JPS63290943A - Method for measuring grain size of blast furnace charge - Google Patents

Method for measuring grain size of blast furnace charge

Info

Publication number
JPS63290943A
JPS63290943A JP62125851A JP12585187A JPS63290943A JP S63290943 A JPS63290943 A JP S63290943A JP 62125851 A JP62125851 A JP 62125851A JP 12585187 A JP12585187 A JP 12585187A JP S63290943 A JPS63290943 A JP S63290943A
Authority
JP
Japan
Prior art keywords
particle size
charge
blast furnace
camera
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62125851A
Other languages
Japanese (ja)
Inventor
Shuichi Yamamoto
修一 山本
Ryosuke Kimura
亮介 木村
Yoichi Shibata
柴田 洋一
Sumiyuki Kishimoto
岸本 純幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62125851A priority Critical patent/JPS63290943A/en
Publication of JPS63290943A publication Critical patent/JPS63290943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To calculate the average grain size of blast furnace charge by obtaining the image signal on the surface of the charge by a television camera installed in the throat of a blast furnace and processing the image signal after Fourier transform. CONSTITUTION:The video signal from the television camera 3 is monitored as an image by a television monitor 5 and the image processing is executed in real time by digital processing in an image processor 6, the output of which is outputted to a CRT display 7 and a printer 8. There is much dust in the blast furnace and the sharp image on the surface of the charge is not obtainable in some cases. The image processing is thereupon executed by taking out the signal for an optional one scanning component of the television camera, determining power spectra by the Fourier transform in real time and calculating the grain size only when the component of the frequency range higher than the predetermined frequency among said spectra is larger than the predetermined threshold value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高炉に装入される装入物(鉄鉱石。[Detailed description of the invention] [Industrial application field] This invention is based on the charge (iron ore) charged into a blast furnace.

コークス等)の粒度を高炉炉内で測定する方法に関する
ものである。
This relates to a method for measuring the particle size of coke, etc.) in a blast furnace.

〔従来の技術〕[Conventional technology]

高炉炉内に装入される装入物の粒度を管理することは、
高炉操業の良否に大きな影響を与え1重要である。この
ため、高炉炉内を光フアイバースコープやテレビカメラ
で覗き、装入物を目視して粒度を判断したり、観察され
た装入物を画像処理してその粒度を算出する方法が開発
されている。
Controlling the particle size of the charge charged into the blast furnace is
This is important because it has a great influence on the quality of blast furnace operation. For this reason, methods have been developed to look into the inside of a blast furnace with an optical fiberscope or television camera and visually observe the charge to determine its particle size, or to calculate the particle size by image processing the observed charge. There is.

その−例は「鉄と鋼」 (日本鉄鋼協会、72巻12号
、 (1986年))49ページに記載されている如く
、光ファイバーを用いて装入物粒子を観察し、その像を
ビデオカメラによりビデオテープレコーダに記録し、そ
の記録データを画像解析装置により解析して粒子の平均
粒径を求めるものである。しかしながら上記刊行物にお
いては、1個々の粒子径を画像解析から求める。」と記
載するのみで、具体的な粒子径の算出方法を開示してい
ない。
An example of this is as described in "Iron and Steel" (Iron and Steel Institute of Japan, Vol. 72, No. 12, (1986)), page 49, in which particles of the charge are observed using an optical fiber and the image is captured by a video camera. The average particle size of the particles is determined by recording the data on a video tape recorder and analyzing the recorded data with an image analysis device. However, in the above publication, the diameter of each individual particle is determined from image analysis. ", but does not disclose a specific method for calculating the particle size.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

また。上記技術には以下のような問題点があった。 Also. The above technology had the following problems.

+11  実際には個々の粒子の境界は明瞭でなく2個
々の粒子径を正確に求めることは困難であり2粒子の境
界と思われるところを人間がライトペンでなぞる等の処
置が必要となる。
+11 In reality, the boundaries between individual particles are not clear and it is difficult to accurately determine the diameter of each particle, requiring a human to trace the likely boundary between the two particles with a light pen.

(2)光フアイバースコープを用いるため、視野が狭い
範囲に限られ、光フアイバースコープを装入物面から離
せば視野が広がるが、装入物を照射する光量が弱くなり
、まずまず粒子の境界が不明瞭となり測定が不能となる
(2) Since an optical fiberscope is used, the field of view is limited to a narrow range.If the optical fiberscope is moved away from the surface of the charge, the field of view will expand, but the amount of light irradiating the charge will be weaker, and the boundaries of particles will be difficult to see. It becomes unclear and measurement becomes impossible.

