JPS63290890A - Production of quaternary phosphonium salt of inorganic acid - Google Patents

Production of quaternary phosphonium salt of inorganic acid

Info

Publication number
JPS63290890A
JPS63290890A JP12542887A JP12542887A JPS63290890A JP S63290890 A JPS63290890 A JP S63290890A JP 12542887 A JP12542887 A JP 12542887A JP 12542887 A JP12542887 A JP 12542887A JP S63290890 A JPS63290890 A JP S63290890A
Authority
JP
Japan
Prior art keywords
inorganic acid
quaternary phosphonium
carbonate
reaction
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12542887A
Other languages
Japanese (ja)
Other versions
JPH0826053B2 (en
Inventor
Shoichiro Mori
森 彰一郎
Kazuhiko Ida
和彦 井田
Makoto Ue
誠 宇恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP12542887A priority Critical patent/JPH0826053B2/en
Priority to US07/192,524 priority patent/US4892944A/en
Priority to DE8888107735T priority patent/DE3868138D1/en
Priority to EP88107735A priority patent/EP0291074B1/en
Publication of JPS63290890A publication Critical patent/JPS63290890A/en
Publication of JPH0826053B2 publication Critical patent/JPH0826053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain the titled compound useful as a catalyst, electrolyte, various kinds of additives and chemicals in high purity, by reacting phosphines with a carbonic diester and mixing the product with an inorganic acid while removing generated carbon dioxide from the system. CONSTITUTION:Phosphines (e.g. trimethyl phosphine) are reacted with a carbonic diester (preferably dimethyl carbonate) preferably in a molar ratio of 0.3-3 at 30-160 deg.C to produce a corresponding quaternary phosphonium carbonate. Then the product is mixed with an inorganic acid (e.g. HCl), as necessary, in the presence of a solvent while removing generated carbon dioxide out of the system to afford the aimed compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ホスフィン類を炭酸ジエステルと反応させる
ことにより、対応する四級ホスホニウム炭酸塩とし、さ
らにこれに無機酸を混合して脱炭酸することにより、四
級ホスホニウム無機酸塩を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves reacting phosphines with a carbonic acid diester to form the corresponding quaternary phosphonium carbonate, which is further mixed with an inorganic acid and decarboxylated. In particular, it relates to a method for producing a quaternary phosphonium inorganic acid salt.

本発明の方法で得られる四級ホスホニウム無機酸塩は、
相関移動触媒などの各種触媒、水系及び有機系の電解液
のための電解質、各種の添加物、薬品として幅広い分野
で使用される有用な有機化合物である。
The quaternary phosphonium inorganic acid salt obtained by the method of the present invention is
It is a useful organic compound that is used in a wide range of fields as various catalysts such as phase transfer catalysts, electrolytes for aqueous and organic electrolytes, various additives, and chemicals.

〔従来の技術〕[Conventional technology]

四級ホスホニウム塩の合成方法としては一般にホスフィ
ン類をアルキルハライド、ジアルキル硫酸などで加熱下
で四級化する方法が採用されている。又、陰イオン種を
種々に変化させた四級ホスホニウム塩を製造する場合に
は、通常四級ホスホニウムハライド(塩化物、臭化物、
ヨウ化物)の陰イオン交換による方法が採用されている
。例えば、下記に示すような反応式に従って、四級アン
モニウム臭化物を四級ホスホニウム水酸化物に転換した
のち(反応1a)無機酸によって中和処理する方法(反
応1b)、四級ホスホニウム臭化物を無機酸と反応させ
、対応する無機酸塩が不溶な溶媒を選定することにより
析出分離する方法(反応2)、四級ホスホニウム臭化物
と無機酸のアルカリ金属塩とを反応させ、無機酸塩を析
出または抽出により得る方法(反応3)、さらには四級
ホスホニウム臭化物と無機酸の銀塩を反応させて臭化銀
を析出させてろ液から目的物を得る方法(反応4)など
を例示することができる。
As a method for synthesizing quaternary phosphonium salts, a method is generally employed in which phosphines are quaternized with an alkyl halide, dialkyl sulfate, etc. under heating. In addition, when producing quaternary phosphonium salts with various anion species, quaternary phosphonium halides (chloride, bromide,
A method based on anion exchange of iodide) has been adopted. For example, according to the reaction formula shown below, quaternary ammonium bromide is converted to quaternary phosphonium hydroxide (reaction 1a) and then neutralized with an inorganic acid (reaction 1b). (Reaction 2) A method in which quaternary phosphonium bromide is reacted with an alkali metal salt of an inorganic acid to precipitate or extract the inorganic acid salt by selecting a solvent in which the corresponding inorganic acid salt is insoluble. (Reaction 3), and a method (Reaction 4) in which a quaternary phosphonium bromide and a silver salt of an inorganic acid are reacted to precipitate silver bromide to obtain the desired product from the filtrate (Reaction 4).

