算重量平均分子量は11000
であった。この重合体4.51と数平均分子量1400
のクレゾール・ホルムアルデヒド樹脂(ff+−クレゾ
ール/p−クレゾール=6/d)50fを酢酸セロソル
ブ147yに溶解した。この溶液を0.2μmのテフロ
ンメンブランフィルタ−で濾過してレジスト組成物を得
た。
Example 1 Monomer of formula (II) CH2=CH1(■) 0-C-0-CH2CH2(CF2)IICF3107
r (0,15 mol) and methyl methacrylate 85f (0,
85 mol) and azobisisobutyronidolyl (AIBN
) 0.669 (4.0 mmol) and benzene 642y were placed in a flask, dissolved at room temperature, nitrogen was blown into the flask for 60 minutes, and then the temperature in the flask was raised to 80° C. under a nitrogen stream and polymerization was carried out with stirring for 5 hours. 5 while stirring the reactants! The precipitated polymer was filtered and dried under vacuum to obtain a 97y polymer. G.P.
The polystyrene equivalent weight average molecular weight of C is 11,000
Met. This polymer has a number average molecular weight of 4.51 and 1400.
50f of cresol formaldehyde resin (ff+-cresol/p-cresol=6/d) was dissolved in cellosolve acetate 147y. This solution was filtered through a 0.2 μm Teflon membrane filter to obtain a resist composition.

このレジスト組成物をスピンコルターでシリコン鏡面ウ
ェハに塗布しエアーオーブン中120℃で60分プリベ
ークして1.2μmのレジスト膜厚とし、ついで、レオ
ニクス社ffTE 43 o型エキシマ−・し〜ザー装
置を用いてクリプトン・フッ素のガス系で以下の条件で
パターンを露光した。
This resist composition was applied to a silicon mirror wafer using a spin coulter and prebaked in an air oven at 120°C for 60 minutes to give a resist film thickness of 1.2 μm. A pattern was exposed using a krypton-fluorine gas system under the following conditions.

パルス当たりの露光エネルギーは20mJ/am”であ
った。1.0μ病から0.45μ〃1まで0.05μm
刻みで1対1ライン・アンド・スペース・パターンを有
するフォトマスクを介して密着露光した。同時に5μn
1ライン・アンドψスペース・パターンも露光した。こ
のウェハを2.4%水酸化テトラメチルアンモニウム水
溶液で室温静置現像し、以下の評価を行った。
The exposure energy per pulse was 20mJ/am''.0.05μm from 1.0μ to 0.45μ〃1
Contact exposure was carried out through a photomask having a 1:1 line and space pattern in increments. 5 μn at the same time
A 1 line and ψ space pattern was also exposed. This wafer was developed at room temperature with a 2.4% tetramethylammonium hydroxide aqueous solution, and the following evaluations were performed.

感度は、5μn+のパターンが抜けるのに必要な最小露
光エネルギーを表し、最小解像線幅は感度にあたる露光
エネルギーから20mJ/cがづつ露光時間を400m
J/am” まで増加させていったときに解像できる最
も狭い1対1ライン・アンド・スペース・パターンの線
幅をあられす。パターン形状は、最小解像線幅のパター
ンの破断面を観察し、矩形のものは01台形のものは×
とした。これらの評価には走査型電子顕微鏡を用いた。
Sensitivity represents the minimum exposure energy required to pass through a 5 μn+ pattern, and the minimum resolution line width is determined by increasing the exposure energy by 20 mJ/c and the exposure time by 400 m from the exposure energy corresponding to the sensitivity.
The line width of the narrowest one-to-one line-and-space pattern that can be resolved when increasing the line width to J/am”.The pattern shape is determined by observing the fractured surface of the pattern with the minimum resolution line width. And, rectangular ones are 01 trapezoidal ones are ×
And so. A scanning electron microscope was used for these evaluations.

酸化膜シリコン基板上にスピンコーターで1.2μ?+
1のレジスト膜を形成し、5μmライン・アンド・スペ
ース・パターンを描き、基板をエツチングした。日電ア
ネルバ社製りEM−451T型ドライエツチング装置を
用いて電極間隔3511m。
1.2μ on an oxide film silicon substrate with a spin coater? +
A resist film of No. 1 was formed, a 5 μm line and space pattern was drawn, and the substrate was etched. Electrode spacing was 3511 m using an EM-451T dry etching device manufactured by Nichiden Anelva.

13.75MHz、500W、CF4/H2= 25/
8(体積比)の条件で耐トライエツチング性を評価した
。耐ドライエツチング性は比較例1のレジストのエツチ
ング速度を1.0とした相対値で示した。
13.75MHz, 500W, CF4/H2=25/
Tri-etching resistance was evaluated under conditions of 8 (volume ratio). The dry etching resistance was expressed as a relative value with the etching rate of the resist of Comparative Example 1 being 1.0.

