JPS6328984B2 - - Google Patents

Info

Publication number
JPS6328984B2
JPS6328984B2 JP7870280A JP7870280A JPS6328984B2 JP S6328984 B2 JPS6328984 B2 JP S6328984B2 JP 7870280 A JP7870280 A JP 7870280A JP 7870280 A JP7870280 A JP 7870280A JP S6328984 B2 JPS6328984 B2 JP S6328984B2
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition
boat
vapor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7870280A
Other languages
Japanese (ja)
Other versions
JPS575864A (en
Inventor
Teruo Misumi
Tadaharu Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7870280A priority Critical patent/JPS575864A/en
Publication of JPS575864A publication Critical patent/JPS575864A/en
Publication of JPS6328984B2 publication Critical patent/JPS6328984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は蒸着方法、特に多層構成の蒸着膜を形
成するための蒸着方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor deposition method, particularly to a vapor deposition method for forming a multilayered vapor deposited film.

多層構成の蒸着膜は、ホトセル、集積回路、干
渉作用を利用した反射防止層、電子写真感光体な
ど各種の分野で利用されているものである。
Vapor-deposited films having a multilayer structure are used in various fields such as photocells, integrated circuits, antireflection layers using interference effects, and electrophotographic photoreceptors.

ところで従来、多層構成の蒸着膜を形成するに
は各層を形成する蒸着材料をそれぞれ異なる蒸着
容器に入れて蒸着容器ごとに順次加熱して行つて
きたものである。そのため、蒸着装置内に複数の
蒸着容器を設置し、さらにそれぞれの蒸着容器の
温度制御をすることが必要であつた。例えば、電
子写真感光体の例を挙げると、Se蒸着膜の上に
AS2Se3,Sb2Se3の様なSeより融点の高い蒸着材
料を積層する様な場合、従来の方法ではSeと
As2Se3又はSb2Se3を別々の蒸着ボートより蒸発
させ積層蒸着膜を得るのが通常であるが、この方
法だと積層する数だけ蒸着容器である蒸着ボート
の数を必要とし多層構成になるほど蒸着が複雑に
なり生産性を高める事が困難になる。
Conventionally, in order to form a multilayered vapor deposition film, vapor deposition materials forming each layer have been placed in different vapor deposition containers and heated in sequence in each vapor deposition container. Therefore, it has been necessary to install a plurality of vapor deposition containers in the vapor deposition apparatus and further to control the temperature of each vapor deposition container. For example, in the case of an electrophotographic photoreceptor, there is a
When stacking vapor deposition materials such as AS 2 Se 3 and Sb 2 Se 3 that have a higher melting point than Se, conventional methods
Usually, As 2 Se 3 or Sb 2 Se 3 is evaporated from separate evaporation boats to obtain a laminated evaporation film, but this method requires the same number of evaporation boats as evaporation containers for the number of layers to be laminated, resulting in a multilayer structure. The more complicated the deposition becomes, the more difficult it becomes to increase productivity.

而して本発明では、この問題を解決した蒸着方
法を提供することを主たる目的とするものであ
る。本発明による蒸着方法は、融点の異なる蒸着
材料を順次蒸着して多層構成の蒸着膜を形成する
蒸着方法において、融点の異なる蒸着材料を1つ
の蒸着容器に収容し、蒸着容器の温度を段階的に
上昇せしめ、融点の低い蒸着材料から順次蒸着さ
せて多層構成の蒸着膜を形成することを特徴とす
るものである。
Therefore, the main object of the present invention is to provide a vapor deposition method that solves this problem. The vapor deposition method according to the present invention is a vapor deposition method in which vapor deposition materials with different melting points are sequentially vaporized to form a multilayered vapor deposition film, in which the vapor deposition materials with different melting points are housed in one vapor deposition container, and the temperature of the vapor deposition container is adjusted stepwise. This method is characterized by forming a multilayered deposition film by sequentially depositing the deposition materials starting from the lowest melting point.