R4P6DBre−→R4PΦone       (
反応1a)R,P411OHe+HΦAe →R4,P
’Ae+ H2O(反応1b)R,PeBre+ He
AeR4PeAeL + HBr  (反応2)Ra、
P’Bre+NaeAe→R*PeAe+NaBr  
(反応3)RiP’Bre+ Ag@AeRtPΦAe
+ AgBr l (反応4)反応1aによる四級ホス
ホニウム水酸化物の製造法としては、適当な溶媒に溶か
した四級ホスホニウム臭化物を四級ホスホニウム水酸化
物型のイオン交換樹脂と反応させる方法、四級ホスホニ
ウム臭化物を液状媒体中でアルカリ金属水酸化物と反応
させる方法、電気化学的方法により臭素イオンをBrz
として分離し、水酸化物を得る方法、さらには銀化合物
を用いる方法などが知られている。
R4P6DBre-→R4PΦone (
Reaction 1a) R,P411OHe+HΦAe →R4,P
'Ae+ H2O (reaction 1b) R, PeBre+ He
AeR4PeAeL + HBr (reaction 2) Ra,
P'Bre+NaeAe→R*PeAe+NaBr
(Reaction 3) RiP'Bre+ Ag@AeRtPΦAe
+AgBr l (Reaction 4) Methods for producing quaternary phosphonium hydroxide by reaction 1a include a method in which quaternary phosphonium bromide dissolved in a suitable solvent is reacted with a quaternary phosphonium hydroxide type ion exchange resin; A method in which phosphonium bromide is reacted with an alkali metal hydroxide in a liquid medium, and bromide ion is converted to Brz by an electrochemical method.
Methods of separating silver as a hydroxide to obtain hydroxides, and methods of using silver compounds are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、反応1aによるいずれの方法も四級ホス
ホニウム水酸化物の製法として高価な方法であり、又一
般に四級ホスホニウム水酸化物中の臭素イオンを完全に
除くことは困難であるので、反応1bによる中和生成物
の純度に問題を生ずることが多い。また、反応2および
3の方法においては、目的とする四級ホスホニウム無機
酸塩中の臭素イオンの除去はかなり困難であり、高純度
の四級ホスホニウム無機酸塩を得る製造法としては不適
当である。反応4に基づく方法は定量的な反応を行わせ
る方法としては好ましいものと考えられるが、原料とな
る無機酸の銀塩がきわめて高価であり、工業的に採用で
きる方法とは言い難い。
However, any method using Reaction 1a is an expensive method for producing quaternary phosphonium hydroxide, and it is generally difficult to completely remove bromine ions from quaternary phosphonium hydroxide, so Reaction 1b is used. Problems often arise with the purity of the neutralized product. In addition, in the methods of Reactions 2 and 3, it is quite difficult to remove the bromine ion from the target quaternary phosphonium inorganic acid salt, and it is not suitable as a production method for obtaining a high-purity quaternary phosphonium inorganic acid salt. be. Although the method based on Reaction 4 is considered to be preferable as a method for carrying out a quantitative reaction, the silver salt of an inorganic acid used as a raw material is extremely expensive, and it is difficult to say that it is a method that can be adopted industrially.

