JPS63290676A - Method and apparatus for producing ceramic fiber reinforced body - Google Patents

Method and apparatus for producing ceramic fiber reinforced body

Info

Publication number
JPS63290676A
JPS63290676A JP62123946A JP12394687A JPS63290676A JP S63290676 A JPS63290676 A JP S63290676A JP 62123946 A JP62123946 A JP 62123946A JP 12394687 A JP12394687 A JP 12394687A JP S63290676 A JPS63290676 A JP S63290676A
Authority
JP
Japan
Prior art keywords
ceramic
short fibers
dispersion liquid
mold
ceramic short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62123946A
Other languages
Japanese (ja)
Inventor
Tadashi Sasa
佐々 正
Masaaki Ogiwara
荻原 正明
Kenji Matsuda
松田 謙治
Hisahiko Fukase
久彦 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62123946A priority Critical patent/JPS63290676A/en
Publication of JPS63290676A publication Critical patent/JPS63290676A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a reinforced body having high strength at the specific direc tion by dispersing ceramic fiber having electric insulating property into dispers ing liquid having electric insulating property and orientating the ceramic fiber to electric field direction by impressing DC high voltage in the unidirection, to form fiber proformed material. CONSTITUTION:The dispersing liquid 3, in which the ceramic fiber 2 are dis persed in a flask 1, is filled up. The flask 1 is formed according to number and shape of the staples and electrode plates 4 for forming electric field are arranged according to the direction to be reinforced and connected with the DC sorce 5. When the DC high voltage is impressed between the electrodes 4, the ceramic fiber 2 as dielectrics are polarized with the static electric field and supply the plus and minus charges at both end, to match and orientate the direction of electric line of force. Next, the dispersing liquid 3 is removed and frozen or hardened, to obtain the forming body composing of the orientated ceramic fiber. By using this forming body as the base material, the reinforced body having high strength at the specific direction in fiber reinforced plastic, metal ceramic, etc., is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラスチックス、セラミックス、金属などを
セラミック短繊維で強化したセラミック短!I維強化体
の製造方法及びその装置に係り、特にそのセラミック短
繊維を耐強度が要求される方向に配向させた状態で緻密
化できるセラミック短繊維強化体の製造方法及びその装
置に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides ceramic short fibers made of plastics, ceramics, metals, etc. reinforced with ceramic short fibers. The present invention relates to a method and apparatus for producing an I-fiber reinforced body, and in particular to a method and apparatus for producing a ceramic short fiber reinforced body that can be densified with the ceramic short fibers oriented in a direction that requires strength. .

[従来の技術] エネルギー、素材、輸送などの分野でガスタービン、過
給機、圧縮機、送風機、遠心分離機などのプラスチック
、セラミックあるいは金属部品、特に高強度の必要とさ
れる部品にセラミック類mlftを混合してその強度を
高めることがなされている。
[Prior art] Ceramics are used in plastic, ceramic, or metal parts such as gas turbines, superchargers, compressors, blowers, and centrifugal separators in the fields of energy, materials, and transportation, especially parts that require high strength. mlft has been mixed to increase its strength.

従来、このセラミック短繊維を分散させた繊維強化プラ
スチックス、繊維強化金属、繊維強化セラミックス等が
あるが、これら強化体中の短繊維の方向はランダムであ
る。
Conventionally, there are fiber-reinforced plastics, fiber-reinforced metals, fiber-reinforced ceramics, etc. in which these ceramic short fibers are dispersed, but the direction of the short fibers in these reinforced bodies is random.

[発明が解決しようとする問題点] しかしながら例えば、回転機械部品など遠心力のかかる
方向に強度を要求されたりなど特定の方向の荷重に対し
て強度を要求される場合、分散繊維の方向がランダムで
あると、すべての方向にある程度の強度を向上できるか
、特定の方向の強度が思うように向上できない問題があ
る。
[Problems to be solved by the invention] However, when strength is required against loads in a specific direction, such as when strength is required in the direction of centrifugal force in rotating machine parts, the direction of the dispersed fibers may be random. If so, there is a problem in that it is possible to improve the strength to some extent in all directions, or it is not possible to improve the strength in a specific direction as desired.

本発明は上記事情を考慮してなされたもので、特定の方
向に対して強度を有するセラミック短繊維強化体の製造
方法及びその製造装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a method for manufacturing a ceramic short fiber reinforced body having strength in a specific direction and an apparatus for manufacturing the same.

[問題点を解決するための手段及び作用]本発明は、上
記の目的を達成するために、少なくとも表面に電気絶縁
性を有するセラミック短繊維を、電気絶縁性を有する分
散液中に分散すると共に型枠内に充填し、その型枠内の
一方向に直流高電圧を印加して分散液中のセラミック短
m雑を電界方向に配向させたのち、その配向させたセラ
ミック短繊維を基材として緻密化したマトリック久を形
成させるようにしたセラミック短繊維強化体の製造方法
であり、またセラミック類mHを分散させた分散液を収
容すべく少なくとも表面が絶縁材で形成された型枠と、
そのセラミック短繊維を配向する方向の型枠の両側に設
けられた一対の電極と、その電極間に直流高電圧を印加
するための可変直流電源とを備えたものである。
[Means and effects for solving the problems] In order to achieve the above object, the present invention disperses ceramic short fibers having electrical insulation properties at least on the surface in a dispersion liquid having electrical insulation properties, and After filling a formwork and applying a DC high voltage in one direction within the formwork to orient the ceramic short fibers in the dispersion in the direction of the electric field, the oriented ceramic short fibers are used as a base material. A method for producing a ceramic short fiber reinforced body in which a densified matrix is formed, and a formwork having at least the surface formed of an insulating material to accommodate a dispersion liquid in which ceramics mH are dispersed;
It is equipped with a pair of electrodes provided on both sides of the mold in the direction in which the ceramic short fibers are oriented, and a variable DC power source for applying a DC high voltage between the electrodes.

