JPS63289975A - Piezoelectric actuator - Google Patents

Piezoelectric actuator

Info

Publication number
JPS63289975A
JPS63289975A JP62126505A JP12650587A JPS63289975A JP S63289975 A JPS63289975 A JP S63289975A JP 62126505 A JP62126505 A JP 62126505A JP 12650587 A JP12650587 A JP 12650587A JP S63289975 A JPS63289975 A JP S63289975A
Authority
JP
Japan
Prior art keywords
piezoelectric
laminates
displacement
laminate
piezoelectric actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62126505A
Other languages
Japanese (ja)
Inventor
Kazuhisa Ito
一寿 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP62126505A priority Critical patent/JPS63289975A/en
Publication of JPS63289975A publication Critical patent/JPS63289975A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a piezoelectric actuator large in its displacement and has no effects of an ambient temperature, by juxtaposing a plurality of piezoelectric laminates at regular intervals and using junction members to couple adjacent parts of the piezoelectric laminates so that their one-sided end parts are shared with each other and further providing them with electrical connections so that they are respectively expanded and contracted contrarily to each other. CONSTITUTION:A plurality of piezoelectric laminates 2a to 2f are juxtaposed at regular intervals, and junction members 25a to 25e are used to couple adjacent parts of the piezoelectric laminates so that their one-sided end parts are shared with each other. Further their adjacent parts of the piezoelectric laminates are provided with electrical connections so that they are respectively expanded and contracted contrarily to each other when a voltage is applied to them. For example, the other end of the piezoelectric laminate 2a and the other end of the piezoelectric laminate 2f are coupled to a fixed member 3 and a movable member 4, respectively. when a voltage is applied to a piezoelectric actuator composed in this way, its state is displaced from (a) to (b) shown in figures. The total amount of displacement for the piezoelectric laminates coupled in number (n) is nX x when the amount of displacement for one piezoelectric laminate is A x.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、圧電素子を用いた電気−機械変換装置に関し
、特に空気圧用制御弁等のアクチュエータに適する圧電
アクチュエータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electro-mechanical conversion device using a piezoelectric element, and particularly to a piezoelectric actuator suitable for an actuator such as a pneumatic control valve.

[従来の技術] 従来、空気圧用制御弁等のアクチュエータとしては、電
磁石が広く用いられている。近年、ディジタル回路及び
マイクロコンピュータの普及により、小形rヒと共に制
御弁の制御もこれらの電子機器で行われるようになって
きており、電磁石の代わりに圧電素子を利用した制御弁
が提案されている。例えば、薄板状圧電素子を積層して
一体1ヒした圧電積層体をアクチュエータとした弁が特
開昭60−211176に、又、バイモルフ型の圧電ア
クチュエータを用いた弁が実開昭60−75776公報
に記載されている。電磁石と比較して圧電素子をアクチ
ュエータにすれば、■ノイズが発生しない。■熱の発生
が無い。■音が出ない。■消費電力が少ない。■動作速
度の早いものを小型化できる等の長所がある。
[Prior Art] Conventionally, electromagnets have been widely used as actuators for pneumatic control valves and the like. In recent years, with the spread of digital circuits and microcomputers, control valves as well as small RFs have come to be controlled by these electronic devices, and control valves that use piezoelectric elements instead of electromagnets have been proposed. . For example, a valve using a piezoelectric laminate made by laminating thin piezoelectric elements as an actuator is published in JP-A-60-211176, and a valve using a bimorph piezoelectric actuator is published in JP-A-60-75776. It is described in. Compared to electromagnets, if a piezoelectric element is used as an actuator, no noise is generated. ■No heat generation. ■There is no sound. ■Low power consumption. ■It has the advantage of being able to miniaturize devices that operate quickly.