以上、四級ホスホニウム臭化物を一例として述べたが、
他のハライド、硫酸塩などを用いた場合も同様であり、
一般に効率的かつ高純度で種々の陰イオン交換した塩を
作る方法は知られていない。
The quaternary phosphonium bromide was described above as an example, but
The same is true when using other halides, sulfates, etc.
Generally, there is no known method for producing various anion-exchanged salts efficiently and with high purity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、従来の方法に較べて効率的な生産が可能
となり、かつ目的生成物の純度を高める工業的製法に関
する新しい技術を確立し、本発明に到達したものである
The present inventors have established a new technology for an industrial manufacturing method that enables more efficient production than conventional methods and improves the purity of the desired product, and has thus arrived at the present invention.

すなわち、本発明は、四級ホスホニウムの無機酸塩を製
造する方法において、 (a)  ホスフィン類を炭酸ジエステルと反応させる
ことにより、対応する四級ホスホニウム炭酸塩を製造す
る工程 (b)  さらに、生成してくる四級ホスホニウム炭酸
塩を無機酸と混合して炭酸ガスを系外に除去せしめて対
応する無機酸塩を製造する工程の2段階の工程を経るこ
とを特徴とする四級ホスホニウム無機酸塩の製造方法を
提案するものである。
That is, the present invention provides a method for producing an inorganic acid salt of a quaternary phosphonium, including (a) a step of producing a corresponding quaternary phosphonium carbonate by reacting a phosphine with a carbonic acid diester; The quaternary phosphonium inorganic acid is characterized in that it undergoes a two-step process of mixing the resulting quaternary phosphonium carbonate with an inorganic acid and removing carbon dioxide from the system to produce the corresponding inorganic acid salt. This paper proposes a method for producing salt.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の原料となるホスフィン類としては、トリメチル
ホスフィン、ジエチルメチルホスフィン、トリエチルホ
スフィン、トリーn−プロピルホスフィン、トリーn−
ブチルホスフィン、トリーn−ペンチルホスフィン、ト
リーミーブチルホスフィン、ジ−n−ブチルメチルホス
フィン、トリシクロヘキシルホスフィン、1.2−ビス
(ジメチルホスフィノ)エタンなどの飽和脂肪族ホスフ
ィン類、トリアリールホスフィンなどの不飽和脂肪族ホ
スフィン類、トリフェニルホスフィン、トリベンジルホ
スフィン、ジ−ミープロピルフェニルホスフィン、ジビ
ニルフェニルホスフィン、n−ブチル−ジフェニルホス
フィンなどの芳香族ホスフィン類、1−エチルホスホラ
ン、■−フェニルホスホラン、1−フェニルホスファン
、1−フェニルホスフェパンなどの脂環式ホスフィン類
などを挙げることができる。
Examples of phosphines used as raw materials for the present invention include trimethylphosphine, diethylmethylphosphine, triethylphosphine, tri-n-propylphosphine, and tri-n-propylphosphine.
Saturated aliphatic phosphine such as butylphosphine, tri-n-pentylphosphine, tri-butylphosphine, di-n-butylmethylphosphine, tricyclohexylphosphine, 1,2-bis(dimethylphosphino)ethane, triarylphosphine, etc. Unsaturated aliphatic phosphine, aromatic phosphine such as triphenylphosphine, tribenzylphosphine, di-propylphenylphosphine, divinylphenylphosphine, n-butyl-diphenylphosphine, 1-ethylphosphorane, ■-phenylphosphorane , 1-phenylphosphane, 1-phenylphosphepane, and other alicyclic phosphines.

炭酸ジエステルとしては炭酸ジメチル、炭酸エチルメチ
ル、炭酸ジエチル、炭酸ジプロピルなどを挙げることが
できるが、炭酸ジメチルなどのようにアルキル基の炭素
数が少ない方が四級化反応が速やかに進行し好ましい。
Examples of diester carbonates include dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, dipropyl carbonate, etc., but it is preferred that the alkyl group has fewer carbon atoms, such as dimethyl carbonate, because the quaternization reaction proceeds more quickly.