先ず、セラミック短m維を分散液に分散させた状態では
セラミック短繊維は、ランダムに分散しているが、これ
を型枠内に充填し、その両側から直流高電圧を印加する
とセラミック短繊維が直流電界の作用で分極するため、
その電界方向に沿うよう各セラミック類llNが配向す
ることとなる。
First, when ceramic short fibers are dispersed in a dispersion liquid, the ceramic short fibers are randomly dispersed, but when they are filled in a mold and a high DC voltage is applied from both sides, the ceramic short fibers are dispersed. Because it is polarized by the action of a DC electric field,
Each ceramic type IIN is oriented along the direction of the electric field.

従ってこの状態で、たとえば、プラスチック強化体であ
れば分散液をプラスチック原料液体として、配向後その
分散液を硬化させたり、あるいはセラミックス、金属強
化体であれば配向後、分散液を除去し、その配向された
セラミック短繊維に、セラミック前駆体や溶融金属を含
浸させることで緻密化させ、プラスチック、セラミック
或いは金属からなるセラミック短繊維強化体を得るよう
にしたものである。
Therefore, in this state, for example, in the case of a plastic reinforced material, the dispersion liquid is used as a plastic raw material liquid and the dispersion liquid is cured after orientation, or in the case of a ceramic or metal reinforced material, the dispersion liquid is removed after orientation, and the dispersion liquid is removed. The oriented ceramic short fibers are densified by impregnating them with a ceramic precursor or molten metal to obtain a ceramic short fiber reinforced body made of plastic, ceramic, or metal.

先ず、セラミック短繊維及び分散液のいずれも電気的絶
縁性(誘電体)を有するものを用いる。
First, the ceramic short fibers and the dispersion liquid are both electrically insulating (dielectric).

電気的絶縁性を有さない場合、後の工程で直流゛電界形
成時に短繊維ないし分散液を介して電流が流れ、有効な
静電場を形成できなくなるためである。
This is because if the material does not have electrical insulation, a current will flow through the short fibers or the dispersion liquid when forming a direct current electric field in a later step, making it impossible to form an effective electrostatic field.

ここで、電気的絶縁性は、100.0111以上、望ま
しくは10 Ω、cI!以上の比抵抗を有する必要があ
る。
Here, the electrical insulation property is 100.0111 or more, preferably 10 Ω, cI! It is necessary to have a specific resistance higher than that.

゛ このような電気的絶縁性(誘電体)を有するセラミ
ック短繊維としては、アルミナ、ムライト、シリカ、窒
素けい素、シリカガラス等があり、また不純物濃度の低
い炭化けい素等も用いてもよい。
゛ Ceramic short fibers having such electrical insulation (dielectric) include alumina, mullite, silica, silicon nitrogen, silica glass, etc. Silicon carbide with a low impurity concentration may also be used. .

また炭素[1のように、それ自体は電気的絶縁性を有さ
なくとも、その表面に他のセラミックスなど電気的絶縁
性を有するコーティングを施して電気的絶縁性(誘電体
)をもたすようにしてもよい。
In addition, even if carbon itself does not have electrical insulating properties, like carbon [1], it can have electrical insulating properties (dielectric) by coating its surface with an electrically insulating coating such as another ceramic. You can do it like this.

また電気的絶縁性の分散液としては、電@質をほとんど
溶解させない水及び炭化水素、アルコール、ケトン等の
有機溶剤、オイルの伯、ワックスや樹脂のように加熱し
て溶融させ、液状とさせるものであってもよく、またこ
れらの混合物であってもよい。
In addition, electrically insulating dispersions include water that hardly dissolves electrolytes, organic solvents such as hydrocarbons, alcohols, and ketones, oils, waxes, and resins that are melted by heating to become liquid. or a mixture thereof.

また、分散液中には、セラミック短繊維の凝集を防ぎ、
液中の分散を良くするために、ノニオン系(非電解質系
)の分散剤を添加することが望ましい。さらに分散液は
電気的絶縁性のコロイド粒子やセラミック粉体を含む泥
しようであってもよい。
In addition, in the dispersion liquid, the agglomeration of ceramic short fibers is prevented,
In order to improve dispersion in the liquid, it is desirable to add a nonionic (non-electrolyte) dispersant. Additionally, the dispersion may be a slurry containing electrically insulating colloidal particles or ceramic powder.

次に、このようなセラミック類t&1gを分散液中に均
一に分散させたのち、所定形状(例えば、圧縮機動翼や
ガスタービン動翼)の雌型枠内に充填する。
Next, such ceramics t&lg are uniformly dispersed in a dispersion liquid, and then filled into a female mold having a predetermined shape (for example, a compressor rotor blade or a gas turbine rotor blade).

この充填方法は、混合物の温度、および粘度により、例
えば常温で低粘度の場合には重力ないし空気圧程度の低
圧で鋳込むようにしてもよく、また、高ff1(100
℃以上)で高粘度の場合には、高圧の油圧装置を備えた
射出形成法ないし、トランスファー成型法によって鋳込
むようにしてもよい。この場合、分散液中のセラミック
短繊維は型枠内面近傍では若干その面に平行に配向する
が全体としては全くランダムな方向を向いている。
In this filling method, depending on the temperature and viscosity of the mixture, for example, if the mixture is low in viscosity at room temperature, it may be poured under low pressure such as gravity or air pressure.
℃ or higher) and has a high viscosity, it may be cast by an injection molding method equipped with a high-pressure hydraulic device or by a transfer molding method. In this case, the short ceramic fibers in the dispersion are oriented slightly parallel to the inner surface of the mold near the inner surface of the mold, but are oriented in completely random directions as a whole.