従つて、本発明による蒸着方法においては、1
つの蒸着容器をもつて多層膜を形成することがで
き、また、装置的にも操作的にも優れ、生産性の
向上が期待できるものである。蒸着材料としては
融点が異なる材料で蒸着材料同士で組成変動を起
こさない材料が好適に用いられる。
Therefore, in the vapor deposition method according to the present invention, 1
It is possible to form a multilayer film using one vapor deposition container, and is also excellent in terms of equipment and operation, and can be expected to improve productivity. As the vapor deposition material, materials having different melting points and which do not cause compositional variations among the vapor deposition materials are preferably used.

以下、実施例により説明する。 Examples will be explained below.

実施例 1 第1図に示す様にAlの基板2を蒸着槽1内の
所定の位置に設置した。次に石英製の蒸着ボート
3内に純度5nineのSe粉末40gと純度5nineの
AS2Se3粉末1gを混合し充てんした。次に石英
製の蒸着ボート3内に蒸発源の温度をモニターす
る為のクロメル、アルメル熱電対5を固定する。
蒸着ボート3にはタングステンのスパイラルヒー
ター4を設け蒸着槽1内の空気を排気し真空度を
5×10-5torr程度にする。次に基板加熱ヒーター
6を点火しAl基板2を70℃の温度に上昇させ一
定に保つた。以下蒸着ボート内の温度コントロー
ルと時間の関係を第2図を参照しながら説明する
と、蒸着ボート3上のタングステンスパイラルヒ
ータ4を点火し蒸着ボート3内の温度を300℃に
上昇しSeの蒸着を開始した。Seが完全に無くな
つた点t―1でタングステンスパイラルヒータ4
の電流を増し蒸着ボート3内の温度を450℃に上
昇させAs2Se3の蒸着を開始した。As2Se3が完全
に無くなつた点t―2でタングステンスパイラル
ヒータ4の電流を切り蒸着を終了し、真空を破り
Al基板2を大気中に取り出した。蒸着膜の膜厚
は41μであつた。この蒸着膜をX線マイクロアナ
ライザーと非分散型X線分析により膜厚方向の組
成を分析した結果、基板から40μ未満の膜厚まで
にはSe元素のみが検出され、40μ〜41μの膜厚範
囲ではSeとAs元素が検出され、その割合はSeが
61wt%、Asが39wt%であつた。
Example 1 As shown in FIG. 1, an Al substrate 2 was placed at a predetermined position in a vapor deposition tank 1. Next, 40g of Se powder with a purity of 5nine and 40g of Se powder with a purity of 5nine were placed in the quartz deposition boat 3.
1 g of AS 2 Se 3 powder was mixed and filled. Next, a chromel/alumel thermocouple 5 for monitoring the temperature of the evaporation source is fixed in the quartz vapor deposition boat 3.
A tungsten spiral heater 4 is installed in the deposition boat 3 to exhaust the air in the deposition tank 1 and make the degree of vacuum approximately 5×10 −5 torr. Next, the substrate heating heater 6 was ignited to raise the temperature of the Al substrate 2 to 70°C and keep it constant. The relationship between temperature control inside the deposition boat 3 and time will be explained below with reference to Fig. 2.The tungsten spiral heater 4 on the deposition boat 3 is ignited, the temperature inside the deposition boat 3 is raised to 300°C, and Se is deposited. It started. Tungsten spiral heater 4 at point t-1 where Se completely disappears.
The current was increased to raise the temperature inside the deposition boat 3 to 450°C, and the deposition of As 2 Se 3 was started. At point t-2, when As 2 Se 3 has completely disappeared, the current of the tungsten spiral heater 4 is cut off, and the deposition is completed, and the vacuum is broken.
The Al substrate 2 was taken out into the atmosphere. The thickness of the deposited film was 41μ. As a result of analyzing the composition of this deposited film in the film thickness direction using an X-ray microanalyzer and non-dispersive Se and As elements were detected in
61wt% and As was 39wt%.