無機酸としては、特に制約はないが、炭酸に比較し強酸
なものほど陰イオンへの交換は速く完結する。又、炭酸
に較べて弱い酸でも平衡を少しずつずらせながら行うこ
とで時間をかければ陰イオン交換は達成される。これら
の無機酸の具体的な例として、肝、 IICl 、 1
IBr、旧、 HNO3,HzSO*。
There are no particular restrictions on the inorganic acid, but the stronger the acid compared to carbonic acid, the faster the exchange into anions will be completed. Furthermore, anion exchange can be achieved even with an acid weaker than carbonic acid if it is carried out while gradually shifting the equilibrium and takes time. Specific examples of these inorganic acids include liver, IICl, 1
IBr, old, HNO3, HzSO*.

HzPO4,HJOz、 )(C104,HBF4. 
HPF6. H5bFh。
HzPO4,HJOz, )(C104,HBF4.
HPF6. H5bFh.

+1ASF&I ll03O2Ce 、 HO5QzP
、 H2CrOa+ HzSzOb+11Mn04+ 
HReOn+ HzSeO,tlscNなどを挙げるこ
とができる。
+1ASF&I ll03O2Ce, HO5QzP
, H2CrOa+ HzSzOb+11Mn04+
Examples include HReOn+ HzSeO, tlscN, and the like.

第1工程である四級化反応はホスフィン類と炭酸ジエス
テルとのモル比で0.2〜5、より好ましくは0.3〜
3とし、溶媒の存在下又は非存在下、反応温度20〜2
00℃、より好ましくは30〜160℃で実施される。
In the first step, the quaternization reaction, the molar ratio of phosphines and diester carbonate is 0.2 to 5, more preferably 0.3 to 5.
3, in the presence or absence of a solvent, at a reaction temperature of 20 to 2
It is carried out at 00°C, more preferably at 30-160°C.

通常ホスフィン類が四級化物に充分転化したところで、
未反応のホスフィン類もしくは炭酸ジエステルを溶媒を
用いた場合には溶媒とともに留去したのち、あるいは必
要に応じて適当な有機溶媒で再結晶して、第2工程に送
られる。
Usually, once the phosphines have been sufficiently converted to quaternized products,
If a solvent is used, unreacted phosphines or diester carbonate are distilled off together with the solvent, or if necessary, recrystallized from a suitable organic solvent and sent to the second step.

第2工程では、四級ホスホニウム炭酸塩に通常量論値に
相当する無機酸を溶媒存在下又は非存在下に滴下し、発
生する炭酸ガスを減圧下又は不活性ガスを反応系に吹き
込むことで除去する。この際、起る反応は炭酸ジメチル
を原料とした場合、次式で表わされる。
In the second step, a stoichiometric amount of an inorganic acid is added dropwise to the quaternary phosphonium carbonate in the presence or absence of a solvent, and the generated carbon dioxide is removed under reduced pressure or by blowing an inert gas into the reaction system. Remove. At this time, the reaction that occurs is expressed by the following formula when dimethyl carbonate is used as the raw material.

(第1工程)  R+RJ3P + MezCOz−R
+RzR3MeP”C−OMe+ MeOH+ GO,
j (式中、R+RJxはホスフィンの炭化水素残基、Xは
無機酸の共役塩基を示す。) 反応後、副生アルコール及び溶媒を留去したのち得られ
る固体が目的の四級ホスホニウム無機酸塩である。必要
に応じて適当な溶媒により再結晶などで高純度なものを
得ることができる。
(First step) R+RJ3P + MezCOz-R
+RzR3MeP"C-OMe+ MeOH+ GO,
j (In the formula, R + RJx represents the hydrocarbon residue of phosphine, and X represents the conjugate base of the inorganic acid.) After the reaction, the by-product alcohol and solvent are distilled off, and the solid obtained is the target quaternary phosphonium inorganic acid salt. It is. If necessary, a highly pure product can be obtained by recrystallization using an appropriate solvent.

又、炭酸イオンを完全に除くために量論値より少し過剰
な無機酸を使用した場合には、過剰の無機酸を再結晶な
どの処理によって除くことができる。
Further, when an inorganic acid is used in an amount slightly in excess of the stoichiometric value in order to completely remove carbonate ions, the excess inorganic acid can be removed by a treatment such as recrystallization.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、効率的に各種の四級ホスホニウ
ム無機酸塩を製造することが可能であるが、同時に目的
とする塩を高純度で得ることができる点も本発明の大き
な特徴である。
According to the method of the present invention, it is possible to efficiently produce various quaternary phosphonium inorganic acid salts, and at the same time, a major feature of the present invention is that the desired salt can be obtained with high purity. be.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例−1 (第1工程) 攪拌式オートクレーブに炭酸ジメチル9.0 g 。Example-1 (1st step) 9.0 g of dimethyl carbonate in a stirred autoclave.