(3)  画像を一度ビデオテープにとり、あらためて
画像処理装置に入れて解析するので、リアルタイ入処理
が不能である。
(3) Since images are recorded on videotape and then put into an image processing device for analysis, real-time input processing is not possible.

(4)  光ファイバの動きが1次元運動に制約される
ため、2次元平面である高炉炉内装入物面のすべてを測
定することが不能である。
(4) Since the movement of the optical fiber is restricted to one-dimensional motion, it is impossible to measure the entire surface of the contents inside the blast furnace, which is a two-dimensional plane.

(5)同じ粒度の装入物でも光フアイバー先端と装入物
表面までの距離によって像の大きさが異なるので9粒度
を精度良く測定することが不能である。
(5) Even if the particle size is the same, the image size differs depending on the distance between the tip of the optical fiber and the surface of the charge, making it impossible to accurately measure the grain size.

等の問題点があり、実操業において全自動で実時間処理
により粒径を求めることが不可能であった。
Due to these problems, it has been impossible to determine the particle size through fully automatic, real-time processing in actual operations.

本発明は上記のような問題点を解消するためになされた
もので、その目的は高炉炉内装入物の粒度を全自動で精
度よく実時間で測定する方法を提供することである。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a method for fully automatic and accurate real-time measurement of the particle size of blast furnace contents.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために1本発明においては高炉炉口
部の炉内覗窓部にテレビカメラを設置し装入物を撮影し
て画像信号を得2該画像信号をフーリエ変換した後に処
理し、高炉装入物の平均粒径を算出するようにしている
In order to achieve the above objects, 1) in the present invention, a television camera is installed in the in-furnace viewing window at the mouth of the blast furnace to photograph the charge and obtain an image signal; 2) the image signal is Fourier transformed and then processed; , the average particle size of the blast furnace charge is calculated.

〔実施例〕〔Example〕

=4− 次に本発明による高炉装入物粒度測定方法の実施例を図
面に基づいて説明する。
=4- Next, an embodiment of the blast furnace charge particle size measuring method according to the present invention will be described based on the drawings.

第1図において1は高炉、2は高炉装入物表面。In Fig. 1, 1 is the blast furnace, and 2 is the surface of the blast furnace charge.

3はテレビカメラ、4はテレビカメラ制御装置。3 is a television camera, and 4 is a television camera control device.

5はテレビモニター、6は画像処理装置、7は画像処理
装置付属のCRTディスプレー、8は同印字装置、9は
装入物面レベル計である。
5 is a television monitor, 6 is an image processing device, 7 is a CRT display attached to the image processing device, 8 is the printing device, and 9 is a charge surface level meter.

テレビカメラ3は高炉1の炉頂部にある覗窓部に、装入
物表面が覗けるように設置される。望ましくはテレビカ
メラを水平方向、垂直方向に回動自在に保持し必要に応
じてカメラコントロールユニット4によってテレビカメ
ラの角度を変化させて高炉炉内装入物表面の大部分が覗
けるようにする。−例として第2図に示すように1回の
装入が行われる毎にテレビカメラの視野位置を変更し。
The television camera 3 is installed in a viewing window at the top of the blast furnace 1 so that the surface of the charge can be seen. Preferably, the television camera is held rotatably in the horizontal and vertical directions, and the angle of the television camera is changed by the camera control unit 4 as necessary so that most of the surface of the contents inside the blast furnace can be seen. - For example, as shown in FIG. 2, the viewing position of the television camera is changed every time one loading is performed.

炉内各部の粒度分布を測定することができる。また、カ
メラコントロールユニット4は、後述するように画像処
理装置6から発信される距離信号に応じて、テレビカメ
ラ3のズームレンズを駆動し。
Particle size distribution in each part of the furnace can be measured. Further, the camera control unit 4 drives the zoom lens of the television camera 3 according to a distance signal transmitted from the image processing device 6 as described later.

得られる像の倍率を一定に制御する。The magnification of the image obtained is controlled to be constant.

テレビカメラ3よりのビデオ信号は、テレビモニタ5に
より画像として監視されると共に1画像処理装置6に入
る。画像処理装置6はミニコンピユータ又はマイクロコ
ンピュータから成り、ディジタル処理により画像処理を
リアルタイムで行うものであり1その出力はCRTディ
スプレー7および印字装置8に出力される。
A video signal from the television camera 3 is monitored as an image by a television monitor 5 and is also input to an image processing device 6 . The image processing device 6 consists of a minicomputer or a microcomputer, and performs image processing in real time by digital processing.1 Its output is outputted to a CRT display 7 and a printing device 8.