この型枠内に充填したセラミック短繊維、分散液の混合
物に対して所定の方向(例えば、圧縮機動翼やガスター
ビン動翼の翼高さ方向)へ直流高電圧を印加し、その混
合物中に直流静電場を形成する。
A DC high voltage is applied in a predetermined direction (for example, the blade height direction of a compressor rotor blade or a gas turbine rotor blade) to the mixture of ceramic short fibers and dispersion liquid filled in this mold, and the mixture is Creates a direct current electrostatic field.

これによりセラミック短繊維は、誘電体であるため電界
の作用を受けて分極し、その短繊維の両端に正負に分極
した電荷を帯び、かつ分散液中では回転の自由度がある
ため、静電場に形成された電気力線と同じ方向にその短
繊維が配向するようになる。
As a result, the ceramic short fibers are dielectric, so they are polarized under the action of an electric field, and both ends of the short fibers are charged with positive and negative polarization, and because they have a degree of freedom of rotation in the dispersion liquid, the electrostatic field The short fibers become oriented in the same direction as the electric lines of force formed.

分散液の粘性及び短繊維同上の接触による抵抗に対して
短繊維が配向するような回転力が生じるためには、形成
する電界強度としては、少なくともIKV/cm以上、
できれば2〜3KV/cm以上であることが望ましい。
In order to generate a rotational force that orients the short fibers against the viscosity of the dispersion liquid and the resistance due to contact with the short fibers, the electric field strength to be formed must be at least IKV/cm or more,
If possible, it is desirable that it is 2 to 3 KV/cm or more.

またこのような静電場を形成するためには、型枠は、そ
れ自体が電気的絶縁性を有する材質(例えばプラスチッ
クス、セラミックス、石こう等)であるか、少くとも型
枠内面に電気的絶縁性を有するコーティングないしライ
ニングを施したものであることが必要である。
In order to create such an electrostatic field, the formwork itself must be made of an electrically insulating material (e.g. plastic, ceramics, plaster, etc.), or at least the inner surface of the formwork must be electrically insulating. It is necessary that the material be coated or lined with a protective coating or lining.

また電界形成用の電極自体は、型枠内の分散液に直接接
触する構造とし、その間に形成される電解強度を低下さ
せる介在物を極力なくすることが望ましい。
Further, it is desirable that the electrode for forming the electric field itself has a structure in which it directly contacts the dispersion liquid in the mold, and that inclusions that reduce the electrolytic strength formed therebetween are eliminated as much as possible.

またこの静電場の形成と同時に超音波により型枠内に振
動を与える短繊維の分散、配向を更に促進させるように
してもよい。
Further, at the same time as this electrostatic field is formed, ultrasonic waves may be used to further promote the dispersion and orientation of the short fibers by applying vibrations within the mold.

以上のように分散液内のセラミック短繊維を電界方向に
配向させた後、この配向状態および成形体全体の形状を
保持したまま、成形体を型枠から取り出す。
After the ceramic short fibers in the dispersion are oriented in the direction of the electric field as described above, the molded body is taken out from the mold while maintaining this orientation state and the overall shape of the molded body.

このための方法としては、型枠内において分散液を除去
するか、或いは分散液を凍結ないし硬化させる。
As a method for this purpose, the dispersion liquid is removed within the mold, or the dispersion liquid is frozen or hardened.

分散液の除去方法としては、特に型枠の表面をセラミッ
ク短繊維の艮ざよりも小さい孔径の多数の孔を有する多
孔質としておき、毛管現象によりその多孔質を通して分
散液を吸収除去するか、ないしは分散液を加圧して濾過
させて除去する方法が有効である。
To remove the dispersion, the surface of the mold is made porous with a large number of pores smaller in diameter than the diameter of the ceramic short fibers, and the dispersion is absorbed and removed through the pores by capillary action. Alternatively, it is effective to apply pressure to the dispersion liquid and filter it to remove it.

また分散液の凍結方法としては、型枠ごと分散液の凝固
点以下の温度に保持して脱形する。この場合、分散液が
水系であれば、0℃以下、溶融ワックス等であれば室温
、溶融樹脂であれば室温以上の適宜な温度に型表面温度
を制御すればよい。
Further, as a method of freezing the dispersion, the mold is kept at a temperature below the freezing point of the dispersion and then removed from the form. In this case, the mold surface temperature may be controlled to an appropriate temperature of 0° C. or lower if the dispersion is aqueous, room temperature if the dispersion is a molten wax, or above room temperature if the dispersion is a molten resin.

また分散液の硬化方法としては、特に低粘性の樹脂性の
前駆体を分散液として使用し、これに重縮合ないし架橋
促進剤を添加したのち、型枠を硬化温度に保つことで型
枠内で硬化させる。
In addition, as a method of curing the dispersion liquid, a particularly low-viscosity resinous precursor is used as the dispersion liquid, a polycondensation or crosslinking accelerator is added to this, and then the formwork is kept at the curing temperature. harden with

このように配向後の分散液を除去、または凍結ないし硬
化させることにより成形体内のセラミック短繊維の配向
および成形体形状をくずさないまま成形体を型枠から取
り外すことができる。
By removing, freezing or hardening the oriented dispersion in this manner, the molded body can be removed from the mold without destroying the orientation of the ceramic short fibers within the molded body and the shape of the molded body.

このようにセラミックス短繊維が配向された成形体を基
材とし、これを4A11強化プラスチックス、繊維強化
金属、繊維強化セラミックスのいずれの強化体にもする
ことができる。
The molded body in which short ceramic fibers are oriented in this manner is used as a base material, and this can be made into a reinforced body of any of 4A11 reinforced plastics, fiber reinforced metals, and fiber reinforced ceramics.

先ず、分散液がプラスチック原料液体すなわち溶融プラ
スチックスないし樹脂前駆体液体である場合には、分散
液を凍結ないし硬化させた成形体は、そのまま繊維強化
プラスチックスとして利用することができる。
First, when the dispersion liquid is a plastic raw material liquid, that is, a molten plastic or a resin precursor liquid, a molded article obtained by freezing or hardening the dispersion liquid can be used as it is as a fiber-reinforced plastic.