実施例 2 蒸着装置は実施例1と同じものを用い、石英製
の蒸着ボート3内に純度5nineのSe粉末40gと純
度5nineのSb2Se31gを混合し、充てん以外は蒸着
時の真空度、基板温度は実施例1と同様にした。
以下蒸着ボート3内の温度コントロールと時間関
係を第3図を参照しながら説明すると、蒸着ボー
ト3上のタングステンスパイラルヒーター4を点
火し蒸着ボート3内の温度を300℃に上昇しSeの
蒸着を開始した。Seが完全に無くなつた点t―
3でタングステンスパイラルヒータ4の電流を増
し蒸着ボート3内の温度を650℃に上昇させ、
Sb2Se3の蒸着を開始した。蒸着ボート3内の
Sb2Se3が完全に無くなつた点t―4でタングス
テンスパイラルヒータ4の電流を切り蒸着を終了
し、その後真空を破りAl基板2を大気中に取り
出した。蒸着膜の膜厚は41μであつた。この蒸着
膜をX線マイクロアナライザーと非分散型X線分
析装置で膜厚方向の組成を分析した結果基板から
40μ未満の膜厚までにはSeの元素のみが検出さ
れ、40μ〜41μの膜厚範囲ではSeとSb元素が検出
されその割合はSeが49wt%、Sbが51wt%であつ
た。
Example 2 The same vapor deposition equipment as in Example 1 was used, and 40 g of Se powder with a purity of 5 nines and 1 g of Sb 2 Se 3 with a purity of 5 nines were mixed in the quartz vapor deposition boat 3, and the vacuum level at the time of vapor deposition was maintained except for filling. The substrate temperature was the same as in Example 1.
The temperature control and time relationship inside the deposition boat 3 will be explained below with reference to FIG. 3. The tungsten spiral heater 4 on the deposition boat 3 is ignited, the temperature inside the deposition boat 3 is raised to 300°C, and Se is deposited. It started. The point where Se completely disappeared t-
In Step 3, increase the current of the tungsten spiral heater 4 and raise the temperature inside the deposition boat 3 to 650℃.
Vapor deposition of Sb 2 Se 3 was started. Inside the deposition boat 3
At point t-4, when Sb 2 Se 3 was completely exhausted, the current in the tungsten spiral heater 4 was cut off to complete the vapor deposition, and then the vacuum was broken and the Al substrate 2 was taken out into the atmosphere. The thickness of the deposited film was 41μ. The composition of this deposited film in the film thickness direction was analyzed using an X-ray microanalyzer and a non-dispersive X-ray analyzer.
Only Se element was detected up to a film thickness of less than 40 μm, and Se and Sb elements were detected in a film thickness range of 40 μm to 41 μm, with the proportions of Se being 49 wt% and Sb being 51 wt%.

実施例 3 蒸着装置は実施例1と同様のものを用い石英製
の蒸着ボート3内に純度5nineのSe粉末40gと純
度5nineのAs2Se31gと純度5nineのSb2Se31gを
混合し充てんをした以外は蒸着時の真空度、基板
温度は実施例1と同様にした。以下蒸着ボート3
内の温度コントロールと時間の関係を第4図を参
照しながら説明すると蒸着ボート3上のタングス
テンスパイラルヒータ4を点火し蒸着ボート3内
の温度を300℃に上昇しSeの蒸着を開始する。Se
が完全に無くなつた点t―5でタングステンスパ
イラルヒータ4の電流を増し蒸着ボート3内温度
を450℃に上昇しAs2Se3の蒸着を開始する。
As2Se3が完全に無くなつた点t―6でタングス
テンスパイラルヒータ4の電流を増し蒸着ボート
3内の温度を650℃に上昇しSb2Se3の蒸着を開始
する。Sb2Se3が完全に無くなつた点t―7でタ
ングステンスパイラルヒータ4の電流を切り蒸着
を終了し、その後真空を破りAl基板2を大気中
に取り出した。蒸着膜の膜厚は42μであつた。こ
の蒸着膜をX線マイクロアナライザーと非分散型
X線分析装置で膜厚方向の組成を分析した結果、
基板から40μ未満の範囲ではSeの元素のみしか検
出されず40〜41μの膜厚範囲ではSe元素が61wt
%、As元素が39wt%、41〜42μの膜厚範囲では
Se元素が49wt%、Sb元素が51wt%が検出され
た。
Example 3 Using the same vapor deposition apparatus as in Example 1, 40 g of Se powder with a purity of 5 nines, 1 g of As 2 Se 3 with a purity of 5 nines, and 1 g of Sb 2 Se 3 with a purity of 5 nines were mixed in the quartz vapor deposition boat 3. The degree of vacuum and substrate temperature during vapor deposition were the same as in Example 1 except for filling. Deposition boat 3 below
The relationship between temperature control and time inside the vessel will be explained with reference to FIG. 4. The tungsten spiral heater 4 on the deposition boat 3 is ignited to raise the temperature inside the deposition boat 3 to 300° C. and the deposition of Se is started. Se
At the point t-5 when the tungsten spiral heater 4 completely disappears, the current of the tungsten spiral heater 4 is increased to raise the temperature inside the deposition boat 3 to 450° C., and the deposition of As 2 Se 3 is started.
At point t-6 when As 2 Se 3 is completely gone, the current of the tungsten spiral heater 4 is increased to raise the temperature inside the deposition boat 3 to 650° C. and the deposition of Sb 2 Se 3 is started. At point t-7, when Sb 2 Se 3 was completely exhausted, the current in the tungsten spiral heater 4 was cut off to complete the vapor deposition, and then the vacuum was broken and the Al substrate 2 was taken out into the atmosphere. The thickness of the deposited film was 42μ. The composition of this deposited film in the film thickness direction was analyzed using an X-ray microanalyzer and a non-dispersive X-ray analyzer.
In the range less than 40μ from the substrate, only Se element is detected, and in the film thickness range of 40 to 41μ, Se element is 61wt.
%, As element is 39wt%, in the film thickness range of 41~42μ
49wt% of Se element and 51wt% of Sb element were detected.

