JPS63290606A - Manufacture of seamless steel pipe - Google Patents

Manufacture of seamless steel pipe

Info

Publication number
JPS63290606A
JPS63290606A JP12398987A JP12398987A JPS63290606A JP S63290606 A JPS63290606 A JP S63290606A JP 12398987 A JP12398987 A JP 12398987A JP 12398987 A JP12398987 A JP 12398987A JP S63290606 A JPS63290606 A JP S63290606A
Authority
JP
Japan
Prior art keywords
rolling
pipe
mandrel
stretch
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12398987A
Other languages
Japanese (ja)
Other versions
JPH0518644B2 (en
Inventor
Tetsuo Shimizu
哲雄 清水
Toshio Imae
今江 敏夫
Ryosuke Mochizuki
亮輔 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12398987A priority Critical patent/JPS63290606A/en
Publication of JPS63290606A publication Critical patent/JPS63290606A/en
Publication of JPH0518644B2 publication Critical patent/JPH0518644B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a seamless steel pipe having a smooth inner surface by specifying a surface roughness of a mandrel bar and specifying a mean stretch coefficient at the time of rolling through a stretch reducer. CONSTITUTION:A billet 2 is heated through a rotary hearth type heating furnace 4, then subjecting to piercing rolling to obtain a hollow blank pipe 8A by a Mannesmann piercing mill 6. Then, a mandrel lever 12 having Rmax 30 mum sur face roughness is inserted into the inner part to make a blank pipe 8B for finish rolling by a mandrel mill 10. After this blank pipe 8B for finish rolling is heated through a reheating furnace 16, then it is made into a finished pipe 20 having >=0.58 a mean stretch coefficient by a stretch reducer 18. In this way, a plug seizure is prevented to obtain a smooth pipe without furrows in its inner surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、継目無鋼管の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing seamless steel pipes.

[従来の技術] 継目無鋼管は一般にマンドレルミル方式、プラグミル方
式等の圧延法、あるいは、ユージンセジュルネ方式、エ
アハルトブツシュベンチ方式等の熱間抽出法で製造され
るが、比較的小径サイズの造管には生産性、寸法精度が
優れているマンドレルミル方式の圧延法が広く利用され
ている。
[Prior art] Seamless steel pipes are generally manufactured by rolling methods such as the mandrel mill method and plug mill method, or hot extraction methods such as the Eugene Séjourne method and the Erhard-Buschbench method. Mandrel mill rolling is widely used for pipe manufacturing because of its excellent productivity and dimensional accuracy.

マンドレルミル方式においては、例えば、第2図に示す
ように、素管ビレット2が回転炉床式加熱炉4において
所定の温度にまで加熱された後、マンネスマンピアサ6
により穿孔圧延されて中空素管8Aとなる。あるいはこ
の中空素管8Aは中空素管製造用連続鋳造機5によって
直接製造されてもよい、この中空素管8Aは厚肉かつ短
尺であるので、延伸圧延機であるマンドレルミル10に
より減肉延伸される。マンドレルミル10は中空素管8
Aにマンドレルバ−12を挿入した状態で延伸圧延する
圧延機であり、通常6〜8基のロールスタンドから構成
されており、各ロールスタンドは2本の孔型ロール14
を備え、隣接するロールスタンド間ではこの孔型ロール
14の回転軸を圧延軸に垂直な面内で相互に80度づつ
ずらして配こしている。中空素管8Aはマンドレルミル
10で元の長さの2〜4倍の長さに延伸され、仕上圧延
用素管8Bとなる。仕上圧延用素管8Bは、必要に応じ
て再加熱炉16によって所定の温度に再加熱された後、
仕上圧延機であるストレッチレデューサ18によって仕
上圧延される。ストレッチレデューサ18によって素管
の外径は最大で75%も絞られ、素材ビレットの長さの
40倍以上にも延伸され、さらにその外表面はストレッ
チレデューサ18の最終側の数スタンドの真円孔型ロー
ルによって定形されるため比較的優れた外径寸法精度の
仕上管20が得られる。
In the mandrel mill method, for example, as shown in FIG.
The tube is pierced and rolled into a hollow tube 8A. Alternatively, this hollow tube 8A may be directly manufactured by the continuous casting machine 5 for manufacturing hollow tubes.Since this hollow tube 8A is thick and short, it is thinned and stretched by a mandrel mill 10, which is an elongation rolling machine. be done. The mandrel mill 10 has a hollow tube 8
This is a rolling mill that performs elongation rolling with a mandrel bar 12 inserted in A, and is usually composed of 6 to 8 roll stands, and each roll stand carries two grooved rolls 14.
The rotary axes of the grooved rolls 14 are arranged to be shifted by 80 degrees between adjacent roll stands in a plane perpendicular to the rolling axis. The hollow blank tube 8A is stretched to a length 2 to 4 times its original length by a mandrel mill 10, and becomes a blank tube 8B for finish rolling. After the raw pipe 8B for finish rolling is reheated to a predetermined temperature in the reheating furnace 16 as necessary,
Finish rolling is performed by a stretch reducer 18, which is a finish rolling mill. The outer diameter of the raw pipe is reduced by up to 75% by the stretch reducer 18, and stretched to more than 40 times the length of the raw material billet, and the outer surface has several stands of perfect circular holes on the final side of the stretch reducer 18. Since the finished tube 20 is shaped using mold rolls, a finished tube 20 with relatively excellent outer diameter dimensional accuracy can be obtained.

ここで、ストレッチレデューサ18は、複数スタンドか
らなる圧延ロール群によって構成され、各スタンドの圧
延ロールは、例えば第2図に示すような30一ル配列と
され、各スタンドのロール回転速度比を調整することに
より、圧延中の素管に加わる張力を制御し、その肉厚を
制御可使としている。
Here, the stretch reducer 18 is constituted by a rolling roll group consisting of a plurality of stands, and the rolling rolls of each stand are arranged, for example, in a 30-row arrangement as shown in FIG. 2, and the roll rotation speed ratio of each stand is adjusted. By doing so, the tension applied to the raw tube during rolling is controlled, and its wall thickness can be controlled and used.

[発明が解決しようとする問題点] ところで、比較的熱間での変形能が劣る材料、例えば低
合金鋼、ステンレス鋼等をストレッチレデューサにて圧
延すると、第3図に示すように圧延後の管内表面に所謂
シワ疵と呼ばれる長手方向のシワが発生する。このシワ
疵が鋭利でかつ深いと、このシワ疵中に噛み込んだスケ
ールは、例えば、その後の冷麦前処理工程での酸洗によ
っても除去されずに残存し、冷牽工程での減面後に内面
シワ疵として残存して内面が平滑にならないばかりか、
場合によってはプラグ焼付により操業不可能になる等の
トラブルの原因となる。したがって、このような理由か
ら従来、仕上圧延後の管内表面の平滑度が要求される製
品には、圧延後にシワ疵除去のための研磨工程を追加し
なければならず、歩留りの低下、コストの上昇をきたす
原因となっていた。
[Problems to be Solved by the Invention] By the way, when a material with relatively poor hot deformability, such as low alloy steel or stainless steel, is rolled with a stretch reducer, as shown in FIG. Longitudinal wrinkles, so-called wrinkle defects, occur on the inner surface of the tube. If this wrinkle flaw is sharp and deep, the scale stuck in the wrinkle flaw will remain unremoved even by pickling in the subsequent cold grain pretreatment process, and will remain after the area reduction in the cold drafting process. Not only do they remain as wrinkles on the inner surface and the inner surface is not smooth,
In some cases, plug seizure may cause trouble such as inability to operate. Therefore, for these reasons, conventionally, for products that require smoothness of the inner surface of the pipe after finish rolling, a polishing process must be added to remove wrinkles after rolling, resulting in lower yields and lower costs. This was the cause of the rise.

本発明は、ストレッチレデューサ圧延後の管内表面に生
ずるシワ疵を軽減、もしくは防止し、内表面の平滑な継
目無鋼管を製造することを目的とする。
An object of the present invention is to reduce or prevent wrinkles that occur on the inner surface of a pipe after stretch reducer rolling, and to produce a seamless steel pipe with a smooth inner surface.

[問題点を解決するための手段] 本発明は、マンドレルバ−が挿入された中空素管をマン
ドレルミルにて延伸圧延し、マンドレルミルによる圧延
後の仕、ヒ圧延用素管を複数スタンドからなるストレッ
チレデューサにて絞り圧延する継目無鋼管の製造方法に
おいて、マンドレルミルによる圧延に用いられるマンド
レルバ−の表面粗度をRmaxで30w層以下とし、か
つストレッチレデューサにおける圧延時に各スタンドの
圧延ロールが素管に与えるストレッチ係数(引張応力/
降伏応力)の全スタンドに関する平均値を0.58以上
に設定するようにしたものである。
[Means for Solving the Problems] The present invention involves stretching and rolling a hollow tube into which a mandrel bar is inserted, using a mandrel mill, finishing after rolling with the mandrel mill, and forming the tube for rolling into a plurality of stands. In a method for manufacturing a seamless steel pipe by reducing and rolling with a stretch reducer, the surface roughness of the mandrel bar used for rolling with a mandrel mill is Rmax 30W layer or less, and the rolling rolls of each stand are used for rolling in the stretch reducer. Stretch coefficient (tensile stress/
The average value of yield stress for all stands is set to 0.58 or more.

[作用] ストレー2チレデユーサ圧延時に、管内表面近傍に異材
質(例えば非金属介在物層)が存在する場合、圧延後の
管内面に破断、剥離等の内部層を発生させない為には、
管長手方向に一定以上の引張応力を加えないようにする
ことが考えられる。そのために、特公昭131−908
4号公報では、平均ストレー2千係数Zmを0.45以
下に設定することが提案されている。
[Function] When a foreign material (for example, a non-metallic inclusion layer) exists near the inner surface of the tube during straight 2-chire reducer rolling, in order to prevent the inner layer from breaking or peeling on the inner surface of the tube after rolling,
One idea is to avoid applying tensile stress above a certain level in the longitudinal direction of the pipe. To that end, the Special Publickate Sho 131-908
Publication No. 4 proposes setting the average stray 2,000 coefficient Zm to 0.45 or less.

しかしながら、本発明者らが慎重なる調査をした結果、
低合金鋼、ステンレス鋼等に発生する内表面のシワ疵は
、上述の異材質の存在に基づくメカニズムで発生する内
面欠陥とは、全く異なる現象であることが明らかとなっ
た。そこで、さらに詳細な実験を繰り返しながら研究を
重ねた結果、 ■ストレッチレデューサ圧延後に発生する管内表面のシ
ワ疵は、ストレッチレデューサ圧延での絞り変形により
、管内表面に発生する円周方向の圧縮力による材料表面
の座屈によって起こること、 ■管内表面に発生する円周方向の圧縮力による材料表面
の座屈はもともと仕上圧延用素管の内表面に存在する微
小な凹凸が基点となって局所的に集中発生し、仕上圧延
用素管の内表面が平滑であれば座屈は起こりにくくなり
、したがってシワ疵発生が軽減されること、 ■ストレッチレデューサ圧延中の管内表面に発生する円
周方向の圧縮歪を小さくすれば座屈は起こりにくくなり
、したがってストレッチレデューサ圧延時に管長手方向
に作用される張力を大きくすればシワ疵は軽減されるこ
と、 以上■〜■に示される如き知見を得るに至ったのである
However, as a result of careful investigation by the inventors,
It has become clear that wrinkles on the inner surface of low-alloy steel, stainless steel, etc. are a completely different phenomenon from the inner surface defects that occur due to the mechanism based on the presence of different materials as described above. Therefore, as a result of repeated research through repeated and more detailed experiments, we found that: ■ Wrinkles on the inner surface of the pipe that occur after stretch reducer rolling are caused by compressive force in the circumferential direction that is generated on the inner surface of the pipe due to drawing deformation during stretch reducer rolling. What happens due to buckling on the material surface? ■Buckling on the material surface due to compressive force in the circumferential direction generated on the inner surface of the tube is caused locally by minute irregularities that originally exist on the inner surface of the raw tube for finish rolling. If the inner surface of the raw pipe for finish rolling is smooth, buckling will be less likely to occur, thus reducing the occurrence of wrinkling. By reducing the compressive strain, buckling becomes less likely to occur, and therefore, by increasing the tension applied in the longitudinal direction of the pipe during stretch reducer rolling, wrinkling defects can be reduced. It has come to this.

ところで一般に、新作、あるいは改削されたマンドレル
バ−は、バー表面の肌荒れ、摩耗による外径変化の程度
に応じて、2000〜5000回の圧延に使用した後、
改削によりサイズダウンされ再び圧延に使用される。改
削直後のバー表面はR+*axで10〜20g+s程度
に仕上げられるが、圧延にて使用された後、次の改削直
前には肌荒れ、摩耗によって40.wmから場合によっ
ては 100ル曹程度になることもある。また局所的に
割れ、疵等も存在する。
By the way, in general, a new or modified mandrel bar is used for rolling 2000 to 5000 times, depending on the roughness of the bar surface and the degree of change in outer diameter due to wear.
The size is reduced by modification and used again for rolling. Immediately after recutting, the bar surface is finished with an R+*ax of about 10 to 20g+s, but after being used for rolling, the surface becomes rough and wears out just before the next recutting. Depending on the case, it can be as low as 100 ru. There are also localized cracks and scratches.

バーの表面粗度Rmaxと、そのバーを用いて圧延した
時の仕上圧延用素管内表面の粗度Rmaxとの関係を第
4図に示す、マンドレルミル圧延時にはバー表面に水溶
性黒鉛潤滑剤が塗布され、さらに圧延中バーと材料とは
相対すベリを起こすため、バー表面の粗度が必ずしもそ
のまま仕り圧延用素管の内表面に転写されるわけではな
く、バー表面粗度Rmaxよりも仕上圧延用素管内表面
粗度Rmaxの方が小さいが、バー表面の粗度が大きく
なると仕上圧延用素管内表面の粗度も大きくなる。
Figure 4 shows the relationship between the surface roughness Rmax of the bar and the roughness Rmax of the inner surface of the tube for finish rolling when the bar is used for rolling.A water-soluble graphite lubricant is applied to the bar surface during mandrel mill rolling. The roughness of the bar surface is not necessarily transferred as is to the inner surface of the raw tube for finishing rolling, and the roughness of the bar surface is higher than the bar surface roughness Rmax. Although the inner surface roughness Rmax of the raw tube for rolling is smaller, as the roughness of the bar surface increases, the roughness of the inner surface of the raw tube for finish rolling also increases.

このような什−ヒ圧延用素管を使用して同一条件でスト
レッチレデューサ圧延を実施し、その時の仕上圧延用素
管内表面の粗度Rraaxと圧延後の仕上管内表面のシ
ワ疵深さを測定したところ、第5図に示すように、仕上
圧延用素管内表面の粗度Rmaxが小さいほどシワ疵深
さが小さくなる。
Stretch reducer rolling was performed under the same conditions using such a raw pipe for rolling, and the roughness Rraax of the inner surface of the raw pipe for finish rolling and the depth of wrinkles on the inner surface of the finished pipe after rolling were measured. As a result, as shown in FIG. 5, the smaller the roughness Rmax of the inner surface of the raw pipe for finish rolling, the smaller the wrinkle flaw depth.

一方NeumannとHanckeによるストレッチレ
デューサの圧延理論(Stahl und Eisen
 75(1955)。
On the other hand, the rolling theory of stretch reducer by Neumann and Hancke (Stahl and Eisen)
75 (1955).

No、22)では以下のように解析されている。No. 22) is analyzed as follows.

体積一定の条件、 φ文+φθ+φr = O(1) ここで φ文:軸方向対数歪 φθ:円周方向対数歪 φr二半径方向対数歪 しevy −Misesの応カー歪関係式より(σr−
σm)=(σ文−σm):(σθ−σm)=φr:φ又
:φθ     (2) ここで σr:半径方向応力 σ文二軸方向応力 σθ:円周方向応力 σm:平均応力 [=(στ+σ立+σθ)/3] 一方、τrescaの降伏条件式と σ文−σθ= k f           (3)こ
こで kf:変形抵抗 薄肉管の半径方向の釣合近似式 %式%(4) ここで 入:管の肉厚外径比 を用いると、平均応力は σm=(σλ+σθ+σr)/3 = [(2+入)・σ文 −(1+入)・kf]/3  (5) となる、ここでストレッチ係数Zを Z=σ文/ kf            (8)とし
て定義すると、(2) 、 (5) 、 (8)式によ
りφr:φ交:φθ           (7)=2
(入−1)・Z−(2人−1) : (1−人)・Z+ (1+λ) = (1−人)−Z−(2−人) となる、第(7)式よりφr、φ文、φθはZと入の関
数として第6図に示されるように変化する。
Condition of constant volume, φ sentence + φθ + φr = O (1) where φ sentence: Axial logarithmic strain φθ: Circumferential direction logarithmic strain
σm) = (σ - σm): (σθ - σm) = φr: φ or: φθ (2) where σr: Radial stress σ Biaxial stress σθ: Circumferential stress σm: Average stress [= (στ + σ + σθ) / 3] On the other hand, the yield condition expression of τresca and σ statement - σθ = k f (3) where kf: radial balance approximation expression of deformation resistance thin-walled pipe % expression % (4) where Input: Using the wall thickness and outer diameter ratio of the pipe, the average stress is σm = (σλ + σθ + σr) / 3 = [(2 + in) · σ - (1 + in) · kf] / 3 (5) Here, If we define the stretch coefficient Z as Z = σ statement/kf (8), then φr: φ intersection: φθ (7) = 2 according to equations (2), (5), and (8).
(Enter-1)・Z-(2 people-1): (1-person)・Z+ (1+λ) = (1-person)-Z-(2-person) From equation (7), φr, The φ sentence and φθ change as a function of Z and input as shown in FIG.

ストレッチ係数Zが大きいほど、管内表面に作用する円
周方向の圧縮歪φθは小さくなることがわかる。ストレ
ッチ係数の物理的意味は、第(6)式から明らかなよう
にその材料の変形抵抗に対しての長手方向応力の比であ
る。言い変えれば、ストレッチレデューサ圧延時にどれ
だけ長手方向の張力が作用しているかを表わすパラメー
ターである。
It can be seen that the larger the stretch coefficient Z, the smaller the compressive strain φθ in the circumferential direction acting on the inner surface of the tube. The physical meaning of the stretch coefficient is the ratio of the longitudinal stress to the deformation resistance of the material, as is clear from equation (6). In other words, it is a parameter representing how much longitudinal tension is applied during stretch reducer rolling.

さらに φ r/φ θ = K              
     (8)とおいて第(7)式をZに関して解く
と、に幸 (1−人)−2(入−1) が得られる。
Furthermore, φ r/φ θ = K
If we take (8) and solve equation (7) for Z, we get (1-person)-2(enter-1).

第(9)式はストレッチレデューサ圧延時の各スタンド
毎に成立する関係式であるが、実操業時に管軸方向の張
力がどれだけ作用しているかを簡単に知る目安として用
いられるパラメーターとして全スタンドを通じての平均
的なストレッチ係数Zmを一般的に次式で表わしている
Equation (9) is a relational expression that holds true for each stand during stretch reducer rolling, but it is a parameter that can be used for all stands as an easy guide to know how much tension is acting in the tube axis direction during actual operation. The average stretch coefficient Zm throughout is generally expressed by the following equation.

K−(1−人11)−2(入m−1) K=φr/φθ Tt (Dt −Tt ) Ts :仕上圧延用素管肉厚 Ds 二仕上圧延用素管外径 Tt :仕上圧延後管肉厚 Dt =仕上圧延後管肉厚 さて、ストレッチレデューサ圧延後の冷牽工程では、第
1表に示すようにシワ疵深さがIQpm程度以下であれ
ば、少なくとも減面率33%まで問題なく冷牽可能であ
るが、シワ疵深さが13pmであれば、軽減率の15%
ではシワ疵が圧着されずに冷牽後も残存して欠陥となり
、さらにシワ疵深さが18gmでは冷牽時のプラグ焼付
が発生して冷牽加工が不可能となる。
K-(1-person 11)-2 (input m-1) K=φr/φθ Tt (Dt −Tt) Ts: Wall thickness of the raw tube for finish rolling Ds Outer diameter of the raw tube for second finish rolling Tt: After finishing rolling Pipe wall thickness Dt = Pipe wall thickness after finish rolling In the cold drawing process after stretch reducer rolling, as shown in Table 1, if the wrinkle depth is less than about IQpm, there will be a problem up to at least an area reduction of 33%. However, if the wrinkle depth is 13 pm, the reduction rate is 15%.
In this case, the wrinkle flaw is not crimped and remains even after cold drawing, resulting in a defect. Furthermore, if the wrinkle flaw depth is 18 gm, plug seizure occurs during cold drawing, making cold drawing impossible.

一方、表面粗度の異なるマンドレルバ−を用いてマンド
レルミル圧延を実施した什ト圧延用素管を用いて、平均
ストレー2チ係数Zmを変化させてストレッチレデュー
サ圧延後の仕上管内面のシワ疵深さを測定した結果を第
1図に示す、平均ストレッチ係数Zmが大きい程、使用
したマンドレルバ−の表面粗度が小さい程、シワ疵深さ
が小さく第1表 ○;良奸 Δ;シシワ残り ×;プラグ焼付 なっている。
On the other hand, using raw tubes for raw rolling that were subjected to mandrel mill rolling using mandrel bars with different surface roughnesses, the wrinkle depth on the inner surface of the finished tube after stretch reducer rolling was determined by changing the average stretch coefficient Zm. The results of measuring the elasticity are shown in Figure 1. The larger the average stretch coefficient Zm and the smaller the surface roughness of the mandrel bar used, the smaller the wrinkle depth. ;The plug is burned out.

したがって、冷麦時にシワ疵が残らず、かつプラグ焼付
も発生させないシワ疵深さ10IL11以下を達成する
ためには、少なくとも表面粗度Rmaxが30pm以下
のマンドレルバ−をマンドレルミル圧延時に使用し、か
つ平均ストレッチ係数を0.58以上にしてストレッチ
レデューサ圧延することが必要である。平均ストレッチ
係数は、理論的にはO−1の間の値をとり得るが、スト
レッチレデューサ圧延時のロールと材料とのスリップ、
あるいは材料破断等の操業上の問題から、実用的には0
.65〜0.70程度が上限となる。
Therefore, in order to achieve a wrinkle depth of 10IL11 or less that leaves no wrinkle defects during cold wheat and does not cause plug seizure, a mandrel bar with at least a surface roughness Rmax of 30 pm or less should be used during mandrel mill rolling, and the average It is necessary to perform stretch reducer rolling with a stretch coefficient of 0.58 or more. The average stretch coefficient can theoretically take a value between O-1, but the slip between the roll and the material during stretch reducer rolling,
Or, due to operational problems such as material breakage, it is practically 0.
.. The upper limit is about 65 to 0.70.

[実施例] 次に本発明を実施例により説明する。[Example] Next, the present invention will be explained by examples.

材料として5US304を用い、110φX 1301
のビレット2を回転炉床式加熱炉4にて1240℃に加
熱した後、マンネスマンピアサ−6にて110φ×11
.25tX 3200文の中空素管8Aに穿孔圧延し、
表面粗度がRmax28gmのマンドレルバ−12を内
部に挿入し、マンドレルミル10にて80φ×3.80
t X11eO01の仕上圧延用素管8Bとした。
Using 5US304 as material, 110φX 1301
After heating the billet 2 to 1240°C in a rotary hearth heating furnace 4, it was heated to 110φ×11 in a Mannesmann piercer 6.
.. Puncture-rolled into 8A hollow tube of 25tX 3200mm,
A mandrel bar 12 with a surface roughness of Rmax 28 gm is inserted inside, and a mandrel bar 12 of 80φ x 3.80 mm is milled using a mandrel mill 10.
The raw tube for finish rolling 8B of tX11eO01 was used.

この仕上圧延用素管8Bを再加熱炉16にて860°C
に加熱後、ストレッチレデューサ18にて平均ストレッ
チ係数0.58で27.2φX 3.OtX 4850
0文の仕上管20とした。この仕上管内表面のシワ疵深
さは8gmであった。その後、この仕上管20より長さ
45001の冷牽原管を用意し、熱処理炉にて1080
°CにlO分保持後水冷、さらに48℃の9%硝酸−3
%弗酸液に30分間浸漬して脱スケール、水洗、化成皮
膜処理の一連の前処理工程を実施後、減面率26%に相
当する25.2ΦX 2.4tX 6070文に冷牽し
たが、プラグ焼付を起こさず、内面のシワ疵のない平滑
な管が得られた。
This raw pipe 8B for finish rolling is heated to 860°C in a reheating furnace 16.
After heating, the stretch reducer 18 is used to stretch 27.2φX with an average stretch coefficient of 0.58. OtX 4850
The finished tube 20 was made with 0 sentences. The wrinkle depth on the inner surface of this finished tube was 8 gm. After that, a cold draft tube with a length of 45,001 mm was prepared from this finished tube 20, and heated to 1,080 mm in length in a heat treatment furnace.
After holding for lO min at °C, water cooling and further 9% nitric acid-3 at 48 °C.
% hydrofluoric acid solution for 30 minutes to perform a series of pretreatment steps such as descaling, water washing, and chemical conversion coating treatment, and then cold-drawn to 25.2 Φ x 2.4 t x 6070 mm, which corresponds to an area reduction rate of 26%. A smooth tube without plug seizure and without wrinkles on the inner surface was obtained.

なお、本発明は、一般の普通炭素鋼からなる継目無鋼管
の製造に用いて効果的であるが、特に熱間での変形能が
劣る低合金鋼、オーステナイト系ステンレス鋼等からな
る継目無鋼管の製造に用いて好適である。
Although the present invention is effective for manufacturing seamless steel pipes made of general ordinary carbon steel, it is particularly suitable for seamless steel pipes made of low-alloy steel, austenitic stainless steel, etc., which have poor deformability in hot conditions. It is suitable for use in the production of

[発明の効果] 以上のように、本発明によれば、マンドレルバ−の表面
粗度をR■ax 30g1以下としてマンドレルミル圧
延を実施し、かつストレッチレデューサ圧延時に平均ス
トレッチ係数を0.58以上に設定することにより、仕
上管内表面のシワ疵深さを例えば10用層以下とするこ
とができ、その後の冷牽工程でのプラグの焼付を防止で
き、かつ冷牽仕上管内表面のシワ疵も防止できる。すな
わち、ストレッチレデューサ圧延後に管内表面に発生す
るシワ疵を軽減、もしくは防止し、圧延後のシワ疵除去
のための研磨工程での負荷を軽減し、もしくは省略する
ことが可使な、内表面の円滑な継目無調温1図はマンド
レルバ−表面粗度を変化した時のストレッチレデューサ
圧延における平均ストレッチ係数と仕上管内面シワ疵深
さとの関係を示す線図、第2図はマンドレルミル方式に
よる継目無鋼管製造ラインの一例を示す模式図、第3図
は仕上管内表面のシワ疵発生状態を示す模式図、第4図
はマンドレルバ−表面粗度と仕上圧延用素管内表面粗度
との関係を示す線図、第5図は仕上圧延用素管内表面粗
度と仕上管内面シワ疵深さとの関係を示す線図、第6図
はストレー2チレデユーサ圧延における歪とストレッチ
係数との関係を示す線図である。
[Effects of the Invention] As described above, according to the present invention, mandrel mill rolling is performed with the surface roughness of the mandrel bar set to Rx 30g1 or less, and the average stretch coefficient is set to 0.58 or more during stretch reducer rolling. By setting this, the depth of wrinkles on the inner surface of the finished pipe can be reduced to, for example, 10 layers or less, preventing the plug from seizing in the subsequent cold drafting process, and also preventing wrinkles on the inner surface of the cold drafting finished pipe. can. In other words, it is possible to reduce or prevent wrinkles that occur on the inner surface of the tube after stretch reducer rolling, and to reduce or omit the load on the polishing process for removing wrinkles after rolling. Smooth seam with no temperature control Figure 1 is a diagram showing the relationship between the average stretch coefficient and the wrinkle depth on the inner surface of the finished tube in stretch reducer rolling when the mandrel bar surface roughness is changed. Figure 2 is a seam made using the mandrel mill method. A schematic diagram showing an example of a steelless pipe manufacturing line, Fig. 3 is a schematic diagram showing the occurrence of wrinkles on the inner surface of the finished pipe, and Fig. 4 shows the relationship between the mandrel bar surface roughness and the inner surface roughness of the raw pipe for finish rolling. Figure 5 is a diagram showing the relationship between the inner surface roughness of the raw tube for finish rolling and the wrinkle depth on the inner surface of the finished tube, and Figure 6 is a line showing the relationship between strain and stretch coefficient in straight 2-chire reducer rolling. It is a diagram.

8A・・・中空素管、 8B・・・仕上圧延用素管、 10・・・マンドレルミル、 12・・・マンドレルバ−1 14・・・孔型ロール、 18・・・ストレッチレデューサ、 20・・・仕上管。8A...Hollow tube, 8B...Material pipe for finish rolling, 10... Mandrel mill, 12... Mandrel bar-1 14... hole-shaped roll, 18...Stretch reducer, 20... Finished pipe.

代理人 弁理士  塩 川 修 油 菜 1 図 マンドレルバ−表面粗度 第3 図 第4図Agent Patent Attorney Osamu Shiokawa Vegetables 1 Diagram Mandrel bar surface roughness Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)マンドレルバーが挿入された中空素管をマンドレ
ルミルにて延伸圧延し、マンドレルミルによる圧延後の
仕上圧延用素管を複数スタンドからなるストレッチレデ
ューサにて絞り圧延する継目無鋼管の製造方法において
、マンドレルミルによる圧延に用いられるマンドレルバ
ーの表面粗度をRmaxで30μm以下とし、かつスト
レッチレデューサにおける圧延時に各スタンドの圧延ロ
ールが素管に与えるストレッチ係数(引張応力/降伏応
力)の全スタンドに関する平均値を0.58以上に設定
することを特徴とする継目無鋼管の製造方法。
(1) A method for manufacturing a seamless steel pipe, in which a hollow tube into which a mandrel bar is inserted is stretched and rolled in a mandrel mill, and the tube for finish rolling after rolling by the mandrel mill is reduced and rolled in a stretch reducer consisting of multiple stands. The surface roughness of the mandrel bar used for rolling with a mandrel mill is Rmax 30 μm or less, and the stretch coefficient (tensile stress/yield stress) given to the raw pipe by the rolling rolls of each stand during rolling in a stretch reducer is A method for producing a seamless steel pipe, the method comprising: setting an average value of 0.58 or more.
JP12398987A 1987-05-22 1987-05-22 Manufacture of seamless steel pipe Granted JPS63290606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12398987A JPS63290606A (en) 1987-05-22 1987-05-22 Manufacture of seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12398987A JPS63290606A (en) 1987-05-22 1987-05-22 Manufacture of seamless steel pipe

Publications (2)

Publication Number Publication Date
JPS63290606A true JPS63290606A (en) 1988-11-28
JPH0518644B2 JPH0518644B2 (en) 1993-03-12

Family

ID=14874286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12398987A Granted JPS63290606A (en) 1987-05-22 1987-05-22 Manufacture of seamless steel pipe

Country Status (1)

Country Link
JP (1) JPS63290606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825106A (en) * 2017-02-22 2017-06-13 长葛市鸣机械有限公司 The technique of thin-walled hot rolled seamless steel tube in a kind of double-core axle two-roller skew-rolling production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264883A (en) * 2004-03-19 2005-09-29 Usui Kokusai Sangyo Kaisha Ltd Joint structure of high pressure fuel pressure accumulating vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825106A (en) * 2017-02-22 2017-06-13 长葛市鸣机械有限公司 The technique of thin-walled hot rolled seamless steel tube in a kind of double-core axle two-roller skew-rolling production

Also Published As

Publication number Publication date
JPH0518644B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
Romantsev et al. Development of multipass skew rolling technology for stainless steel and alloy pipes’ production
CN112404163B (en) Preparation method of high-performance difficult-deformation metal precision seamless pipe
JP4389869B2 (en) Seamless pipe manufacturing method
JPS63290606A (en) Manufacture of seamless steel pipe
JP4603707B2 (en) Seamless pipe manufacturing method
CN110369546B (en) Method for producing large-diameter titanium alloy hot-rolled seamless pipe
Erman The effect of processing parameters on the propensity for central fracturing in piercing
CN112518236A (en) Intermediate frequency induction heating push-type heat expanding pipe production process
JP3082678B2 (en) Manufacturing method of small diameter seamless metal pipe
JP3004875B2 (en) Elongator rolling method
JPS6174713A (en) Method and device for reducing wall thickness at pipe end of seamless steel pipe
JP2711129B2 (en) Manufacturing method of titanium seamless pipe
JPH04111907A (en) Production of austenitic stainless seamless steel pipe
CN111842532A (en) Zirconium alloy pipe preparation method and zirconium alloy pipe prepared based on method
JPH071009A (en) Method for cold rolling tube
JPH0566201B2 (en)
JPH08187502A (en) Continuous rolling method for tube and 3-roll mandrel mill
JP3380765B2 (en) Elongation rolling method of steel pipe
RU2537412C2 (en) Production of seamless hot-strained machined 610(36,53(3000-3400mm-pipes from "08-18=10t-+"-grade steel for nuclear power production
JPS5970408A (en) Rolling method of pipe in reducing mill
SU738697A1 (en) Method of making tubular products
WO2014182198A1 (en) Method for manufacturing pipes of variable cross section from coloured metals from the subgroup consisting of titanium and alloys based on said metals
SU727286A1 (en) Tube producing method
JPH0924408A (en) Method for controlling elongation rolling of steel tube
JP2019005788A (en) Rolling method of seamless steel pipe