また、このプラスチックス原料が、フェノール樹脂、フ
ラン樹脂等の炭化水素系熱硬化樹脂である場合、このプ
ラスチックスを熱分解させて炭素化し、さらに成形体含
浸などの緻密化の処理を行うことにより、繊維強化炭素
材料として利用することができる。
In addition, if the plastic raw material is a hydrocarbon thermosetting resin such as phenol resin or furan resin, the plastic can be thermally decomposed to carbonize it, and then subjected to densification treatment such as impregnation into a molded body. , it can be used as a fiber-reinforced carbon material.

同じように、このプラスチックス原料が、ポリシロキサ
ン、ポリアルミノキサン、ポリカーポジラン、ポリシラ
ザン等の熱分解により、シリカ。
Similarly, this plastic raw material is made into silica by thermal decomposition of polysiloxane, polyaluminoxane, polycarposilan, polysilazane, etc.

アルミナ、炭化けい素、窒化けい素等のセラミックスを
生成するものであれば、熱分解の後、含浸や焼結等の緻
密化の処理を行うことにより繊維強化セラミックスとす
ることができる。
If it produces ceramics such as alumina, silicon carbide, and silicon nitride, it can be made into fiber-reinforced ceramics by performing densification treatment such as impregnation and sintering after thermal decomposition.

型枠から取り出す際に分散液を凍結ないし硬化させた場
合でも、その後加熱し分散液を蒸発、熱分解、酸化等さ
せることによって成形体内からこれを除去し配向された
セラミック短繊維のみの成形体とすることができる。こ
の後、この成形体の空隙に溶融金属を含浸させた侵、凝
固させれば繊維強化金属とすることができる。
Even if the dispersion is frozen or hardened when taken out of the mold, this can be removed from the molded body by heating the dispersion to evaporate, thermally decompose, oxidize, etc., resulting in a molded body containing only oriented ceramic short fibers. It can be done. Thereafter, a fiber-reinforced metal can be obtained by impregnating the voids of this molded body with molten metal and solidifying it.

同じように溶解ガラスを含浸させた後、凝固させるか、
または更に結晶化させれば繊維強化ガラスまたは繊維強
化結晶化ガラスとすることができる。
After impregnating molten glass in the same way, solidify it or
Alternatively, if it is further crystallized, fiber-reinforced glass or fiber-reinforced crystallized glass can be obtained.

又、このセララミック短繊維の成形体の空隙に、炭化水
素系樹脂、ポリシロキサン、ポリアルミノキサン、ポリ
カーポジラン、ポリシラザン等のセラミックス前駆体高
分子またはコロイダルシリカ。
In addition, a ceramic precursor polymer such as a hydrocarbon resin, polysiloxane, polyaluminoxane, polycarposilan, polysilazane, or colloidal silica is added to the voids of the ceramic short fiber molded body.

アルミナゾル等のセラミック前駆体コロイド分散液を含
浸させ、その後、緻密化の処理を行うことにより!!雑
強化セラミックスとすることができる。
By impregnating a colloidal dispersion of a ceramic precursor such as alumina sol, and then performing a densification process! ! It can be made into miscellaneous reinforced ceramics.

また炭化水素ガス、ハロゲン化けい素、ハロゲン化アル
ミニウム等に水素、水蒸気、アンモニアなどを適宜加え
たセラミックス前駆体ガスを用いてCVI(Chemi
cal  Vapor  Infiltration)
法により、セラミック短111ffl成形体の空隙内に
セラミックスを形成させ、繊維強化セラミックスとする
こともできる。
In addition, CVI (Chemi
cal Vapor Infiltration)
It is also possible to form fiber-reinforced ceramics by forming ceramics in the voids of a short ceramic 111ffl molded body by the method.

また分散液が、コロイド粒子や微粉の形でセラミックス
を含むコロイド分散液ないし泥しようである場合には配
向されたセラミック短m雑からなる成形体はセラミック
短繊維とその空隙内にセラミック粒子が分散した成形体
となり、これによってセラミック短繊維とセラミック粒
子の双方により強化されたプラスチックスまたは金属の
強化体とすることができる。またこの成形体をさらに緻
密化させることにより繊維強化セラミックスとすること
もできる。
In addition, if the dispersion liquid is a colloidal dispersion liquid or slurry containing ceramics in the form of colloidal particles or fine powder, a molded body consisting of oriented ceramic short fibers and ceramic particles dispersed in the voids thereof. This results in a molded body that can be used as a reinforced plastic or metal body reinforced by both short ceramic fibers and ceramic particles. Further, by further densifying this molded body, fiber reinforced ceramics can be obtained.

し実施例] 以下本発明の好適実施例を添付図面に基づいて説明する
Embodiments] Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

第1〜3図は本発明のセラミック短繊維強化体の製造の
各工程を示し、図において、先ず、第2図に示すように
型枠1内に、セラミックE1m 2を分散させた分散液
3を充填する。
1 to 3 show each step of manufacturing the ceramic short fiber reinforced body of the present invention. In the figures, first, as shown in FIG. Fill it with.

型枠1は成形する部品形状に応じて形成され、その部品
の強化すべき方向に応じて第1図に示すよう型枠1の両
側で、かつ分散液3と直接接触するよう電界形成電極板
4が設けられる。この電極板4間には可変直流電源5が
接続され、電極板4間に直流高電圧が印加できるように
なっている。
The formwork 1 is formed according to the shape of the part to be molded, and depending on the direction in which the part is to be strengthened, electric field forming electrode plates are placed on both sides of the formwork 1 and in direct contact with the dispersion liquid 3, as shown in FIG. 4 is provided. A variable DC power supply 5 is connected between the electrode plates 4, so that a high DC voltage can be applied between the electrode plates 4.