値が小さい程耐ドライエツチング性が良い。The smaller the value, the better the dry etching resistance.

感度ll1120 mJ/ cm”、最小解像線幅は0
.45 ttm、パターン形状は○、耐ドライエツチン
グ性は1.1であった。
Sensitivity: 1120 mJ/cm”, minimum resolution line width: 0
.. 45 ttm, the pattern shape was ○, and the dry etching resistance was 1.1.

実施例2 実施例1における・クレゾール・ホルムアルデヒド樹脂
にかえて数平均分子量8900のポリビニルフェノール
41.1Fと実施例1におけると同じ重合体5.・62
を酢酸セロソルブ1261に溶解した他は実施例1と同
様にして評価を行った。
Example 2 The cresol formaldehyde resin in Example 1 was replaced with polyvinylphenol 41.1F having a number average molecular weight of 8900 and the same polymer 5.・62
The evaluation was carried out in the same manner as in Example 1, except that the sample was dissolved in cellosolve acetate 1261.

感度は80 mJ/cが、最小解像線幅は0.45μ〃
1、パターン形状は○、耐ドライエツチング性は1.2
であった。
Sensitivity is 80 mJ/c, minimum resolution line width is 0.45 μ
1. Pattern shape is ○, dry etching resistance is 1.2
Met.

実施例3 メタクリル酸へキサフルオロブチル(CH2=C(CH
3)Coo−CIJ2CH2CHFCF3) 125 
f (0,5モル)とα−クロロアクリル酸メチル60
.3f(0,50モル)とアゾビスイソブチロニトリル
0.82 f/ (5,0mmol )とベンゼン58
31をフラスコに入れ、実施例1と同様に重合して本発
明の重合体1212を得た。GPCによるポリスチレン
換算重量平均分子量は13000であった。この重合体
121と実施例1で用いたと同じクレゾール・ホルムア
ルデヒド樹脂601を酢酸セロソルブ1852に溶解し
て実施例1と同様に評価を行った。
Example 3 Hexafluorobutyl methacrylate (CH2=C(CH
3)Coo-CIJ2CH2CHFCF3) 125
f (0.5 mol) and methyl α-chloroacrylate 60
.. 3f (0,50 mol) and azobisisobutyronitrile 0.82 f/ (5,0 mmol) and benzene 58
31 was placed in a flask and polymerized in the same manner as in Example 1 to obtain Polymer 1212 of the present invention. The weight average molecular weight in terms of polystyrene determined by GPC was 13,000. This polymer 121 and the same cresol-formaldehyde resin 601 used in Example 1 were dissolved in cellosolve acetate 1852 and evaluated in the same manner as in Example 1.

感度は120 mJ/cm”、最小解像線幅は0.45
μm、パターン形状は○、耐ドライエツチング性は1.
0であった。
Sensitivity is 120 mJ/cm”, minimum resolution line width is 0.45
μm, pattern shape is ○, dry etching resistance is 1.
It was 0.

実施例4 α−クロロアクリル酸へキサフルオロブチル162.3
f(0,60モル)とメタクリル酸メチル40S’(0
,40モル)とアゾビスイソブチロンニトリル0.65
6 f (4,0mmol )とペンゼン675f!を
フラスコに入れ、実施例1と同様にして重合して重合体
1292を得た◇GPCによるポリスチレン換算重量平
均分子量は9900であった。この重合体5.5fと実
施例1で用いたクレゾール・ホルムアルデヒド樹脂60
1を酢酸セロソルブ180りに溶解して実施例1と同様
に評価を行った。
Example 4 Hexafluorobutyl α-chloroacrylate 162.3
f (0.60 mol) and methyl methacrylate 40S' (0
, 40 mol) and azobisisobutyronenitrile 0.65
6 f (4,0 mmol) and Penzen 675 f! was placed in a flask and polymerized in the same manner as in Example 1 to obtain polymer 1292. The weight average molecular weight in terms of polystyrene by GPC was 9900. This polymer 5.5f and the cresol formaldehyde resin 60 used in Example 1
1 was dissolved in 180 g of cellosolve acetate and evaluated in the same manner as in Example 1.

感度は90mJ/am”、最小解像線幅td 0.45
 μnr、パターン形状は○、耐ドライエツチング性は
1.1であった。
Sensitivity is 90mJ/am", minimum resolution line width td 0.45
μnr, pattern shape was ○, and dry etching resistance was 1.1.