トリーn−ブチルホスフィン18.5 gを充てんし、
反応温度115℃、反応圧力5.0 kg/ cn! 
Gで15時間反応した。反応後オートクレーブを冷却し
、反応液を取り出してガスクロマトグラフで分析したと
ころ、トリーn−ブチルホスフィンの転化率は72.8
%であり、未反応物及び溶媒を留去したのちの固体収量
は17.5 gであった(理論収率63.6%)、元素
分析並びに’+(−NMRなどからこの固体はトリーn
−ブチルメチルホスホニウム炭酸塩であることが確認さ
れた。
Filled with 18.5 g of tri-n-butylphosphine,
Reaction temperature: 115℃, reaction pressure: 5.0 kg/cn!
G for 15 hours. After the reaction, the autoclave was cooled and the reaction solution was taken out and analyzed by gas chromatography, and the conversion rate of tri-n-butylphosphine was 72.8.
%, and the solid yield after distilling off unreacted substances and the solvent was 17.5 g (theoretical yield 63.6%). Elemental analysis and '+(-NMR) revealed that this solid was tri-n.
-Butylmethylphosphonium carbonate was confirmed.

(第2工程) トリーn−ブチルメチルホスホニウム炭酸塩10、0 
gを水10.0 gに溶解させ、42%HBF。
(Second step) tri-n-butylmethylphosphonium carbonate 10,0
g was dissolved in 10.0 g of water, 42% HBF.

水溶液7.9gを徐々に添加、添加と同時に激しく炭酸
ガスが発生した。より完全に炭酸ガスを除去するために
40℃/201■Hgで2時間脱気、イオンクロマトグ
ラフィーにより炭酸イオンが20ppm以下であること
を確認後、水を留去した。残渣を水−MeOHの混合溶
媒から再結晶するとト’) −n −ブチルメチルホス
ホニウムテトラフルオロボレート10.1g(論理収率
92.4%、トリーn−ブチルホスフィンに対し58.
8%収率)を得た。
7.9 g of the aqueous solution was gradually added, and carbon dioxide gas was violently generated at the same time as the addition. In order to remove carbon dioxide gas more completely, the mixture was degassed at 40° C./201 μHg for 2 hours, and after confirming by ion chromatography that the carbonate ion content was 20 ppm or less, water was distilled off. The residue was recrystallized from a mixed solvent of water and MeOH to give 10.1 g of -n-butylmethylphosphonium tetrafluoroborate (theoretical yield 92.4%, 58.1 g based on tri-n-butylphosphine).
8% yield) was obtained.

実施例−2 (第1工程) 原料として炭酸ジメチル9.0g、トリエチルホスフィ
ン11.8g、メタノール10.0 gを使用した以外
は実施例−1第1工程と同様の反応を行ったところ17
.2 gの固体を得た(理論収率の78.9%)元素分
析、’H−NMRなどからこの固体はトリエチルメチル
ホスホニウム炭酸塩であることが確認された。
Example 2 (1st step) The same reaction as in the 1st step of Example 1 was carried out except that 9.0 g of dimethyl carbonate, 11.8 g of triethylphosphine, and 10.0 g of methanol were used as raw materials.17
.. 2 g of a solid was obtained (78.9% of theoretical yield), and elemental analysis, 'H-NMR, etc. confirmed that this solid was triethylmethylphosphonium carbonate.

(第2工程) トリエチルメチルホスホニウム炭酸塩10.0 g、4
2%1IBF4水溶液11.3g及び水10.0 gを
使用した以外は実施例−1第2工程と同様の操作を行っ
たところトリエチルメチルホスホニウムテトラフルオロ
ボレート10.8g(理論収率の15.3%、トリエチ
ルホスフィンに対し75.2%収率)を得た。
(Second step) Triethylmethylphosphonium carbonate 10.0 g, 4
The same operation as in the second step of Example 1 was performed except that 11.3 g of a 2% 1IBF4 aqueous solution and 10.0 g of water were used, resulting in 10.8 g of triethylmethylphosphonium tetrafluoroborate (theoretical yield of 15.3 g). %, yield of 75.2% based on triethylphosphine).