型枠1内にセラミック短繊維2を分散させた分散液3を
充填した状態では、第2図に示すようそのセラミック類
1[t2の方向はランダムであるが、第1図に示すよう
に電極板4間に直流高電圧が印加されると、その間に電
界が形成され、分散液3内の誘電体である各セラミック
短繊維2はその静電場により分極し、両端に正負の電荷
を帯ることとなる。従って、各セラミック短繊維2は、
電極4.4間に形成される電界方向と交差する方向に位
置した場合は回転力が生じ、その電気力線の方向に整合
するよう配向される。
When the formwork 1 is filled with the dispersion liquid 3 in which ceramic short fibers 2 are dispersed, the ceramics 1 [t2 direction is random as shown in FIG. When a high DC voltage is applied between the plates 4, an electric field is formed between them, and each ceramic short fiber 2, which is a dielectric substance in the dispersion liquid 3, is polarized by the electrostatic field, and both ends are charged with positive and negative charges. It happens. Therefore, each ceramic short fiber 2 is
If it is located in a direction that intersects the direction of the electric field formed between the electrodes 4.4, a rotational force will be generated and it will be oriented to align with the direction of the lines of electric force.

以上のようにして各セラミック短!l維2を配向させた
のち、分散液3を除去、凍結成いは硬化させ、配向され
たセラミック短繊維2からなる成形体5を、第3図に示
すよう型枠1から取り出し、この成形体6を基材として
プラスチックス、セラミックス或いは金属のセラミック
短繊維強化体とする。
Each ceramic short as above! After orienting the fibers 2, the dispersion liquid 3 is removed, frozen and hardened, and the molded body 5 made of the oriented ceramic short fibers 2 is taken out from the mold 1 as shown in FIG. The body 6 is used as a base material to be reinforced with short ceramic fibers of plastics, ceramics, or metal.

以下具体的な実施例1〜5について詳細に説明する。Specific Examples 1 to 5 will be described in detail below.

実施例1 CVD法により窒化はう素をコーティングして電気的絶
縁性を付与した炭化けい素ウィスカーを?lli気的絶
気性絶縁性ノニオン系分散剤水溶液を分散液として分散
させた。多孔質の樹脂材料により、翼高さ約501m1
のガスタービン勧請雌型を製作し、その動翼の先端部と
根部とに一対のステンレス鋼製電極板を取り付け、根部
より上記ウィスカー分散液を導入できる構造とした。
Example 1 Silicon carbide whiskers coated with boron nitride using the CVD method to provide electrical insulation. An aqueous solution of an insulating nonionic dispersant was dispersed as a dispersion liquid. The blade height is approximately 501m1 due to the porous resin material.
A female gas turbine model was manufactured, and a pair of stainless steel electrode plates was attached to the tip and root of the rotor blade, so that the whisker dispersion liquid could be introduced from the root.

0.2気圧の空気圧加圧によりウィスカー分散液を型枠
内に充填した後、電極間に5KVの直流電圧を印加し、
分散液中のウィスカーと配向させた。その後分散液への
加圧を9気圧に増圧し、分散液を樹脂型枠の微細孔から
濾過させて除去した後、型枠を聞いて形成体を取り出し
、更に充分乾燥させた。
After filling the formwork with the whisker dispersion liquid by applying air pressure of 0.2 atm, a DC voltage of 5 KV was applied between the electrodes,
The whiskers in the dispersion were oriented. Thereafter, the pressure on the dispersion liquid was increased to 9 atmospheres, and the dispersion liquid was filtered and removed through the fine pores of the resin mold, and the formed body was taken out from the mold and further dried thoroughly.

その後、この成形体をCVD装置内に置き、四塩化けい
素、メタン、水素の混合ガスを送りつつ加熱して、成形
体空隙に炭化けい素を形成させ、炭化けい素ウィスカー
が藺高さ方向に配向した繊維強化炭化けい素セラミック
スのガスタービン動翼を製造した。
Thereafter, this molded body is placed in a CVD device and heated while feeding a mixed gas of silicon tetrachloride, methane, and hydrogen to form silicon carbide in the voids of the molded body, and silicon carbide whiskers are formed in the height direction. A gas turbine rotor blade made of fiber-reinforced silicon carbide ceramics oriented in the following manner was manufactured.

実施例2 不活性雰囲気中で加熱することにより炭化けい素セラミ
ックスを生成するセラミック前駆体であるポリシラスチ
レンの溶融物を分散液としてこの中に窒化けい素ウィス
カーを混合し、加熱混練により充分分散させた。型枠と
して高温排ガス用ファンの動翼形状の金型を製作し、特
に金型キャビディ面は電気絶縁性を有しかつ機械加工可
能なマイカセラミックスの内張つとし、またこれを超音
波による撮動が可能な構造とした。更に動翼先端部と翼
根部とに一対のクロムメッキ電極を取り付け、また翼根
部に成形材料導入のゲートを設けた。この型を射出成形
機に取りつけ、型の温度を始め温水循環により60℃に
保ちつつ、上記窒化けい素ウィスカー分散ポリシラスチ
レン溶融液を導入し、型に超音波撮動を加えつつ、電極
間に15kvの直流電圧を印加して、窒化けい素ウィス
カーを翼高さ方向に配向させた。その後、型の循環温水
を冷水に切り変え、型内のポリシラスチレンを凍結させ
た後、型を開いて成形体を取り出した。
Example 2 Silicon nitride whiskers were mixed into a dispersion of a melt of polysilastyrene, which is a ceramic precursor that produces silicon carbide ceramics by heating in an inert atmosphere, and were sufficiently dispersed by heating and kneading. I let it happen. A mold in the shape of the rotor blades of a high-temperature exhaust gas fan was fabricated as a formwork, and the cavity surface of the mold was lined with mica ceramics, which had electrical insulation properties and could be machined. The structure allows for movement. Furthermore, a pair of chrome-plated electrodes were attached to the tip and root of the rotor blade, and a gate for introducing molding material was provided at the root of the blade. This mold was attached to an injection molding machine, and while the temperature of the mold was kept at 60°C by hot water circulation, the silicon nitride whisker-dispersed polysilastyrene melt was introduced, and while ultrasonic imaging was applied to the mold, the temperature between the electrodes was A DC voltage of 15 kV was applied to the blade to orient the silicon nitride whiskers in the blade height direction. Thereafter, the hot water circulating in the mold was changed to cold water to freeze the polysilastyrene in the mold, and then the mold was opened and the molded product was taken out.