実施例5 α−シアノアクリル酸−2,2,2−) IJ クロロ
エチル130.09 (0,60モル)とアクリル酸7
,2り(0,10モル)とアクリル酸−β−ヒドロキシ
エチル34.El(0,30モル)とアゾビスイソブチ
ロンニトリル0.656 ? (4,Ommol )と
ベンゼン573vをフラスコに入れ、実施例1と同様に
して重合して重合体129yを得た。GPCによるポリ
スチレン換算重量平均分子量は12000であった。こ
の重合体242と実施例1で用いたクレゾール・ホルム
アルデヒド樹脂607を酢酸セロソルブ239yに溶解
して実施例1と同様に評価を行った。
Example 5 α-cyanoacrylic acid-2,2,2-) IJ Chloroethyl 130.09 (0.60 mol) and acrylic acid 7
, 2 (0.10 mol) and β-hydroxyethyl acrylate34. El (0.30 mol) and azobisisobutyronenitrile 0.656? (4, Ommol) and benzene 573v were placed in a flask and polymerized in the same manner as in Example 1 to obtain polymer 129y. The weight average molecular weight in terms of polystyrene determined by GPC was 12,000. This polymer 242 and the cresol-formaldehyde resin 607 used in Example 1 were dissolved in cellosolve acetate 239y and evaluated in the same manner as in Example 1.

感度は100 mJ/cm”、最小解像線幅は0.45
μm、パターン形状は○、耐ドライエンチング性は1.
2であった。
Sensitivity is 100 mJ/cm”, minimum resolution line width is 0.45
μm, pattern shape is ○, dry etching resistance is 1.
It was 2.

比較例1 2、3.4− ) IJヒドロキシベンゾフェノン1.
0モルとO−ナフトキノンジアジド−5−スルフォン酸
クロライド1.8モルのエステル化物267と実施例1
で用いたクレゾール・ホルムアルデヒド樹脂962を酢
酸セロソルブ2927に溶解し、0.2μmメンブラン
フィルタ−で沖過してポジ型フォトレジストを調製し、
実施例1と同様にして評価した。
Comparative Example 1 2, 3.4-) IJ Hydroxybenzophenone 1.
Esterified product 267 of 0 mol and 1.8 mol of O-naphthoquinonediazide-5-sulfonic acid chloride and Example 1
The cresol-formaldehyde resin 962 used in was dissolved in cellosolve acetate 2927 and filtered through a 0.2 μm membrane filter to prepare a positive photoresist.
Evaluation was made in the same manner as in Example 1.

感度は150 mJ/Cm″、最小解像線幅は0.55
μm、パターン形状は×、耐ドライエツチング性は1.
0であった。
Sensitivity is 150 mJ/Cm'', minimum resolution line width is 0.55
μm, pattern shape is ×, dry etching resistance is 1.
It was 0.

比較例2 レジストとしてポリスチレン換算分子量40000のポ
リメタクリル酸メチルを用いた以外は実施例1と同様に
して評価した。
Comparative Example 2 Evaluation was carried out in the same manner as in Example 1 except that polymethyl methacrylate having a polystyrene equivalent molecular weight of 40,000 was used as the resist.

感度は280 mJ/cm”、最小解像線幅は0.45
μm1パターン形状は0、耐ドライエツチング性は4.
6であった。
Sensitivity is 280 mJ/cm", minimum resolution line width is 0.45
μm1 pattern shape is 0, dry etching resistance is 4.
It was 6.

本発明の組成物は解像力が高く、パターン形状が良好で
耐ドライエツチング性に優れていることがわかる。
It can be seen that the composition of the present invention has high resolution, good pattern shape, and excellent dry etching resistance.

Claims (1)

【特許請求の範囲】 アルカリ可溶性樹脂(A)と一般式(I)であらわされ
る単量体を少なくとも10モル%含有する重合体(B)
を溶剤に均一に溶解してなり、かつA:Bの重量比が5
0:50から98:2の範囲にあることを特徴とするポ
ジ型フォトレジスト組成物。 CH_2=C−C=O( I ) (式中のR_1は水素、炭素数1〜4のアルキル基。 シアノ基、塩素または臭素のいずれかを、R_2は炭素
数1〜22のハロアルキル基をあらわす)
[Claims] An alkali-soluble resin (A) and a polymer (B) containing at least 10 mol% of a monomer represented by general formula (I)
is uniformly dissolved in a solvent, and the weight ratio of A:B is 5.
A positive photoresist composition characterized in that the ratio is in the range of 0:50 to 98:2. CH_2=C-C=O(I) (R_1 in the formula is hydrogen, an alkyl group having 1 to 4 carbon atoms. It represents either a cyano group, chlorine or bromine, and R_2 represents a haloalkyl group having 1 to 22 carbon atoms. )
JP12734587A 1987-05-25 1987-05-25 Positive type photoresist composition Pending JPS63291052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12734587A JPS63291052A (en) 1987-05-25 1987-05-25 Positive type photoresist composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12734587A JPS63291052A (en) 1987-05-25 1987-05-25 Positive type photoresist composition

Publications (1)