高炉炉内にはダストが多く、装入物表面の鮮明な画像が
得られない場合がある。この場合には通常の処理を行う
と誤った粒子径を算出してしまうおそれがある。この対
策としてテレビカメラの任意の一走査分の信号を取り出
し9周知技術であるリアルタイムフーリエ解析によりパ
ワースペクトルを求め、このうち予め定められた周波数
より高周波域の成分が予め定められたしきい値より大き
いときのみ粒径算出計算を行うようにする。
There is a lot of dust inside the blast furnace, and it may not be possible to obtain a clear image of the surface of the charge. In this case, if normal processing is performed, there is a risk that an incorrect particle diameter will be calculated. As a countermeasure to this problem, the power spectrum is obtained by extracting the signal for one arbitrary scan of the TV camera and using real-time Fourier analysis, which is a well-known technique, and the components in the frequency range higher than a predetermined frequency are lower than a predetermined threshold. Perform particle size calculation only when the particle size is large.

ダストにより装入物表面の鮮明な画像が得られないとき
は5画面の輝度が一様に近くなるので一走査分の信号に
高周波成分が少なくなることを利用して判別を行うもの
である。
When a clear image of the surface of the charge cannot be obtained due to dust, the brightness of the five screens becomes nearly uniform, so discrimination is performed by utilizing the fact that the signal for one scan has fewer high-frequency components.

処理可能として選択された画像信号は装入物表面の温度
差による照度むらの信号を含んでいるため画像信号を2
次元フィルタを通ずことにより照度むら信号を除去する
。照度むらを除去された信号を処理し、仮の平均粒径d
゛を算出する。算出方法の第1の実施例は、リファレン
スパターンマツチングによるものである。即ち、−走査
分のビデオ信号をフーリエ変換し、パワースペクトルを
求める。例えば第3図falに示す入力画像のX軸方向
1ラインのビデオ信号として同図(b)に示すようなも
のが得られ、これをフーリエ変換すると同図fclに示
すようなパワースペクトルが得られる。
The image signal selected as processable includes a signal of uneven illumination due to temperature difference on the surface of the charge, so the image signal is divided into two.
The uneven illuminance signal is removed by passing it through a dimensional filter. The signal from which uneven illumination has been removed is processed to obtain a tentative average particle diameter d.
Calculate ゛. A first example of the calculation method is based on reference pattern matching. That is, the video signal for -scanning is Fourier transformed to obtain a power spectrum. For example, the video signal of one line in the X-axis direction of the input image shown in Fig. 3 fal is obtained as shown in Fig. 3 (b), and when this is Fourier transformed, the power spectrum shown in Fig. 3 fcl is obtained. .

一方、予め代表的な粒径の装入物を基準距j!l+iI
iれてテレビカメラじ測定し9例えば第3図Fdl (
el (flの如き各粒径毎のパワースペクトルを基準
パワースペクトルとして画像処理装置6内の記憶装置に
記憶しておく。そして、これらの基準パワースペクトル
から、測定に得られたパワースペクトル(第3図(C)
)に最も近いものを選択する。最も近いものの選定方法
としては2例えば以下の如くする。
On the other hand, the standard distance j! l+iI
For example, in Figure 3 Fdl (
The power spectrum for each particle size such as el (fl) is stored in the storage device in the image processing device 6 as a reference power spectrum.Then, from these reference power spectra, the power spectrum (third Diagram (C)
). The method for selecting the closest one is 2, for example, as follows.

=7− 即ち、測定によって得られたパワースペクトルをP(f
l、基準パワースペクトルをPs(fl、(fは周波を
求め、(fl、fzは評価の対象となる最低、最高周波
数で予め定められる)Eが最小となる基準パワースペク
トルを選定する。
=7- That is, the power spectrum obtained by measurement is expressed as P(f
l, the reference power spectrum is Ps(fl, (f is the frequency, (fl, fz are predetermined as the lowest and highest frequencies to be evaluated)) and the reference power spectrum with the minimum E is selected.

選定されたパワースペクトルに対応する粒子径を仮の平
均粒子径とする。
The particle diameter corresponding to the selected power spectrum is set as a temporary average particle diameter.