実施例 4 蒸着装置は実施例1と同様のものを用い、蒸着
ボート3内に純度5nineのSe粉末40gと純度5nine
のAs2Se37gを混合し充てんした以外は実施例1
と同様の操作で蒸着条件を設定した。蒸着ボート
3内の温度と時間の関係を第5図を参照しながら
説明すると、蒸着ボート3上のタングステンスパ
イラルヒータ4を点火し蒸着ボート3内の温度を
300℃に上昇しSeの蒸着を開始した。基板上のSe
層の膜厚が38μになつた点t―8でタングステン
スパイラルヒータ4の電流を増加する事により蒸
着ボート3内の温度を450℃に上昇させSeと
As2Se3の混合層の蒸着を開始した。As2Se3材料
が完全に無くなつた点t―9でタングステンスパ
イラルヒータ4の電流を切り蒸着を終了し、その
後真空を破りAl基板2を大気中に取り出した。
蒸着膜の膜厚は47μであつた。この蒸着膜をX線
マイクロアナライザー、非分散型X線分析装置に
より、分析した結果、基板から39μの膜厚までに
はSeのみの元素が39〜47μの膜厚範囲ではSeと
Asの元素が検出され、Se割合は膜厚が39μ〜42μ
までの間で93wt%〜61wt%の範囲で徐々に減少
しており、42μ〜47μまでの間ではSeの割合は
61wt%と一定であつた。
Example 4 The same vapor deposition equipment as in Example 1 was used, and 40 g of Se powder with a purity of 5 nines and 40 g of Se powder with a purity of 5 nines were placed in the vapor deposition boat 3.
Example 1 except that 7g of As 2 Se 3 was mixed and filled.
Vapor deposition conditions were set in the same manner as above. The relationship between the temperature inside the deposition boat 3 and time will be explained with reference to FIG.
The temperature rose to 300°C and Se deposition started. Se on the substrate
At point t-8, when the film thickness of the layer reaches 38μ, the temperature inside the deposition boat 3 is raised to 450℃ by increasing the current of the tungsten spiral heater 4, and Se and
Deposition of a mixed layer of As 2 Se 3 was started. At point t-9, when the As 2 Se 3 material was completely exhausted, the current to the tungsten spiral heater 4 was cut off to complete the vapor deposition, and then the vacuum was broken and the Al substrate 2 was taken out into the atmosphere.
The thickness of the deposited film was 47μ. As a result of analyzing this deposited film using an X-ray microanalyzer and a non-dispersive X-ray analyzer, it was found that up to a film thickness of 39μ from the substrate, Se was the only element, while in the film thickness range of 39 to 47μ, Se was present.
The element As is detected, and the Se percentage is 39μ to 42μ in film thickness.
The percentage of Se gradually decreases in the range of 93wt% to 61wt% between 42μ and 47μ.
It remained constant at 61wt%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸着方法を実施に用いる
蒸着装置の1態様を示す。第2図、第3図、第4
図および第5図は、本発明の蒸着方法による蒸着
ボートの温度制御の各々1態様である。 1……蒸着槽、2……Al基板、3……蒸着ボ
ート、4……タングステンスパイラルヒーター。
FIG. 1 shows one embodiment of a vapor deposition apparatus used to carry out the vapor deposition method according to the present invention. Figure 2, Figure 3, Figure 4
The figure and FIG. 5 each show one mode of temperature control of a vapor deposition boat by the vapor deposition method of the present invention. 1... Vapor deposition tank, 2... Al substrate, 3... Vapor deposition boat, 4... Tungsten spiral heater.