その後、9.8気圧の窒素雰囲気内で1,000℃まで
加熱して成形体中のポリシラスチレンを炭化けい素を主
成分とするセラミックスに転化させた。その後、別のセ
ラミックス前駆体であるポリシラザンのテトラヒドロフ
ラン溶液を上記成形体中に真空容器内にて圧入含浸させ
、やはり9.8気圧の窒素雰囲気中で1,200℃まで
加熱して窒化けい素と炭化けい素の混合物からなるセラ
ミックスを成形体中に生成させた。このポリシラザン含
浸を3回繰り返した後、最後にアルミナゾルを1回含浸
した。その後、この成形体を窒化はう素粉を充填した黒
鉛モールド内でホットプレス焼結させた。このような製
造プロセスにより、一方向に配向した窒化けい素ウィス
カーにより強化され、マトリックスとして窒化けい素、
炭化けい素、および若干のアルミナを含む緻密なセラミ
ックスからなる繊維強化セラミックスの高温排ガス用フ
ァン動翼を得た。
Thereafter, the molded body was heated to 1,000° C. in a nitrogen atmosphere of 9.8 atm to convert the polysilastyrene in the molded body into a ceramic mainly composed of silicon carbide. Thereafter, a tetrahydrofuran solution of polysilazane, another ceramics precursor, was injected into the molded body in a vacuum container and heated to 1,200°C in a nitrogen atmosphere of 9.8 atm to form silicon nitride. A ceramic consisting of a mixture of silicon carbide was produced in a molded body. After repeating this polysilazane impregnation three times, the alumina sol was finally impregnated once. Thereafter, this compact was hot press sintered in a graphite mold filled with nitrided boron powder. This manufacturing process combines silicon nitride as a matrix, reinforced by unidirectionally oriented silicon nitride whiskers,
A fiber-reinforced ceramic fan rotor blade for high-temperature exhaust gas made of dense ceramic containing silicon carbide and some alumina was obtained.

実施例3 窒化けい素に15重量%のアルミナと6重量%の窒化ア
ルミニウムを含むセラミック粉を混合した溶融ワックス
を分散液として、この中に窒化けい素ウィスカーを混合
し分散させた。これを実施例2と同じ成形装置を用い、
同じ型枠を室温に保ちつつ成形し、直流静電場を形成す
ることによって窒化けい素ウィスカーを一方向に配向さ
せた復、ワックスを凍結させて型枠から成形体を取り出
した。
Example 3 A molten wax prepared by mixing silicon nitride with ceramic powder containing 15% by weight of alumina and 6% by weight of aluminum nitride was used as a dispersion liquid, into which silicon nitride whiskers were mixed and dispersed. Using the same molding equipment as in Example 2,
The same mold was molded while being kept at room temperature, the silicon nitride whiskers were oriented in one direction by forming a DC electrostatic field, the wax was frozen, and the molded body was removed from the mold.

その後、成形体を乾燥空気中にて500℃まで加熱して
、成形体内のワックスを除去した。
Thereafter, the molded body was heated to 500° C. in dry air to remove wax inside the molded body.

この成形体上に窒化はう素粉を塗布した後、更にシリカ
ガラスを主成分とするカプセルを形成させて熱間等方圧
プレスにより成形体を緻!化させた。
After coating this molded body with nitride powder, capsules mainly composed of silica glass are formed, and the molded body is compacted by hot isostatic pressing. turned into

このような製造法により、一方向に配向した窒化けい素
ウィスカーにより強化され、マトリックスどして緻密な
サイアロン系セラミックスを有する繊維強化セラミック
ス部品を得た。
By such a manufacturing method, a fiber-reinforced ceramic component was obtained which was reinforced by unidirectionally oriented silicon nitride whiskers and had a dense sialon ceramic as a matrix.

実施例4 0ストワツクス法で、作成したファンブレードのシェル
鋳型をゴム膜で覆って水の漏洩を防ぎブレード先端と根
部に一対のステンレス鋼製電極を取りつけ、また根部よ
りウィスカー分散液を注入できる様にした。
Example 4 A fan blade shell mold made using the zero-stowax method was covered with a rubber membrane to prevent water leakage, and a pair of stainless steel electrodes were attached to the tip and root of the blade, and a whisker dispersion liquid could be injected from the root. I made it.

ウィスカー分散液はCVD法により窒化はう素をコーテ
ィングして電気的絶縁性を付与した炭化珪素ウィスカー
を電気的絶縁性の高い脱塩水中に分散させて作成した。
The whisker dispersion liquid was prepared by dispersing silicon carbide whiskers coated with boron nitride to provide electrical insulation using a CVD method in demineralized water having high electrical insulation.