第2の実施例は、一般に粒径と周波数の間に逆比例関係
があることを利用した空間周波数法によるものである。
The second embodiment is based on a spatial frequency method that takes advantage of the fact that there is generally an inverse proportional relationship between particle size and frequency.

即ち、評価の対象となる最低、最高周波数の間で、最も
パワーの大きな周波数(第3図(C1におけるrg)を
求める。そして、この周波数を使用して粒径−α/f2
・・・・・・・・・・・・て(2)により仮の粒径を用
いる。αは比例定数である。
That is, find the frequency with the greatest power (rg in Figure 3 (C1)) between the lowest and highest frequencies to be evaluated. Then, using this frequency, calculate the particle size - α/f2.
......Use the temporary particle size according to (2). α is a proportionality constant.

このようにして求められた仮の粒径を、カメラと測定さ
れた装入物の間の距離により補正して真の粒径を算出す
る。
The tentative particle size thus determined is corrected based on the distance between the camera and the measured charge to calculate the true particle size.

一般にカメラと装入物測定面間の距離は、カメラの水平
方向角度θ、垂直方向角度φ、および装入物の面レベル
Hの関数で近似される。装入物の面レベルHは、装入物
レベル計9 (例えばサウジングレベル計)により測定
される。
Generally, the distance between the camera and the charge measurement surface is approximated as a function of the horizontal angle θ of the camera, the vertical angle φ, and the surface level H of the charge. The surface level H of the charge is measured by a charge level meter 9 (for example, a sounding level meter).

装入物表面は一般に図1に示すようなすりばち状となり
、高炉中心軸を2軸とし、半径方向に直交してX軸、y
軸をとると。
The surface of the charge generally has a mortar shape as shown in Fig. 1, with two axes centered around the blast furnace center axis, an X axis, a y axis perpendicular to the radial direction.
If you take the axis.

z=z  (x、y、H)・・・・・・・・・(3)で
あられされる面上にある。この面とカメラの角度θ、φ
およびカメラの据付位置で定まるカメラの視野線との交
点を解析的に求め、その点とカメラの据付位置との距離
を求めpとする。
z=z (x, y, H)......It is on the surface drawn by (3). The angle between this surface and the camera θ, φ
The intersection point with the field of view line of the camera determined by the camera installation position is analytically determined, and the distance between that point and the camera installation position is determined and set as p.

粒計dは、カメラの基準距離を10としてd =  □
 d’・・・・・・・・・(4)O により求める。
The particle meter d is d = □ with the camera reference distance as 10.
d'・・・・・・・・・(4) Obtained by O.

距離補正の第2の実施例は、テレビカメラのズーミング
を利用して、あらかじめ画像の大きさを正規化しておく
方法である。即ち前記方法によりカメラと装入物測定点
の距離lを算出し、その距離に応じてテレビカメラのズ
ームレンズを駆動し。
A second example of distance correction is a method in which the size of an image is normalized in advance using zooming of a television camera. That is, the distance l between the camera and the charge measurement point is calculated using the method described above, and the zoom lens of the television camera is driven according to the calculated distance.

距離にかかわらず常に一定の倍率の画像が得られるよう
にする。これにより(4)弐のような補正演算をするこ
となく1粒計を算出することができる。
To always obtain an image with a constant magnification regardless of distance. As a result, it is possible to calculate the one-grain total without performing correction calculations as in (4) 2.

〔発明の効果〕〔Effect of the invention〕

以上に説明したごとく本発明によれば9個々の装入物の
輪郭が不明瞭な場合でも装入物の粒度を求めることがで
き、高炉内のダストにより誤った粒度計測を行うことが
なく、装入物の温度分布の影響を受けない高炉装入物の
実時間での粒度測定方法を提供できる。
As explained above, according to the present invention, the particle size of the charge can be determined even when the outline of each charge is unclear, and there is no possibility of incorrect particle size measurement due to dust in the blast furnace. A method for measuring the particle size of blast furnace charge in real time that is not affected by the temperature distribution of the charge can be provided.