Claims (1)

【特許請求の範囲】[Claims] 1 融点の異なる蒸着材料を順次蒸着して多層構
成の蒸着膜を形成する蒸着方法において、融点の
異なる蒸着材料を1つの蒸着容器に収容し、蒸着
容器の温度を段階的に上昇せしめ融点の低い蒸着
材料から順次蒸着させて多層構成の蒸着膜を形成
することを特徴とする蒸着方法。
1. In a vapor deposition method in which vapor deposition materials with different melting points are sequentially vaporized to form a multilayered vapor deposition film, the vapor deposition materials with different melting points are housed in one vapor deposition container, and the temperature of the vapor deposition container is raised stepwise. A vapor deposition method characterized by forming a multilayered vapor deposited film by sequentially vapor depositing materials.
JP7870280A 1980-06-11 1980-06-11 Vapor depositing method Granted JPS575864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7870280A JPS575864A (en) 1980-06-11 1980-06-11 Vapor depositing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7870280A JPS575864A (en) 1980-06-11 1980-06-11 Vapor depositing method

Publications (2)

Publication Number Publication Date
JPS575864A JPS575864A (en) 1982-01-12
JPS6328984B2 true JPS6328984B2 (en) 1988-06-10

Family

ID=13669194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7870280A Granted JPS575864A (en) 1980-06-11 1980-06-11 Vapor depositing method

Country Status (1)

Country Link
JP (1) JPS575864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343237A (en) * 1989-07-12 1991-02-25 Yuuc Sangyo Kk Pressure-resistant synthetic resin pipe and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343237A (en) * 1989-07-12 1991-02-25 Yuuc Sangyo Kk Pressure-resistant synthetic resin pipe and preparation thereof

Also Published As

Publication number Publication date
JPS575864A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
US2688564A (en) Method of forming cadmium sulfide photoconductive cells
US4710442A (en) Gradient layer panchromatic photoreceptor
US3361591A (en) Production of thin films of cadmium sulfide, cadmium telluride or cadmium selenide
Ellis Flash evaporation and thin films of cuprous sulfide, selenide, and telluride
US3607388A (en) Method of preparing photoconductive layers on substrates
US4007473A (en) Target structures for use in photoconductive image pickup tubes and method of manufacturing the same
JPS6328984B2 (en)
US3793069A (en) Process for preparing a layer of compounds of groups ii and vi
US3927638A (en) Vacuum evaporation plating apparatus
US2192418A (en) Method of manufacturing photoelectrically sensitive layers
US4551303A (en) Method of using an evaporation source
US3850685A (en) Thin layer semiconductor device
US1970496A (en) Carrier provided with a light sensitive substance and process of manufacturing the same
US3271192A (en) Capacitors and process for making same
JPH0239786B2 (en)
US4406050A (en) Method for fabricating lead halide sensitized infrared photodiodes
Siokou et al. An XPS and WF study of the Er/Si (100) interface formation
US4011079A (en) Method for producing an electrophotographic recording material
US4008082A (en) Method for producing an electrophotographic recording material
JPS6383732A (en) Electrophotographic sensitive body
US3681109A (en) Amorphous bismuth oxide containing coatings
US4626486A (en) Electrophotographic element comprising alloy of selenium and tellurium doped with chlorine and oxygen
US3690915A (en) Method of forming gallium phosphide coatings
US2881042A (en) Composite photoconductive layer
JPS5855934A (en) Electrophotographic receptor