この場合炭化珪素ウィスカーは、ファンブレード中に2
5体体積分率とする様に調製した。この分散液を前記シ
ェル鋳型に充填後、電極間に5KVの直流電圧を印加し
、ウィスカーを配向させ次いでゴム膜を除いて、分散液
をシェル鋳型より浸み田させ、真空乾燥により充分脱水
した。このウィスカー内在のシェル鋳型を所定の金枠内
に設置し真空中で700℃まで加熱模、アルミ合金を高
圧注入し、ブレード長さ方向にウィスカーが配向したア
ルミ基複合材ファンブレードを得た。
In this case, silicon carbide whiskers are placed in the fan blades.
It was prepared to have a body volume fraction of 5. After filling this dispersion liquid into the shell mold, a DC voltage of 5 KV was applied between the electrodes to orient the whiskers, and then the rubber film was removed, the dispersion liquid was allowed to soak through the shell mold, and it was thoroughly dehydrated by vacuum drying. . This shell mold containing whiskers was placed in a predetermined metal frame, heated to 700°C in vacuum, and aluminum alloy was injected under high pressure to obtain an aluminum matrix composite fan blade with whiskers oriented in the blade length direction.

実施例5 RIM(反応射出成形)またはナイロン射出成形におい
て、ガラス短繊維、または絶縁性コーティングをした金
属ボイスカーを型内に注入し、同化が進む前に所定の方
向を上述のように直流電場をかけることにより、ターボ
チャージャーのコンプレッサーインペラーの翼内の繊維
を半径方向に整列させることができた。
Example 5 In RIM (reactive injection molding) or nylon injection molding, short glass fibers or a metal voice car with an insulating coating are injected into the mold, and before assimilation proceeds, a direct current electric field is applied in a predetermined direction as described above. By applying this method, the fibers in the blades of the turbocharger's compressor impeller could be aligned in the radial direction.

[発明の効果] 以上説明してきたことから明らかなように本発明によれ
ば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

(1)  分散液中のセラミック短繊維を静電場により
電界方向に配向させることで特定の方向の強庶が高い強
化体を得ることができる。
(1) By orienting the short ceramic fibers in the dispersion in the direction of the electric field using an electrostatic field, a reinforced body with high strength in a specific direction can be obtained.

(2)  配向後のセラミック短繊維を基材として繊維
強化プラスチックス、金属、セラミックスなどいずれの
強化体にもすることができる。
(2) The oriented ceramic short fibers can be used as a base material to reinforce fiber-reinforced plastics, metals, ceramics, and the like.

(3〕  成形する強化体で強度が要求される方向にセ
ラミック短繊維を自在に配向できるので機械部品として
の性能や耐久性、信頼性を向上できる。
(3) Since the short ceramic fibers can be freely oriented in the direction where strength is required in the reinforcing body to be molded, performance, durability, and reliability as a mechanical part can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は、本発明の詳細な説明する工程図である。 図中、1は型枠、2はセラミック短繊維、3は分散液、
4は電極、5は可変直流電源、6は成形体である。 特許出願人   石川島播磨重工業株式会社代理人弁理
士   絹  谷  信  雄1・・・型枠 2・・・ セラミック短繊維 3・・・分散液 4・・・電極 5・・・可変直流電源 6・・・成形体 第1図
FIGS. 1 to 3 are process diagrams illustrating detailed explanations of the present invention. In the figure, 1 is a formwork, 2 is a ceramic short fiber, 3 is a dispersion liquid,
4 is an electrode, 5 is a variable DC power supply, and 6 is a molded body. Patent Applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinuya 1...Formwork 2...Ceramic short fibers 3...Dispersion liquid 4...Electrode 5...Variable DC power supply 6...・Figure 1 of molded body

Claims (5)

【特許請求の範囲】[Claims] (1)少くとも表面が電気絶縁性を有するセラミック短
繊維を、電気絶縁性を有する分散液中に分散すると共に
型枠内に充填し、その型枠内の一方向に直流高電圧を印
加して分散液中のセラミック短繊維を電界方向に配向さ
せたのち、その配向させたセラミック短繊維を基材とし
て緻密化したマトリックスを形成させることを特徴とす
るセラミック短繊維強化体の製造方法。
(1) Ceramic short fibers having at least an electrically insulating surface are dispersed in a dispersion liquid having electrically insulating properties and filled into a mold, and a high DC voltage is applied in one direction within the mold. A method for producing a ceramic short fiber reinforced body, which comprises orienting ceramic short fibers in a dispersion liquid in the direction of an electric field, and then forming a dense matrix using the oriented ceramic short fibers as a base material.
(2)分散液が、プラスチック原料液体であり、セラミ
ック短繊維を配向後、そのまま分散液を硬化させて繊維
強化プラスチックスとする特許請求の範囲第1項に記載
のセラミック短繊維強化体の製造方法。
(2) Production of a ceramic short fiber reinforced body according to claim 1, wherein the dispersion liquid is a plastic raw material liquid, and after orienting the ceramic short fibers, the dispersion liquid is directly cured to produce fiber reinforced plastics. Method.
(3)分散液が、セラミック前駆体液体またはセラミッ
ク粒子含有液体であり、セラミック短繊維を配向後、そ
の分散液を凍結または硬化あるいは除去させて脱形した
のち、緻密化させて繊維強化セラミックスとする特許請
求の範囲第1項に記載のセラミック短繊維強化体の製造
方法。
(3) The dispersion liquid is a ceramic precursor liquid or a liquid containing ceramic particles, and after orienting the ceramic short fibers, the dispersion liquid is frozen, hardened, or removed to remove the shape, and then densified to form fiber-reinforced ceramics. A method for producing a ceramic short fiber reinforced body according to claim 1.
(4)セラミック短繊維を配向後、分散液を型枠から除
去したのち、セラミック短繊維を型枠から取り出し、こ
の配向したセラミック短繊維を基材として、セラミック
前駆体の液体又は気体や溶融金属を含浸させて繊維強化
セラミックスや金属とする特許請求の範囲第1項に記載
のセラミック短繊維強化体の製造方法。
(4) After orienting the ceramic short fibers, remove the dispersion from the mold, take out the ceramic short fibers from the mold, use the oriented ceramic short fibers as a base material, and use the ceramic precursor liquid or gas or molten metal. 2. The method for producing a ceramic short fiber reinforced body according to claim 1, wherein the short ceramic fiber reinforced body is impregnated with fiber-reinforced ceramics or metal.
(5)セラミックス短繊維を分散させた分散液を収容す
べく少なくとも表面が絶縁材で形成された型枠と、その
セラミック短繊維を配向する方向の型枠の両側に設けら
れた一対の電極と、その電極間に直流高電圧を印加する
ための可変直流電源とを備えたセラミック短繊維強化体
の製造装置。
(5) A mold whose at least the surface is made of an insulating material to accommodate a dispersion liquid in which ceramic short fibers are dispersed, and a pair of electrodes provided on both sides of the mold in the direction in which the ceramic short fibers are oriented. , and a variable DC power supply for applying a DC high voltage between the electrodes.
JP62123946A 1987-05-22 1987-05-22 Method and apparatus for producing ceramic fiber reinforced body Pending JPS63290676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123946A JPS63290676A (en) 1987-05-22 1987-05-22 Method and apparatus for producing ceramic fiber reinforced body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123946A JPS63290676A (en) 1987-05-22 1987-05-22 Method and apparatus for producing ceramic fiber reinforced body