画像処理後または処理前に、距離補正を行っているので
、測定面とカメラとの間の距離の影響を受けず、常に精
度良い測定が可能となる。
Since distance correction is performed after or before image processing, accurate measurement is always possible without being affected by the distance between the measurement surface and the camera.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実現するためのシステムの構成図、第
2図はテレビカメラの角度を変えて炉内各部の測定を行
なえるようにした実施例を示す図。 第3図は画像信号より枝針を求めるための方法を示す原
理図で(alは入力画像、(b)は入力画像の一走査の
ビデオ信号、(C)は山)のビデオ信号をフリーエ変換
してえたパワースペクトル、 fdl、 feL (f
lは各枝針に対応した基準パワースペクトルである。 1・・・高炉、2・・・高炉装入物表面。 3・・・テレビカメラ、4・・・テレビカメラ制御装置
。 5・・・テレビモニタ、6・・・画像処理装置。 7・・・CRTディスプレー、8・・・印字装置。 9・・・装入物レベル計。
FIG. 1 is a block diagram of a system for realizing the present invention, and FIG. 2 is a diagram showing an embodiment in which various parts inside the furnace can be measured by changing the angle of the television camera. Figure 3 is a principle diagram showing the method for determining branch needles from image signals. The resulting power spectrum, fdl, feL (f
l is a reference power spectrum corresponding to each branch needle. 1...Blast furnace, 2...Blast furnace charge surface. 3...TV camera, 4...TV camera control device. 5... TV monitor, 6... Image processing device. 7...CRT display, 8...Printing device. 9... Charge level meter.

Claims (7)

【特許請求の範囲】[Claims] (1)高炉炉口部に設置したテレビカメラにより装入物
表面の画像信号を得、該画像信号をフーリエ変換した後
に処理し、高炉装入物の平均粒径を算出することを特徴
とする高炉装入物の粒度測定方法。
(1) A television camera installed at the mouth of the blast furnace obtains an image signal of the surface of the charge, and the image signal is processed after Fourier transformation to calculate the average particle diameter of the charge. Method for measuring particle size of blast furnace charge.
(2)フーリエ変換した後の処理方法が、予め求められ
た既知粒径の装入物による基準パワースペクトルのうち
、測定されたパワースペクトルと最も類似するものを選
択し、それに対応する粒径を測定平均粒径とすることで
ある特許請求の範囲第1項記載の高炉装入物の粒度測定
方法。
(2) The processing method after Fourier transformation selects the one that is most similar to the measured power spectrum from among the reference power spectra obtained from the charge of known particle size determined in advance, and calculates the corresponding particle size. A method for measuring the particle size of blast furnace charge according to claim 1, wherein the method is to measure the average particle size.
(3)フーリエ変換した後の処理方法が、予め定められ
た最大、最小周波数の間の周波数でパワーが最大の周波
数を求め、該周波数に逆比例する量として測定平均粒径
を算出することである特許請求の範囲第1項記載の高炉
装入物の粒度測定方法。
(3) The processing method after Fourier transformation is to find the frequency with the maximum power between the predetermined maximum and minimum frequencies, and calculate the measured average particle size as a quantity that is inversely proportional to the frequency. A method for measuring the particle size of blast furnace charge according to claim 1.
(4)画像信号のうち任意の1走査分の信号のパワース
ペクトルのうち、予め定められた周波数より高周波域の
パワーが予め定められた値より大きいときのみ粒径を算
出する特許請求の範囲第1項ないし第3項記載の高炉装
入物の粒度測定方法。
(4) The particle size is calculated only when the power in a frequency range higher than a predetermined frequency is greater than a predetermined value in the power spectrum of a signal for any one scan of the image signal. A method for measuring the particle size of blast furnace charge according to items 1 to 3.
(5)画像信号に含まれる装入物表面温度差に起因する
輝度むら信号を2次元フィルターにより除去する特許請
求の範囲第1項ないし第4項記載の高炉装入物の粒度測
定方法。
(5) A method for measuring the particle size of a blast furnace charge according to any one of claims 1 to 4, wherein a two-dimensional filter removes a luminance unevenness signal caused by a difference in surface temperature of the charge included in the image signal.
(6)装入物表面の少なくとも一点のレベルとテレビカ
メラの水平、垂直方向の角度を検出し、これらから装入
物測定面とテレビカメラの間の距離を求め、該距離に応
じて画像処理によって算出された粒径を補正する特許請
求の範囲第1項ないし第5項記載の高炉装入物の粒度測
定方法。
(6) Detect the level of at least one point on the surface of the charge and the horizontal and vertical angles of the TV camera, calculate the distance between the charge measurement surface and the TV camera from these, and process the image according to the distance. A method for measuring the particle size of blast furnace charge according to any one of claims 1 to 5, wherein the particle size calculated by the above method is corrected.
(7)装入物表面の少なくとも一点のレベルと、テレビ
カメラの水平、垂直方向の角度を検出し、これらから装
入物測定面とテレビカメラの間の距離を求め、該距離に
応じてテレビカメラのズームレンズを操作し、常に倍率
の一定な画像信号を得る特許請求の範囲第1項ないし第
5項記載の高炉装入物の粒度測定方法。
(7) Detect the level of at least one point on the charge surface and the horizontal and vertical angles of the TV camera, calculate the distance between the charge measurement surface and the TV camera from these, and adjust the TV according to the distance. A method for measuring the particle size of blast furnace charge according to any one of claims 1 to 5, in which a zoom lens of a camera is operated to obtain an image signal with a constant magnification.
JP62125851A 1987-05-25 1987-05-25 Method for measuring grain size of blast furnace charge Pending JPS63290943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125851A JPS63290943A (en) 1987-05-25 1987-05-25 Method for measuring grain size of blast furnace charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125851A JPS63290943A (en) 1987-05-25 1987-05-25 Method for measuring grain size of blast furnace charge

Publications (1)

Publication Number Publication Date
JPS63290943A true JPS63290943A (en) 1988-11-28

Family

ID=14920510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125851A Pending JPS63290943A (en) 1987-05-25 1987-05-25 Method for measuring grain size of blast furnace charge

Country Status (1)

Country Link
JP (1) JPS63290943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001756A1 (en) * 1995-06-29 1997-01-16 International Business Machines Corporation Estimating grain size in geological samples
JP2014092494A (en) * 2012-11-05 2014-05-19 Shinko Engineering & Maintenance Co Ltd Grain size measuring apparatus, and grain size measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723014A (en) * 1980-07-15 1982-02-06 Ishikawajima Harima Heavy Ind Co Ltd Detection of profile and temperature of materials inserted in blast furnace
JPS5759143A (en) * 1980-09-26 1982-04-09 Nippon Kokan Kk <Nkk> Measuring method for grain size of granular material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723014A (en) * 1980-07-15 1982-02-06 Ishikawajima Harima Heavy Ind Co Ltd Detection of profile and temperature of materials inserted in blast furnace
JPS5759143A (en) * 1980-09-26 1982-04-09 Nippon Kokan Kk <Nkk> Measuring method for grain size of granular material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001756A1 (en) * 1995-06-29 1997-01-16 International Business Machines Corporation Estimating grain size in geological samples
JP2014092494A (en) * 2012-11-05 2014-05-19 Shinko Engineering & Maintenance Co Ltd Grain size measuring apparatus, and grain size measuring method

Similar Documents

Publication Publication Date Title
US4365307A (en) Temperature pattern measuring device
JPH08233689A (en) Method and system for testing performance of at least one electrooptic tester
US5638167A (en) Method of measuring the light amount of a display picture element, display screen inspecting method and display screen inspecting apparatus
JPS63290943A (en) Method for measuring grain size of blast furnace charge
JPH0260377A (en) Automatic focus adjustment of industrial or military video camera
JP2681745B2 (en) A method for measuring the vertical and lateral movement of an object to be measured with a speckle pattern using laser light.
JP2521512B2 (en) Detection method of charging material flow section in blast furnace
JPH1172317A (en) Spangle size-measuring device
JPS63214642A (en) Cracking progress tracking device for crack testing device
JPH08325614A (en) Method for measuring gas flow rate in blast furnace
JP2767969B2 (en) Inspection device for catching meter pointer
JP2000105167A (en) Address calibration method of image quality inspection device
JPH06229872A (en) Method and device for inspecting resolution
KR100943307B1 (en) Apparatus for video analysis of physcial quantity and video analysis method using the same
JP2864990B2 (en) Wide-area high-speed image measurement device
JPS6148508A (en) Method for discriminating blast furnace condition by quantification of information on raceway
JPH0251038A (en) Testing device of resolution of lens barrel
JPH0483478A (en) Image input/output device
Hoang et al. Performance evaluation of a low cost vision-based inspection system
JPS6020035Y2 (en) Particle size distribution automatic measuring device
CN118015005A (en) Machine vision-based whiskering detection method and portable detection device
SU1090333A1 (en) Apparatus for measuring coordinates of points for fixing operator&#39;s glange
JPH05288998A (en) Fiberscope device for measurement
JPH0368804A (en) Interference fringe measuring method
KR20010076041A (en) Appratus and method for inspecting screen quality