Publication Number Publication Date
JPS63291052A true JPS63291052A (en) 1988-11-28

Family

ID=14957629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12734587A Pending JPS63291052A (en) 1987-05-25 1987-05-25 Positive type photoresist composition

Country Status (1)

Country Link
JP (1) JPS63291052A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197846A (en) * 1989-01-26 1990-08-06 Toray Ind Inc Radiation sensitive positive type resist
US5237037A (en) * 1989-09-08 1993-08-17 Ocg Microelectronic Materials, Inc. Radiation-sensitive compositions containing fully substituted novolak polymers
US5346799A (en) * 1991-12-23 1994-09-13 Ocg Microelectronic Materials, Inc. Novolak resins and their use in radiation-sensitive compositions wherein the novolak resins are made by condensing 2,6-dimethylphenol, 2,3-dimethylphenol, a para-substituted phenol and an aldehyde
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116532A (en) * 1981-12-29 1983-07-11 Fujitsu Ltd Pattern formation
JPS592041A (en) * 1982-06-29 1984-01-07 Fujitsu Ltd Formation of pattern
JPS6045238A (en) * 1983-08-23 1985-03-11 Fujitsu Ltd Positive type resist material and its preparation
JPS6111738A (en) * 1984-06-27 1986-01-20 Toshiba Corp Formation of fine pattern
JPS6259950A (en) * 1985-09-10 1987-03-16 Res Dev Corp Of Japan Ionizing radiation sensitive positive type resist
JPS6377962A (en) * 1986-09-20 1988-04-08 Daikin Ind Ltd Resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116532A (en) * 1981-12-29 1983-07-11 Fujitsu Ltd Pattern formation
JPS592041A (en) * 1982-06-29 1984-01-07 Fujitsu Ltd Formation of pattern
JPS6045238A (en) * 1983-08-23 1985-03-11 Fujitsu Ltd Positive type resist material and its preparation
JPS6111738A (en) * 1984-06-27 1986-01-20 Toshiba Corp Formation of fine pattern
JPS6259950A (en) * 1985-09-10 1987-03-16 Res Dev Corp Of Japan Ionizing radiation sensitive positive type resist
JPS6377962A (en) * 1986-09-20 1988-04-08 Daikin Ind Ltd Resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197846A (en) * 1989-01-26 1990-08-06 Toray Ind Inc Radiation sensitive positive type resist
US5237037A (en) * 1989-09-08 1993-08-17 Ocg Microelectronic Materials, Inc. Radiation-sensitive compositions containing fully substituted novolak polymers
US5346799A (en) * 1991-12-23 1994-09-13 Ocg Microelectronic Materials, Inc. Novolak resins and their use in radiation-sensitive compositions wherein the novolak resins are made by condensing 2,6-dimethylphenol, 2,3-dimethylphenol, a para-substituted phenol and an aldehyde
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods

Similar Documents

Publication Publication Date Title
US5908738A (en) Undercoating composition for photolithography
JP3317576B2 (en) Positive photosensitive resin composition
JP3342888B2 (en) Radiation-sensitive mixture
KR910004849B1 (en) Photosensitive composition
KR100456254B1 (en) Radiation-Sensitive Composition
US5342727A (en) Copolymers of 4-hydroxystyrene and alkyl substituted-4-hydroxystyrene in admixture with a photosensitizer to form a photosensitive composition
US5234791A (en) Radiation-curable composition and radiation-sensitive recording material prepared therefrom for use with high-energy radiation
WO2000048044A1 (en) Photosensitive resin composition
KR100266187B1 (en) Photosensitive resin composition and pattern forming method by using the same
KR19980024609A (en) Photosensitive material, resist pattern forming method and electronic component manufacturing method
US4857435A (en) Positive photoresist thermally stable compositions and elements having deep UV response with maleimide copolymer
TW201818157A (en) Environmentally stable, thick film, chemically amplified resist
TW200530748A (en) Photoresist composition
TWI442182B (en) Sensitive radiation linear resin composition
EP0881540B1 (en) Photoresist composition
KR20110061488A (en) Negative resist composition and patterning process
US5059513A (en) Photochemical image process of positive photoresist element with maleimide copolymer
US5846690A (en) Radiation-sensitive composition containing plasticizer
KR100244819B1 (en) Undercoating composition for photolithographic patterning
JPH07219216A (en) Positive type radiation-sensitive resin composition and pattern formation using the same
JPS63291052A (en) Positive type photoresist composition
CN111694215B (en) Photoresist composition and method for forming photolithographic pattern
US5807947A (en) Copolymers 4-hydroxystyrene and alkyl substituted-4-hydroxystyrene
JP2985351B2 (en) Negative photoresist composition
EP0365340B1 (en) Copolymers of 4-hydroxystyrene and alkyl substituted-4-hydroxystyrene