実施例−3 (第1工程) 原料として炭酸ジメチル9.0g、1−フェニルホスフ
ァン17.8g、溶媒としてメタノール10.0gを使
用した以外は実施例−1第1工程と同様の反応を行った
ところ、19.1 gの固体を得た(理論収率の71.
3%)。元素分析、’II−NMRなどからこの固体は
1−メチルフェニルホスファニウム炭酸塩であることが
確認された。
Example 3 (1st step) The same reaction as in the 1st step of Example 1 was carried out except that 9.0 g of dimethyl carbonate, 17.8 g of 1-phenylphosphane was used as the raw material, and 10.0 g of methanol was used as the solvent. As a result, 19.1 g of solid was obtained (theoretical yield was 71.9 g).
3%). Elemental analysis, 'II-NMR, etc. confirmed that this solid was 1-methylphenylphosphanium carbonate.

(第2工程) 1−メチルフェニルホスファニウム炭a塩to、。(Second process) 1-Methylphenylphosphanium carbonate to.

gと60%過塩素酸6.9g及び水10.0 gを使用
した以外は実施例−5と同様の操作を行ったところ過塩
素酸メチルフェニルホスファニウム10.9g (i論
収率の94.8%、■−フェニルホスファンに対し67
.6%収率)を得た。
The same operation as in Example 5 was performed except that 6.9 g of 60% perchloric acid and 10.0 g of water were used. As a result, 10.9 g of methylphenylphosphanium perchlorate (the theoretical yield of 94.8%, ■-67 for phenylphosphane
.. 6% yield) was obtained.

実施例−4 (第1工程) 原料として炭酸ジメチル9.0g、トリフェニルホスフ
ィン26.2g、溶媒としてメタノール10.0gを使
用した以外は実施例−1第1工程と同様の反応を行った
ところ21.3 gの固体を得た(論理収率60.5%
)。元素分析、’H−NMRなどからこの固体はトリフ
ェニルメチルホスホニウム炭酸塩であることが確認され
た。
Example 4 (1st step) The same reaction as in the 1st step of Example 1 was carried out except that 9.0 g of dimethyl carbonate, 26.2 g of triphenylphosphine and 10.0 g of methanol were used as the solvent as raw materials. Obtained 21.3 g of solid (60.5% theoretical yield)
). Elemental analysis, 'H-NMR, etc. confirmed that this solid was triphenylmethylphosphonium carbonate.

(第2工程) トリフェニルメチルホスホニウム炭酸塩10.0gと6
0%過塩素酸6.2g及びエタノール100gを使用し
た以外は実施例−5と同様の操作を行ったところ過塩素
酸トリフェニルメチルホスホニウム10.3g(論理収
率の92.8%、トリフェニルホスフィンに対し56.
1%収率)を得た。
(Second step) Triphenylmethylphosphonium carbonate 10.0g and 6
The same operation as in Example 5 was performed except that 6.2 g of 0% perchloric acid and 100 g of ethanol were used. As a result, 10.3 g of triphenylmethylphosphonium perchlorate (92.8% of the theoretical yield, triphenyl 56 for phosphine.
1% yield) was obtained.

Claims (1)