Publications (1)

Publication Number Publication Date
JPS63290676A true JPS63290676A (en) 1988-11-28

Family

ID=14873258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123946A Pending JPS63290676A (en) 1987-05-22 1987-05-22 Method and apparatus for producing ceramic fiber reinforced body

Country Status (1)

Country Link
JP (1) JPS63290676A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060033A1 (en) * 2003-12-15 2005-06-30 Nissan Motor Co., Ltd. Separator for fuel cell, its molding method, its producing method, and its producing apparatus
WO2008085820A1 (en) * 2007-01-11 2008-07-17 The Gates Corporation Method of reinforcing low melting temperature cast metal parts
JP2011080188A (en) * 2009-10-02 2011-04-21 Robert Buerkle Gmbh Apparatus and method for producing molding comprising fibrous material
CN102186657A (en) * 2008-08-14 2011-09-14 Lm玻璃纤维制品有限公司 A method of manufacturing a wind turbine blade shell part comprising a magnetisable material
JP2014004820A (en) * 2012-06-21 2014-01-16 Toyota Motor Engineering & Manufacturing North America Inc Method and apparatus for controlling alignment of fibers during injection molding process
GB2555852A (en) * 2016-11-14 2018-05-16 Jaguar Land Rover Ltd Moulding process and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060033A1 (en) * 2003-12-15 2005-06-30 Nissan Motor Co., Ltd. Separator for fuel cell, its molding method, its producing method, and its producing apparatus
WO2008085820A1 (en) * 2007-01-11 2008-07-17 The Gates Corporation Method of reinforcing low melting temperature cast metal parts
JP2010515582A (en) * 2007-01-11 2010-05-13 ザ ゲイツ コーポレイション Method for strengthening low melting point cast metal
CN102186657A (en) * 2008-08-14 2011-09-14 Lm玻璃纤维制品有限公司 A method of manufacturing a wind turbine blade shell part comprising a magnetisable material
JP2011080188A (en) * 2009-10-02 2011-04-21 Robert Buerkle Gmbh Apparatus and method for producing molding comprising fibrous material
JP2014004820A (en) * 2012-06-21 2014-01-16 Toyota Motor Engineering & Manufacturing North America Inc Method and apparatus for controlling alignment of fibers during injection molding process
GB2555852A (en) * 2016-11-14 2018-05-16 Jaguar Land Rover Ltd Moulding process and apparatus

Similar Documents

Publication Publication Date Title
CN104496508B (en) Manufacture method based on the SiC ceramic base turbine blade that photocuring 3D prints
RU2728429C1 (en) Method of making articles from composite c/c-sic material and products based thereon
CN103113124B (en) Preparation method of fiber-toughened SiC ceramic-based composite material three-dimensional member
US6309703B1 (en) Carbon and ceramic matrix composites fabricated by a rapid low-cost process incorporating in-situ polymerization of wetting monomers
US8961840B1 (en) Method for producing bulk ceramic components from agglomerations of partially cured gelatinous polymer ceramic precursor resin droplets
CN106278335B (en) A kind of manufacturing method of fiber alignment toughening ceramic based composites turbo blade
CN106589821B (en) A kind of preparation method of porous mullite ceramics/epoxy resin composite material
CN109320246A (en) A kind of high-temperature oxidation resistant graphite ceramic composite material and preparation method
CN105110807A (en) C/C-SiC composite material prepared by using silicon-containing aryne resin, and preparation method thereof
JPS63290676A (en) Method and apparatus for producing ceramic fiber reinforced body
CN107129298B (en) graphene/ZrO2Method for preparing ceramic composite material
JP2000185977A (en) Method for varying dielectric characteristic of ceramic- based matrix composite material
JPH0210115B2 (en)
CN107745433A (en) A kind of method of agar powder curing ceramic slurry
JPS63288974A (en) Production of fiber reinforced ceramics
CN106044742A (en) Method for preparing pitch-based carbon fiber self-bonding network material
WO1998027025A1 (en) High yield-low carbon ceramic via polysilazane
US5948348A (en) High yield-low carbon ceramic via silicon-based polymers
WO2002058917A2 (en) Use of a liquid during centrifugal processing to improve consolidation of a composite structure
JP2002037682A (en) Porous silicon carbide sintered body and its manufacturing method
Thünemann et al. Porous SiC‐preforms by intergranular binding with preceramic polymers
CN107986806A (en) Alumina fiber reinforced nitride-based wave-transparent composite material and preparation method thereof
Stierlen et al. Si/SiC-Ceramic low process shrinkage-high temperature material for the Laser Sinter process
JP4018488B2 (en) INORGANIC POROUS BODY AND INORGANIC OBJECT USING THE SAME AND PUMP IMPELLER, CASING OR LINER RING
JPS63288973A (en) Production of fiber reinforced ceramics