[発明が解決しようとする問題点] 第2図(a)及び(b)に示したように、圧電積層体は
多数の薄板状圧電素子20が積層され一\2体(ヒされ
たもので、内部電極21がこれらの圧電、[騙子20の
間に層状に埋め込まれており素子端面で露出している形
状をしている。この露出している内部電極21を一つお
きに絶縁体22a、22bで覆い、この上から外部室%
 23 a、23bが破着されているため、各内部電極
21は互いに電気的に並列に接続される。圧電素子2o
は厚み方向に分極処理が施されているため、外部電極2
3a、23bに夫々接続された電気端子24a、24b
間に電圧が印加されるとその厚み方向に電圧の大きさに
比例して伸びる。
[Problems to be Solved by the Invention] As shown in FIGS. 2(a) and (b), the piezoelectric laminate is made up of a large number of thin plate piezoelectric elements 20 stacked together. , internal electrodes 21 are embedded in layers between these piezoelectric elements 20 and are exposed at the end surfaces of the elements. , 22b, and from above the external chamber %
Since 23a and 23b are broken, the internal electrodes 21 are electrically connected to each other in parallel. Piezoelectric element 2o
is polarized in the thickness direction, so the external electrode 2
Electrical terminals 24a, 24b connected to terminals 3a, 23b, respectively
When a voltage is applied between them, they expand in the thickness direction in proportion to the magnitude of the voltage.

また電気端子24a、24b間の電圧印加の極性な逆に
行うことによって、その厚み方向に電圧の大きさに比例
して収縮する。
Further, by reversing the polarity of voltage application between the electric terminals 24a and 24b, the material contracts in the thickness direction in proportion to the magnitude of the voltage.

従来このような積層型の圧電アクチュエータでは、発生
力は数10Kgあるが、変位量としては数10μm程度
と小さいために、一般の制御弁のアクチュエータとして
は単独では実用化できない現状であった。又、素子の耐
電圧性や電極の接続、G、)M遣より数100v程度が
限度であり、また素子の積層枚数も構造上制限され、ま
た長さ方向に大きな形状になることは制御弁等のアクチ
ュエータとしては小型化できないことになる。
Conventionally, such a laminated piezoelectric actuator generates a force of several tens of kilograms, but the amount of displacement is as small as several tens of micrometers, so it has not been possible to put it into practical use alone as an actuator for general control valves. In addition, due to the voltage resistance of the element and the connection of the electrodes, the limit is about several 100V due to the G, M type, the number of laminated elements is also limited due to the structure, and the large shape in the length direction is difficult for control valves. This means that the actuator cannot be made smaller.

この解決策として特開昭60−211176は圧電積層
体単独では変位量が小さいため、これによる軸方向の変
位を拡大する変位拡大機構としての油圧ポンプが内蔵さ
れ、この油圧ポンプに連結されたプランジャを有する弁
が開示されている。
As a solution to this problem, Japanese Patent Application Laid-Open No. 60-211176 has a built-in hydraulic pump as a displacement magnification mechanism to magnify the axial displacement caused by the piezoelectric laminate, since the amount of displacement is small when the piezoelectric laminate is used alone. A valve having the following is disclosed.

一方、実開昭60−75776の電子弁にアクチュエー
タとして用いられているバイモルフ型の圧電アクチュエ
ータは、変位量は数100μmあるが、発生力は数Lo
gと小さいものである。従って数kg / crdの圧
縮空気を制御する場合でも弁口径が十分小さくないと動
作できなくなり流量の小さな弁にしか利用できない。
On the other hand, the bimorph type piezoelectric actuator used as an actuator in the electronic valve of Utility Model Application No. 60-75776 has a displacement of several 100 μm, but the generated force is several Lo.
It is as small as g. Therefore, even when controlling several kg/crd of compressed air, if the valve diameter is not sufficiently small, the valve cannot operate and can only be used for valves with small flow rates.

このように従来の圧電アクチュエータでは、積層型、バ
イモルフ型の何れにおいても、制御弁に利用する場合、
弁の流路断面績が大きくできず、又、周囲温度の変化に
よって熱変位が起きるために動作が不安定になる問題が
あった。
In this way, when using conventional piezoelectric actuators for control valves, whether they are stacked type or bimorph type,
There were problems in that the cross-sectional area of the flow path of the valve could not be made large, and that the operation became unstable due to thermal displacement caused by changes in ambient temperature.

・、、、、本発明の目的は、上記の問題点を解消すべく
、]内数の圧電積層体を組み合わせた構造にすること、
・7 により、変位量を大きくでき、かつ周囲温度の影響を受
けることのない積層型圧電アクチュエータを提供するこ
とにある。
In order to solve the above-mentioned problems, the purpose of the present invention is to create a structure in which piezoelectric laminates are combined,
-7 It is an object of the present invention to provide a laminated piezoelectric actuator that can increase the amount of displacement and is not affected by ambient temperature.

〔問題点な解決するための手段] 第1図は本発明になる圧電アクチュエータの基本構成を
示す図であり、複数個の(本図では6個)の圧電積層体
2a、2b、2c、、、、、2fが間隙を有するように
並列に配置され、隣り合う圧電積層体は接き部材25a
、25b、、、、、25eて互いに一方の端部を共有す
るように結合されている。
[Means for solving problems] FIG. 1 is a diagram showing the basic configuration of a piezoelectric actuator according to the present invention, in which a plurality of (six in this figure) piezoelectric laminates 2a, 2b, 2c, . , , 2f are arranged in parallel with a gap, and adjacent piezoelectric laminates are connected to a contact member 25a.
, 25b, . . . , 25e are connected to each other so as to share one end.

又、隣り合う圧電積層体は夫々電圧を印加されたとき沖
縄が相反するように電気接続されている。
Further, adjacent piezoelectric laminates are electrically connected so that when a voltage is applied to each, the voltages are opposite to each other.

即ち圧電積層体2a、2c、2eは長さ方向に縮み、圧
電椿履体2b、2d、2fは逆に伸びるように構成され
ている。
That is, the piezoelectric laminates 2a, 2c, and 2e are configured to contract in the length direction, and the piezoelectric camellia footwear 2b, 2d, and 2f are configured to expand in the opposite direction.

圧電積層体2aの他端は固定部材3に、圧電積層体2f
の他端は可動部材4に結合されている。
The other end of the piezoelectric laminate 2a is attached to the fixing member 3, and the piezoelectric laminate 2f is attached to the fixing member 3.
The other end is connected to the movable member 4.

[作用] このように構成された圧電アクチュエータにおいては、
電圧を印加すると第1図(a)の状態から第1図(b)
の状態に変位する。即ち、固定部材3の結合された圧電
積層体2aは圧電素子の厚さ方向に積層された長さ方向
に一定量縮み、この圧電積層体2aに結合された隣り合
う圧電積層体2bは逆に伸びる9このようにn個の圧電
′f?を履体が結合されている場合、圧電積層木1個に
対する変位量を△χとすれば全体の変位量はn×△χと
なる。図示の圧電積層体が6個用いられるときは、圧電
積層体が1個の変位量の6倍の変位量が得られる。また
圧電積層体は並列して配設しであるので、長さ方向に対
しては圧電積層体1個の場合と同長である。周囲温度の
変化に対しては隣り合う圧電積層体が同時に同じ量だけ
伸び、或は縮むが、固定部材3と可動部材4との位置関
係は熱的変化の影響を受けることはない。
[Operation] In the piezoelectric actuator configured in this way,
When voltage is applied, the state shown in Fig. 1(a) changes to Fig. 1(b).
Displaced to the state of. That is, the piezoelectric laminate 2a connected to the fixing member 3 shrinks by a certain amount in the length direction of the piezoelectric elements stacked in the thickness direction, and the adjacent piezoelectric laminate 2b connected to this piezoelectric laminate 2a shrinks conversely. Stretch 9 In this way, n pieces of piezoelectric 'f? When the footwear body is connected, if the displacement amount for one piezoelectric laminated tree is Δχ, the total displacement amount is n×Δχ. When six piezoelectric laminates are used as shown in the figure, a displacement amount six times that of one piezoelectric laminate can be obtained. Furthermore, since the piezoelectric laminates are arranged in parallel, the length in the longitudinal direction is the same as that of a single piezoelectric laminate. Although adjacent piezoelectric laminates simultaneously expand or contract by the same amount in response to changes in ambient temperature, the positional relationship between the fixed member 3 and the movable member 4 is not affected by thermal changes.

[実施例] 例を示したもので、第3図(a)は軸心に沿って切断し
た断面図であり第3図(b)は切断したものの底面図で
一部横断面が示されている。
[Example] An example is shown in which FIG. 3(a) is a cross-sectional view taken along the axis, and FIG. 3(b) is a bottom view of the cut piece, with a partial cross section shown. There is.

2a、2b、2c、、、、、2fは夫々長さが等しく、
直径が異なる管状の圧電積層体である。
2a, 2b, 2c, , , 2f have the same length,
It is a tubular piezoelectric laminate with different diameters.

これらの圧電積層体は第2図(C)に示したように、環
状の多数の圧電素子20が積層され一体化されたもので
、環状の内部電極21がこれらの圧電素子20の間に層
状に埋め込まれており、素子端面で露出している内部電
極21を一つおきに絶縁体22a、22bで覆い、この
上から外部電極23a、23bが被着されている。従っ
て各内部電極21は互いに電気的に並列に接続される。
As shown in FIG. 2(C), these piezoelectric laminates are made by laminating and integrating a large number of annular piezoelectric elements 20, and an annular internal electrode 21 is arranged between these piezoelectric elements 20 in a layered manner. Every other internal electrode 21 that is embedded in the device and exposed at the end face of the element is covered with insulators 22a and 22b, and external electrodes 23a and 23b are applied from above. Therefore, each internal electrode 21 is electrically connected in parallel to each other.

圧電素子20は厚み方向に分極処理が施されているため
、外部電極23a、23bに夫々接続された電気端子2
4a、24b間に電圧が印加されるとその厚み方向に、
即ち環状の圧電積層体の長また電気端子24a、24b
間の電圧印加の極性を変えて接続することにより逆に収
縮する。
Since the piezoelectric element 20 is polarized in the thickness direction, the electric terminals 2 connected to the external electrodes 23a and 23b, respectively,
When a voltage is applied between 4a and 24b, in the thickness direction,
That is, the length of the annular piezoelectric laminate or the electrical terminals 24a, 24b
By changing the polarity of the voltage applied between them and connecting them, they contract in the opposite direction.

このような管状の圧電積層体2a、2b、2c。Such tubular piezoelectric laminates 2a, 2b, 2c.

、、、、2fは同軸上に間隙をもって配置され、隣り合
う圧電積層体は環状の接き部材25 a、25b、、、
、、25eにより互いに一方の端部を共有するように結
合されている。
, , 2f are arranged coaxially with a gap between them, and adjacent piezoelectric laminates are connected to annular contact members 25 a, 25 b, .
, , 25e so that they share one end.

このような構造にすることにより圧電アクチュエータ1
は更に力学的に安定した強固なものにすることが可能に
なる。また隣り合う圧電積層体は夫々電圧を印加された
とき伸縮が相反するように電圧の極性が逆になるように
電気的に接続されている。即ち、圧電積層体2a、2c
、2eは長さ方向に収縮し、圧電積層体2b、2d、2
fは伸びるように構成されている。圧電積層木2aの他
端には固定部材3が、また2fの他端には可動部材4が
固着されている。固定部材3と可動部材4は電圧が印加
されない第3図(a)の状態では同一平面上にあり、こ
れが変位量の基準面となる。
With this structure, the piezoelectric actuator 1
can be made even more mechanically stable and strong. Adjacent piezoelectric laminates are electrically connected so that the polarities of the voltages are opposite so that when a voltage is applied to each piezoelectric layer, the expansion and contraction are opposite to each other. That is, the piezoelectric laminates 2a, 2c
, 2e contract in the length direction, and the piezoelectric laminates 2b, 2d, 2
f is configured to extend. A fixed member 3 is fixed to the other end of the piezoelectric laminate 2a, and a movable member 4 is fixed to the other end of the piezoelectric laminate 2f. The fixed member 3 and the movable member 4 are on the same plane in the state shown in FIG. 3(a) when no voltage is applied, and this serves as a reference plane for the amount of displacement.

管状の圧電積層体は相互に所定の変位量で伸縮するため
の可動部材4は固定部材3に対し、1個の圧電積層体の
変位量の6倍の変位が得られる。
Since the tubular piezoelectric laminates mutually expand and contract by a predetermined amount of displacement, the movable member 4 can be displaced with respect to the fixed member 3 by six times the amount of displacement of one piezoelectric laminate.

第4図は本発明の圧電アクチュエータを利用した制御弁
の断面図である。3は制御弁Vのハウジングであり、こ
のハウジング3の軸心には管状の弁体4が摺動自在に設
けられている。ハウジング3の上部と下部には、それぞ
れ弁座5と弁座6が弁体4の両端に対面して配設されて
おり、弁体4が一方の弁座に当接するときに他方の弁座
から離れるようになっている。弁座5を有する室7はイ
ンボート9に連通し、また弁座6を有する室8はアウト
ボート10にそれぞれ連通している。また弁座6には軸
心方向に流路が形成されて排気ポート11に通じている
。本発明の管状の圧電アクチュエータ1はハウジング3
の中央部に形成された円筒状の室12内に弁体4と同軸
上に配設されている。固定側はハウジング3の環状突出
部3aに固着され、また可動側は弁体4に設けられたフ
ランジ部4aに固着されている。この弁体4のフランジ
部4aと室12の上面との間に弁体4を弁座5に当接す
るように付勢されたスプリング13が配設されている。
FIG. 4 is a sectional view of a control valve using the piezoelectric actuator of the present invention. 3 is a housing of a control valve V, and a tubular valve body 4 is slidably provided on the axis of the housing 3. A valve seat 5 and a valve seat 6 are disposed at the upper and lower parts of the housing 3, respectively, so as to face both ends of the valve body 4, and when the valve body 4 comes into contact with one valve seat, the valve seat 6 touches the other valve seat. It's starting to move away from. The chamber 7 with the valve seat 5 communicates with the inboard 9, and the chamber 8 with the valve seat 6 communicates with the outboard 10. Further, a flow path is formed in the valve seat 6 in the axial direction and communicates with the exhaust port 11 . The tubular piezoelectric actuator 1 of the present invention has a housing 3
The valve body 4 is disposed coaxially within a cylindrical chamber 12 formed in the center of the valve body 4 . The fixed side is fixed to an annular protrusion 3a of the housing 3, and the movable side is fixed to a flange 4a provided on the valve body 4. A spring 13 is disposed between the flange portion 4a of the valve body 4 and the upper surface of the chamber 12, and is biased to bring the valve body 4 into contact with the valve seat 5.

圧電アクチュエータ1が動作していない第4図の状態で
は、弁座5が閉じ弁座6が開いているのでインボート9
からの流体の流入は遮断され、アウトボート10と排気
ポート11が連通している。
In the state shown in FIG. 4 when the piezoelectric actuator 1 is not operating, the valve seat 5 is closed and the valve seat 6 is open, so the inboard 9
The outboard 10 and the exhaust port 11 are in communication with each other.

次に圧電アクチュエータ1に電圧を印加すると、この圧
′屯アクチュエータは第3図(C)の状態になり、弁体
4はスプリング13に抗して押し上げられ弁座6に当接
する。従ってインボート9は弁1本4内の流路を介して
排気ポート11と連通し、アウトボート10と排気ポー
ト11間は遮断される。
Next, when a voltage is applied to the piezoelectric actuator 1, the piezoelectric actuator enters the state shown in FIG. 3(C), and the valve body 4 is pushed up against the spring 13 and comes into contact with the valve seat 6. Therefore, the inboard 9 communicates with the exhaust port 11 via the flow path in the valve 4, and the outboard 10 and the exhaust port 11 are cut off.

このように管状の弁体4を圧電アクチュエータ1により
移動させることにより3方向の流路の切り2えが、比較
的軽い力で動作できる。従って圧電アクチュエータ1の
大きな力と、大きな変位量とにより、弁の流路断面積分
大きくすることが可能とな′った。インボート9念盲栓
でふさぐことにより2方弁にでき、0N−OFF制御以
外にも圧電アクチュエータの印加電圧を変化させること
で変位量を変え流路断面積を制御できるため流量制御弁
としても使用できる。管状の径の異なった圧電積層木を
同軸上に配置しであるので、軸上の長さは一個の圧電積
層体の長さと同じであるため制陣弁念小形にすることが
できる。また管状の圧電積層体でなく本発明の基本構成
である平板状(第1図による)の圧電素子登用いた圧電
アクチュエータを弁体4の両側に配設すれば、制御弁の
幅を薄くすることかでき同じスペースに配置する場合に
制御弁の集積度を高めることができる。
By moving the tubular valve body 4 using the piezoelectric actuator 1 in this way, the flow path can be cut in three directions with relatively light force. Therefore, due to the large force and large displacement of the piezoelectric actuator 1, it has become possible to increase the cross-sectional area of the flow path of the valve. It can be made into a 2-way valve by blocking it with an inboard 9 blind plug, and in addition to 0N-OFF control, it can also be used as a flow rate control valve because the amount of displacement can be changed by changing the applied voltage of the piezoelectric actuator and the cross-sectional area of the flow path can be controlled. Can be used. Since tubular piezoelectric laminates with different diameters are arranged coaxially, the length on the axis is the same as the length of one piezoelectric laminate, so it can be made compact. Furthermore, by disposing piezoelectric actuators that use flat piezoelectric elements (as shown in FIG. 1), which is the basic structure of the present invention, instead of a tubular piezoelectric laminate on both sides of the valve body 4, the width of the control valve can be made thinner. It is possible to increase the degree of integration of control valves when they are placed in the same space.

尚、以上説明した圧電アクチュエータは、外部のマイク
ロコンピュータよりの微弱制御信号を圧電素子を駆動て
きる高電圧制御信号に変換するための駆動回路を制御弁
に内蔵しておけば、コンピュータからの微弱制御信号で
直接制御することができる。
Note that the piezoelectric actuator described above can be used to control weak control signals from an external microcomputer by incorporating a drive circuit in the control valve to convert weak control signals from an external microcomputer into high-voltage control signals that drive the piezoelectric element. Can be directly controlled by control signals.

第5図は本発明になる圧電アクチュエータの他の実施例
を示すものである。伸縮が夫々相反するように電気接続
された長さの等しい2個の圧電積層体−組となるように
接合部材25a、25c、。
FIG. 5 shows another embodiment of the piezoelectric actuator according to the present invention. The joining members 25a, 25c form a pair of two piezoelectric laminates of equal length electrically connected so that expansion and contraction are opposite to each other.

、、、25にで結合されている。更に長さの異なる各組
の圧電積層体2A、2B、、、、、2Fは接合部材25
b、25d、、、、、25jで結合されている。このよ
うな構成にして各組の圧電積層体に、個別に電圧を印加
すれば、夫々異なった変位量が得られる。この図に示し
たものでは6組が配設されているので6bitのディジ
タル信号で変位量を制御できるので流量制御弁等への用
途がある。
, , 25 are connected. Furthermore, each set of piezoelectric laminates 2A, 2B, ..., 2F having different lengths is connected to a joining member 25.
b, 25d, , , 25j. If a voltage is individually applied to each set of piezoelectric laminates with such a configuration, different amounts of displacement can be obtained. In the case shown in this figure, since six sets are arranged, the amount of displacement can be controlled by a 6-bit digital signal, and therefore it can be used as a flow rate control valve, etc.

[発明の効果] 本発明の圧電アクチュエータは以上説明したように、並
列に間隙分有して配置された複数個の圧電積層体の隣り
合う圧電積層体が互いに一方の端部を共有するように接
合部材により結合されていると共に、伸縮が夫々相反す
るように電気接続されているので、従来の積層型と比較
して軸方向の寸法を大きくせすに大きな変位が得られ、
また周囲温度の変化により各圧電積層体が熱変位を生じ
ても固定部材に対し可動部材は変化しないので、制御弁
に用いられる場合に、流路断面積を大きくすることがで
き、かつ安定した動作が得られ、更に変位拡大機構を設
ける必要がないので小形にできる等の効果がある。
[Effects of the Invention] As explained above, the piezoelectric actuator of the present invention has a plurality of piezoelectric laminates arranged in parallel with a gap therebetween such that adjacent piezoelectric laminates share one end with each other. Since they are connected by a joining member and are electrically connected so that expansion and contraction are opposite to each other, it is possible to obtain a large displacement even though the axial dimension is large compared to the conventional laminated type.
In addition, even if each piezoelectric laminate undergoes thermal displacement due to changes in ambient temperature, the movable members do not change relative to the fixed members, so when used in control valves, the cross-sectional area of the flow path can be increased and the In addition, since there is no need to provide a displacement amplifying mechanism, the device can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成を示す図、第2図は本発明の
圧電アクチュエータに用いられる圧電積層体の斜視図、
第3図は実施例を示す図で、第3図(a)は軸心に沿っ
て切断した断面図、第3図(b)は第3図(a)の底面
図で一部断面を示している。第3図(c)は動乍状態を
示す図である。 第4図は本発明の用途例である制御弁の断面図であり、
第5図は他の実施例を示す図である。 2a、2b、2C・・・・・・・・・圧電積層体25a
、25b、25c・・・・・・・接合部材3・・・・・
・・・・・・・・・・・・固定部材4・・・・・・・・
・・・・・・・・・可動部材特許出願人 : シーケー
ディ株式会社第1 L’J 唄− 第 21 (C) 第4図 第 5N
FIG. 1 is a diagram showing the basic configuration of the present invention, FIG. 2 is a perspective view of a piezoelectric laminate used in the piezoelectric actuator of the present invention,
Fig. 3 is a diagram showing an embodiment, Fig. 3(a) is a sectional view taken along the axis, and Fig. 3(b) is a bottom view of Fig. 3(a), showing a partial cross section. ing. FIG. 3(c) is a diagram showing a state of movement. FIG. 4 is a cross-sectional view of a control valve that is an example of the application of the present invention.
FIG. 5 is a diagram showing another embodiment. 2a, 2b, 2C...Piezoelectric laminate 25a
, 25b, 25c...Joining member 3...
・・・・・・・・・Fixing member 4・・・・・・・・・
・・・・・・・・・Movable member patent applicant: CKD Co., Ltd. No. 1 L'J Uta- No. 21 (C) Fig. 4 No. 5N

Claims (3)

【特許請求の範囲】[Claims] (1)並列に間隙を有して配置された複数個の圧電積層
体の隣り合う圧電積層体が、互いに一方の端部を共有す
るように接合部材により結合されていると共に、伸縮が
夫々相反するように電気接続されたことを特徴とする圧
電アクチュエータ。
(1) Adjacent piezoelectric laminates of a plurality of piezoelectric laminates arranged in parallel with a gap are connected by a joining member so as to share one end with each other, and the expansion and contraction are opposite to each other. A piezoelectric actuator characterized in that it is electrically connected to
(2)圧電積層体が夫々径の異なる同軸上に配置された
管状体である特許請求の範囲第1項記載の圧電アクチュ
エータ。
(2) The piezoelectric actuator according to claim 1, wherein the piezoelectric laminates are coaxially arranged tubular bodies having different diameters.
(3)伸縮が夫々相反する長さの等しい一対の圧電積層
体が複数組結合されており、各組の圧電積層体の長さが
夫々異なる特許請求の範囲第1項及び第2項記載の圧電
アクチュエータ。
(3) A plurality of pairs of piezoelectric laminates having the same length and opposite expansion and contraction are combined, and each set of piezoelectric laminates has a different length. piezoelectric actuator.
JP62126505A 1987-05-22 1987-05-22 Piezoelectric actuator Pending JPS63289975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62126505A JPS63289975A (en) 1987-05-22 1987-05-22 Piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62126505A JPS63289975A (en) 1987-05-22 1987-05-22 Piezoelectric actuator

Publications (1)

Publication Number Publication Date
JPS63289975A true JPS63289975A (en) 1988-11-28

Family

ID=14936869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62126505A Pending JPS63289975A (en) 1987-05-22 1987-05-22 Piezoelectric actuator

Country Status (1)

Country Link
JP (1) JPS63289975A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005778A1 (en) * 1997-07-25 1999-02-04 Materials Systems Incorporated Serpentine cross-section piezoelectric linear actuator
US7839055B2 (en) 2008-03-27 2010-11-23 Panasonic Corporation Flat-plate lamination-type conductive polymer actuator and flat-plate lamination-type conductive polymer actuator device as well as operating method thereof
US8143764B2 (en) 2009-09-24 2012-03-27 Panasonic Corporation Flat stacked-type conductive polymer actuator
JP2018527874A (en) * 2015-09-02 2018-09-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Actuator devices based on electroactive or photoactive polymers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428278A (en) * 1977-08-05 1979-03-02 Sumitomo Heavy Ind Ltd Regenerating method for orfanic membrane supporting material
JPS55143084A (en) * 1979-04-14 1980-11-08 Discovision Ass Piezooelectric drive device
JPS5748897A (en) * 1980-09-05 1982-03-20 Nippon Telegr & Teleph Corp <Ntt> Electrostrictive element assembly
JPS6153955B2 (en) * 1981-09-07 1986-11-20 Handotai Energy Kenkyusho

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428278A (en) * 1977-08-05 1979-03-02 Sumitomo Heavy Ind Ltd Regenerating method for orfanic membrane supporting material
JPS55143084A (en) * 1979-04-14 1980-11-08 Discovision Ass Piezooelectric drive device
JPS5748897A (en) * 1980-09-05 1982-03-20 Nippon Telegr & Teleph Corp <Ntt> Electrostrictive element assembly
JPS6153955B2 (en) * 1981-09-07 1986-11-20 Handotai Energy Kenkyusho

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005778A1 (en) * 1997-07-25 1999-02-04 Materials Systems Incorporated Serpentine cross-section piezoelectric linear actuator
US6107726A (en) * 1997-07-25 2000-08-22 Materials Systems, Inc. Serpentine cross-section piezoelectric linear actuator
US7839055B2 (en) 2008-03-27 2010-11-23 Panasonic Corporation Flat-plate lamination-type conductive polymer actuator and flat-plate lamination-type conductive polymer actuator device as well as operating method thereof
US8143764B2 (en) 2009-09-24 2012-03-27 Panasonic Corporation Flat stacked-type conductive polymer actuator
JP2018527874A (en) * 2015-09-02 2018-09-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Actuator devices based on electroactive or photoactive polymers
US10903762B2 (en) 2015-09-02 2021-01-26 Koninklijke Philips N.V. Actuator device based on an electroactive or photoactive polymer

Similar Documents

Publication Publication Date Title
GB2381663A (en) Relay
JPH0440951B2 (en)
EP1138942A2 (en) Microelectromechanical systems including thermally actuated beams on heaters that move with the thermally actuated beams
CA2579640A1 (en) Adaptive mirror system
US5455477A (en) Encased piezoelectric actuator
WO2022043804A1 (en) Layered actuation structures comprising artificial muscles
JPS63289975A (en) Piezoelectric actuator
CA2579698A1 (en) Integrated wavefront correction module
US6211580B1 (en) Twin configuration for increased life time in touch mode electrostatic actuators
US5434464A (en) Unidirectional supporting structure for microelectromechanical transducers
GB2381595A (en) Piezoelectric actuated optical latching relay with movable liquid
EP0719472B1 (en) Piezoelectric actuator device
US20070247031A1 (en) Piezoelectric actuator
KR20060097722A (en) Piezo actuator
JP2001268948A (en) Electrostatic actuator and operation mechanism using the same
JP3624635B2 (en) Multilayer actuator and moving device
JPH01186179A (en) Electrostatic actuator
US20030207102A1 (en) Solid slug longitudinal piezoelectric latching relay
JP3360384B2 (en) Stacked actuator
JPH04138082A (en) Electrostrictive actuator
WO2022124177A1 (en) Fluid control device, fluid control system, and fluid control device manufacturing method
JPH01235288A (en) Laminated type piezoelectric displacement element
JPS62159877A (en) Actuator
US20030194170A1 (en) Piezoelectric optical demultiplexing switch
JPH02206185A (en) Piezoelectric actuator