【特許請求の範囲】 四級ホスホニウム無機酸塩を製造する方法において、 (a)ホスフィン類を炭酸ジエステルと反応させ対応す
る四級ホスホニウム炭酸塩を製造する工程 (b)生成した四級ホスホニウム炭酸塩を無機酸と混合
して炭酸ガスを系外に除去せしめて対応する無機酸塩を
製造する工程 の2段階の工程を経ることを特徴とする四級ホスホニウ
ム無機酸塩の製造方法。
[Scope of Claims] A method for producing a quaternary phosphonium inorganic acid salt, comprising: (a) a step of producing a corresponding quaternary phosphonium carbonate by reacting a phosphine with a carbonic acid diester; (b) a produced quaternary phosphonium carbonate; 1. A method for producing a quaternary phosphonium inorganic acid salt, which comprises a two-step process of mixing a quaternary phosphonium inorganic acid salt with an inorganic acid and removing carbon dioxide from the system to produce a corresponding inorganic acid salt.
JP12542887A 1987-05-13 1987-05-22 Method for producing quaternary phosphonium inorganic acid salt Expired - Fee Related JPH0826053B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12542887A JPH0826053B2 (en) 1987-05-22 1987-05-22 Method for producing quaternary phosphonium inorganic acid salt
US07/192,524 US4892944A (en) 1987-05-13 1988-05-11 Process for producing quaternary salts
DE8888107735T DE3868138D1 (en) 1987-05-13 1988-05-13 METHOD FOR PRODUCING QUATERNAUS SALTS.
EP88107735A EP0291074B1 (en) 1987-05-13 1988-05-13 Process for producing quaternary salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12542887A JPH0826053B2 (en) 1987-05-22 1987-05-22 Method for producing quaternary phosphonium inorganic acid salt

Publications (2)

Publication Number Publication Date
JPS63290890A true JPS63290890A (en) 1988-11-28
JPH0826053B2 JPH0826053B2 (en) 1996-03-13

Family

ID=14909855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12542887A Expired - Fee Related JPH0826053B2 (en) 1987-05-13 1987-05-22 Method for producing quaternary phosphonium inorganic acid salt

Country Status (1)

Country Link
JP (1) JPH0826053B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004056917A1 (en) * 2002-12-19 2006-04-20 日本化学工業株式会社 Antistatic agent for resin, antistatic resin composition and antistatic resin molded product
JP2007518772A (en) * 2004-01-26 2007-07-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing ionic liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004056917A1 (en) * 2002-12-19 2006-04-20 日本化学工業株式会社 Antistatic agent for resin, antistatic resin composition and antistatic resin molded product
JP2007518772A (en) * 2004-01-26 2007-07-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing ionic liquid
KR101222321B1 (en) * 2004-01-26 2013-01-16 바스프 에스이 Method for producing ionic liquids

Also Published As

Publication number Publication date
JPH0826053B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
EP0291074A2 (en) Process for producing quaternary salts
US4216168A (en) Preparation of high purity tetrahydrocarbylammonium tetrahydridoborates
US4065475A (en) Process for preparing CIS-epoxysuccinic acid salts of high purity
JPS63284148A (en) Production of quaternary ammonium inorganic acid salt
JPS61249956A (en) Manufacture of imino ether and novel imino ether having arylsubstituent
JPS63290890A (en) Production of quaternary phosphonium salt of inorganic acid
EP0116198A1 (en) Process for preparation of tertiary butyl hydrazine
JPS63166845A (en) Single phase carbonization of aromatic halaide to carboxylate
JPH0440359B2 (en)
JPS5865241A (en) Carbonylation of secondary benzylhalide
KR20120038582A (en) Synthesis of sulfonate-ionic liquids with low halide content using microreactor
JPH0366300B2 (en)
JPH03173846A (en) Preparation of chlorocarboxylic acid chloride
JP3145049B2 (en) Electrolyte for electrolyte
JP4884375B2 (en) Process for producing long-chain quaternary ammonium oxalate and ammonium hydrogen oxalate
JP2001247306A (en) Method for synthesizing ionic metal complex and method for purifying the same
JPH0739377B2 (en) Anion exchange method for quaternary ammonium salts
JPS635037A (en) Production of 2,3-dichloro-1-propene
JP4024882B2 (en) Method for producing tertiary butyl hydrazine / hydrohalide
JP3630714B2 (en) Inclusion complex of quaternary ammonium hydroxide or its salt and method for producing the inclusion complex
JPH02124856A (en) Method and apparatus for producing 1,3-diaminopropanol-2
JPH0160458B2 (en)
JPH0830047B2 (en) Method for producing quaternary ammonium organic acid salt
JPS6226243A (en) Production of 2,3-dichloro-1-propanol
JPH07103078B2 (en) Method for producing methacrylamide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees