JPS6328962A - Heat resistant nonwoven fabric - Google Patents
Heat resistant nonwoven fabricInfo
- Publication number
- JPS6328962A JPS6328962A JP61167199A JP16719986A JPS6328962A JP S6328962 A JPS6328962 A JP S6328962A JP 61167199 A JP61167199 A JP 61167199A JP 16719986 A JP16719986 A JP 16719986A JP S6328962 A JPS6328962 A JP S6328962A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- heat
- nonwoven fabric
- undrawn
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004745 nonwoven fabric Substances 0.000 title claims description 57
- 239000000835 fiber Substances 0.000 claims description 109
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000004760 aramid Substances 0.000 claims description 18
- 229920003235 aromatic polyamide Polymers 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 15
- 229920000728 polyester Polymers 0.000 claims description 14
- 239000012210 heat-resistant fiber Substances 0.000 claims description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000004744 fabric Substances 0.000 description 7
- 229920001021 polysulfide Polymers 0.000 description 7
- 239000005077 polysulfide Substances 0.000 description 7
- 150000008117 polysulfides Polymers 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 230000037303 wrinkles Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920006282 Phenolic fiber Polymers 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000009998 heat setting Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229920006286 oxidized acrylic fiber Polymers 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- -1 male Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 230000035936 sexual power Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、耐熱性不織布に関し、更に詳しくは、高温状
態において極めて収縮率が低く優れた寸法安定性を有し
、且つ、強度等の機械的特性にも優れた耐熱性不織布に
関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat-resistant nonwoven fabric, and more specifically, it has an extremely low shrinkage rate at high temperatures, excellent dimensional stability, and mechanical properties such as mechanical strength. The present invention relates to a heat-resistant nonwoven fabric with excellent physical properties.
[従来の技術]
従来、耐熱性不織布に関しては、芳香族ポリアミド短繊
維を同組成のバルブ状粒子と共に混抄した湿式法による
紙状不織布が広く知られ、又、例えば特公昭59−18
18号等には、未延伸芳香族ポリアミド繊維を接着要素
とする耐熱性不織布の製法が開示されている。[Prior Art] Conventionally, with regard to heat-resistant nonwoven fabrics, paper-like nonwoven fabrics produced by a wet process, in which short aromatic polyamide fibers are mixed with bulb-shaped particles having the same composition, have been widely known.
No. 18 and the like disclose a method for producing a heat-resistant nonwoven fabric using undrawn aromatic polyamide fibers as adhesive elements.
又、その他の耐熱性不織布に関しては、ノボロイドm維
や芳香族ポリサルファイド繊維からなるニードルバンチ
フェルトや例えば特開昭57−16954号のような芳
香族ポリサルファイドを利用したスパンボンド不織布等
が知られている。As for other heat-resistant nonwoven fabrics, needle bunch felts made of novoloid m fibers and aromatic polysulfide fibers, and spunbond nonwoven fabrics using aromatic polysulfide as disclosed in JP-A-57-16954 are known. .
又、本発明、に最も類似するものとして、芳香族ポリア
ミド繊維からなる繊維ウエブを、水流の作用により絡合
せしめた不織布が知られている。Furthermore, as the most similar to the present invention, a nonwoven fabric is known in which a fiber web made of aromatic polyamide fibers is entangled by the action of water flow.
[発明が解決しようとする問題点コ
前記の芳香族ポリアミド繊維を利用した湿式法による紙
状不織布は、耐熱性に優れた有用なものであるが、高温
雰囲気下においては熱収縮による皺が多発して形状が保
持できず、あるいは、繊維長が10mm以下の短繊維を
利用するため、引裂き強度が低く、又、例えば絶縁ワニ
スやFRP用不飽和樹脂等の含浸性に劣るという欠点が
あった。更にこの湿式法によるものは、厚手の不織布の
作製が困難なため、厚手のものは複数の薄手シートを積
層して作成するため、加熱によりそれらの眉間が剥離し
てバブリングが多発し実用に耐えないと言う欠点があっ
た。[Problems to be solved by the invention] The paper-like nonwoven fabric produced by the wet process using aromatic polyamide fibers described above is useful because it has excellent heat resistance, but wrinkles frequently occur due to heat shrinkage in high-temperature atmospheres. It has the disadvantage that it cannot hold its shape, or that it uses short fibers with a fiber length of 10 mm or less, so its tear strength is low, and its impregnability with, for example, insulating varnish and unsaturated resin for FRP is poor. . Furthermore, with this wet method, it is difficult to produce thick nonwoven fabrics, and thick ones are made by laminating multiple thin sheets, so heating causes the spaces between the eyebrows to peel off and bubbling occurs, making it impractical for practical use. There was a drawback that it was not.
芳香族ポリアミドステーブル繊維を主体とする耐熱性不
織布は、前記の湿式法による紙状のものを除いて、耐熱
性を低下させず、量産に適した製造方法は未だ開発され
ていない。例えば未延伸芳香族ポリアミド繊維の熱融着
性を利用した製造方法においては、十分な不織布の強度
を得るためには300℃以上の高温における熱圧着を必
要とするため通常のカレンダー等の適用が困難であり、
又、熱圧着温度を低下せしめるために2−ジメチルピロ
リドンやメチルホルムアミドなどの可塑化溶媒の使用も
考えられているが、これも通常のカレンダーなどの適用
可能範囲よりも高温での処理が必要となるか又は溶剤の
排気や回収装置が必要となり1.何れも汎用性に劣り実
施することが困難であった。For heat-resistant nonwoven fabrics mainly composed of aromatic polyamide stable fibers, a manufacturing method that does not reduce heat resistance and is suitable for mass production has not yet been developed, except for paper-like fabrics produced by the wet method described above. For example, in a manufacturing method that utilizes the heat-sealability of undrawn aromatic polyamide fibers, thermocompression bonding at a high temperature of 300°C or higher is required in order to obtain sufficient strength of the nonwoven fabric, so it is not possible to apply a normal calender or the like. difficult,
In addition, the use of plasticizing solvents such as 2-dimethylpyrrolidone and methylformamide is being considered to lower the thermocompression bonding temperature, but this also requires processing at higher temperatures than the range applicable to ordinary calenders. Otherwise, solvent exhaust and recovery equipment will be required.1. All of these methods lacked versatility and were difficult to implement.
前記の芳香族ポリアミド繊維からなる水流絡合不織布は
、耐熱性が良好で、強度も優れたものであるが、繊維間
が機械的には絡合されているが、繊維間結合がないため
、寸法安定性に劣り、又、ケバ立ちが生じるという欠点
があり、このため、伸張処理等の後加工により寸法を安
定化さすことが試みられているがこれらの後加工は却て
熱収縮率を増加するもので、好ましいものではなかった
。The hydroentangled nonwoven fabric made of aromatic polyamide fibers has good heat resistance and excellent strength, but although the fibers are mechanically entangled, there is no bond between the fibers. It has the disadvantage of poor dimensional stability and the formation of fluff. Therefore, attempts have been made to stabilize the dimensions through post-processing such as stretching, but these post-processing have the effect of increasing the heat shrinkage rate. This was not a desirable increase.
一方、その他の繊維よりなる耐熱性不織布は、ニードル
バンチ法による繊維フェルトや、スパンボンド法による
不織布が提案されているが、それらの何れもが保形性や
寸法安定性に劣るものであり、又、熱収縮が大きいかあ
るいは、収縮により皺が生じるという欠点があった。On the other hand, as for heat-resistant nonwoven fabrics made of other fibers, fiber felt made by needle bunching method and nonwoven fabric made by spunbond method have been proposed, but both of them are inferior in shape retention and dimensional stability. Further, there is a drawback that the thermal shrinkage is large or wrinkles are generated due to the shrinkage.
従って、本発明は、従来において極めて困難か、あるい
は、不可能とされていた高温雰囲気下において、熱収縮
が極めて少なく、皺やケバ立ち等の発生もなく、且つ、
寸法安定性や強度等の機械的特性にも優れた耐熱性不織
布の提供を目的とする。Therefore, the present invention has extremely little thermal shrinkage and no wrinkles or fuzzing under high-temperature atmospheres, which was considered extremely difficult or impossible in the past, and
The purpose is to provide a heat-resistant nonwoven fabric that also has excellent mechanical properties such as dimensional stability and strength.
c問題点を解決するための手段]
本発明は、繊維長が耐熱性繊維80乃至20ti1%と
未延伸縁Itt20乃至80重量%とからなる繊維ウエ
ブを、水流の作用により絡合せしめ、次いで熱圧着によ
り繊維間が融着せしめられた不織布であって、該不織布
の200乃至375℃の温度条件下における乾熱収縮率
が3%以下であることを特徴とする耐熱性不織布に関す
る。c) Means for Solving Problems] The present invention involves entangling a fiber web having a fiber length of 80 to 20% by weight of heat-resistant fibers and 20 to 80% by weight of unstretched edges by the action of a water stream, and then The present invention relates to a heat-resistant nonwoven fabric whose fibers are fused together by compression bonding, and which has a dry heat shrinkage rate of 3% or less under a temperature condition of 200 to 375°C.
[作 用コ
本発明者らは、熱収縮率の極めて低く耐熱安定性に優れ
た不織布を得ることを目的とし鋭意研究を続けた結果、
耐熱性m維を利用して、水流の作用による繊維間絡合と
、未延伸繊維による繊維間結合とを合わせた構造とする
ことで、加熱時に極めて収縮率が低く皺の発生も皆無で
、しかも、強度等の機械的特性にも優れた耐熱性の不織
布が得られることを見出し、本発明を完成したものであ
る。[Function] As a result of intensive research aimed at obtaining a nonwoven fabric with extremely low heat shrinkage and excellent heat resistance stability, the present inventors found that
Utilizing heat-resistant m-fibers, the structure combines inter-fiber entanglement due to the action of water flow and inter-fiber bonding due to unstretched fibers, resulting in extremely low shrinkage and no wrinkles when heated. Furthermore, the present invention was completed based on the discovery that a heat-resistant nonwoven fabric with excellent mechanical properties such as strength can be obtained.
以下、本発明を具体的に説明すると、まず、本発明で使
用する耐熱性繊維は、耐熱性不織布の骨格を形成するも
のであり、水流の作用によりその他の繊維と共に絡合し
て、不織布に引張りあるいは引裂き強度等の機械的特性
を付与し、本質的耐熱性を具備する。The present invention will be explained in detail below. First, the heat-resistant fibers used in the present invention form the skeleton of the heat-resistant nonwoven fabric, and are entangled with other fibers by the action of water to form the nonwoven fabric. It imparts mechanical properties such as tensile or tear strength, and has inherent heat resistance.
これらの繊維としては、芳香族ポリアミド繊維、芳香族
ポリサルファイド繊維、芳香族ポリエステルm維、芳香
族ポリエーテル繊維、ノボロイド繊維等の合成繊維や、
酸化アクリル繊維等の合成繊維を酸化処理した繊維、あ
るいは、ガラス繊維、アスベストl!雄、炭素繊維、金
属繊維等の無機繊維等ウエブ形成の可能な耐熱性′1a
IIi1:であれば何でも利用することができるが、芳
香族ポリアミド繊維、ノボロイド繊維、酸化アクリル繊
維から選ばれた合成繊維を単独または混合して利用する
と、ウエブ形成が容易で、これらの繊維が300℃以上
の温度においても溶融せず骨格を形成し、多様な製品を
得ることが可能であり、しかも、製品の品質設計や品質
管理等が極めて容易且つ安定して行。These fibers include synthetic fibers such as aromatic polyamide fibers, aromatic polysulfide fibers, aromatic polyester m fibers, aromatic polyether fibers, novoloid fibers,
Synthetic fibers such as oxidized acrylic fibers, glass fibers, and asbestos l! Heat resistance '1a that allows formation of webs such as inorganic fibers such as male, carbon fibers, metal fibers, etc.
IIi1: Any material can be used, but if synthetic fibers selected from aromatic polyamide fibers, novoloid fibers, and oxidized acrylic fibers are used alone or in combination, web formation is easy; It does not melt and forms a skeleton even at temperatures above ℃, making it possible to obtain a wide variety of products. Moreover, product quality design and quality control are extremely easy and stable.
えるため好適なものといえる。特に芳香族ポリアミド繊
維は、耐熱性及び生産性の点において最も良好な製品が
得られるので最適である。It can be said that it is suitable for the purpose of In particular, aromatic polyamide fibers are optimal because they provide the best products in terms of heat resistance and productivity.
又、芳香族ポリサルファイド繊維や芳香族ポリエステル
繊維等の熱可塑性耐熱繊維の場合は、前記の溶融しない
繊維と混合することで種々の性質の不織布を形成したり
、あるいは、これらのFaltiの融点以下の温度で使
用されたり、融点以上の温度であってもその耐熱を必要
とする時間が極めて短い場合にはこれらの繊維の特性を
生かした利用が可能であるので利用価値が高いものと言
える。In addition, in the case of thermoplastic heat-resistant fibers such as aromatic polysulfide fibers and aromatic polyester fibers, nonwoven fabrics with various properties can be formed by mixing them with the above-mentioned non-melting fibers, or nonwoven fabrics with a temperature below the melting point of these Falti fibers can be formed. When used at high temperatures, or when the time required for heat resistance even at temperatures above the melting point is extremely short, these fibers can be used to take advantage of their characteristics, so they can be said to have high utility value.
次に、未延伸繊維について説明すると、未延伸繊維は加
熱加圧により可塑化あるいは溶融して骨格である耐熱性
繊維及び未延伸繊維同志の繊維間を結合し、耐熱性不織
布の寸法安定性を高める作用、引張り強度等の機械的特
性を向上する作用、あるいは、不織布のケバ立ちゃ繊維
粉塵の発生を防止して製品の品位品質を高める作用等を
有する。Next, to explain the undrawn fibers, the undrawn fibers are plasticized or melted by heat and pressure to bond the heat-resistant fibers that are the skeleton and the undrawn fibers, thereby improving the dimensional stability of the heat-resistant nonwoven fabric. It has the effect of increasing the mechanical properties such as tensile strength, and the effect of preventing the generation of fluff and fiber dust in the nonwoven fabric, thereby improving the quality of the product.
これらの未延伸繊維としては、未延伸ポリエステル繊維
、未延伸芳香族ポリサルファイド繊維、未延伸芳香族ポ
リエステル繊維、未延伸芳香族ポリアミド繊維などが知
られており、必要耐熱条件により適宜選択して使用する
ことができる。つまり、例えば長期rp7の耐熱特性が
必要な場合には、未延伸芳香族ポリサルファイド繊維や
未延伸芳香族ポリエステル!a!維等の本質的に耐熱性
である未延伸繊維を利用することが好適で、又、高温度
の耐熱性が要求される場合であってもそれが数分あるい
は数時間という短時間の耐熱性で良い場合には、ウエブ
の形成や加圧加熱による融着結合が容易に行える未延伸
ポリエステル繊維を利用することが有利である。Known examples of these undrawn fibers include undrawn polyester fibers, undrawn aromatic polysulfide fibers, undrawn aromatic polyester fibers, and undrawn aromatic polyamide fibers, which are appropriately selected and used depending on the required heat resistance conditions. be able to. In other words, for example, if long-term RP7 heat resistance is required, use undrawn aromatic polysulfide fiber or undrawn aromatic polyester! a! It is preferable to use undrawn fibers that are inherently heat resistant, such as fibers, and even if high temperature heat resistance is required, it is suitable for short-term heat resistance of several minutes or hours. If this is acceptable, it is advantageous to use undrawn polyester fibers that can be easily formed into a web or fused and bonded by pressure and heating.
又、この未延伸ポリエステル繊維は非常に作業性や生産
性に優れたものである反面、耐熱性に乏しいと言う欠点
を有するものであるが、本発明の不織布は、未延伸繊維
の融着のみを結合要素とするのではなく、水流による絡
合も行われているため、仮に未延伸ポリエステル繊維が
加熱により劣化や分解等を生じたとしても、絡合により
ある程度の強度及び保形性を有するので、例えば、ハニ
カムコアや電気絶縁材等のように熱硬化性樹脂やワニス
などの含浸処理の施されるような耐熱用途には十分対応
できるものである。In addition, although this undrawn polyester fiber has excellent workability and productivity, it has the disadvantage of poor heat resistance. Because entanglement is also performed by water flow rather than using polyester as a binding element, even if undrawn polyester fibers deteriorate or decompose due to heating, they will still maintain a certain degree of strength and shape retention due to entanglement. Therefore, it is fully applicable to heat-resistant applications such as honeycomb cores, electrical insulating materials, etc., which are impregnated with thermosetting resin or varnish.
これらの耐熱性及び未延伸繊維は、上記の特性を有する
ものであれば何でも良いが、本発明においては繊維長が
20乃至200mntて、繊度が0.5乃至20デニー
ルのステーブル繊維であることが、ウエブの均−形成性
等に優れ、又、水流噴射による絡合効率が良好なため好
適であり、特に、繊維長が38乃至76IIII11で
繊度が1乃至6デニールのものは最も良好なウェブ形成
と絡合効率が得られるので最適のものと言える。These heat-resistant and undrawn fibers may be of any type as long as they have the above characteristics, but in the present invention, they are stable fibers with a fiber length of 20 to 200 mnt and a fineness of 0.5 to 20 denier. However, it is preferable because it has excellent web formation properties and good entanglement efficiency by water jetting. In particular, fiber length of 38 to 76III11 and fineness of 1 to 6 denier produces the best web. It can be said to be the optimal one because it provides formation and entanglement efficiency.
本発明においてステーブルwfItIを好適とする理由
を簡単に説明すると、例えばスパンボンド法やメルトブ
ロー法による不織布、あるいは、長繊維のトウを利用し
たような繊維長が200+nmを越えるような極めて長
い繊維からなる不織布は、複数の原料、IaI維径、繊
維長等の性質の異なる繊維を混合してしようすることが
不可能か又は非常に困難であるため、多様な不織布を形
成することができず、又、水流噴射による絡合効率に劣
り、反対に湿式法で用いられるような例えば繊維長が2
0mm以下のような短繊維では、絡合したとしても強度
の低い製品しか得られないので効果的ではない。従って
、これらの長繊維又は短繊維を利用する場合には、前記
の好適な繊維長及び繊度の範囲を有するステーブル繊維
と混合する必要がある。To briefly explain the reason why stable wfItI is preferable in the present invention, for example, nonwoven fabrics produced by spunbond method or melt blow method, or extremely long fibers with a fiber length exceeding 200+ nm, such as those using long fiber tow, can be used. Because it is impossible or extremely difficult to mix multiple raw materials, fibers with different properties such as IaI fiber diameter, fiber length, etc., it is not possible to form a variety of nonwoven fabrics. In addition, the entanglement efficiency by water jetting is inferior, and on the contrary, when the fiber length is 2, as used in the wet method,
Short fibers with a diameter of 0 mm or less are not effective because even if they are entangled, only a product with low strength can be obtained. Therefore, when using these long fibers or short fibers, it is necessary to mix them with stable fibers having the above-mentioned suitable fiber length and fineness ranges.
次に、本発明の要旨として最も重要な水流絡合について
説明すると、水流絡合に関しては、例えば米国特許第3
,088,859号等で知られる公知の技術を適用すれ
ば良く、前記の耐熱性繊維と未延伸繊維とが混合された
ウエブに、多数の微細なオリフィスを通じて水流が噴射
され、各繊維間を絡合せしめる。これらの水流噴射によ
る絡合処理で、不織布の熱収縮率が大きく改善される。Next, hydroentanglement, which is the most important gist of the present invention, will be explained. Regarding hydroentanglement, for example, US Pat.
, 088, 859, etc., in which a water stream is injected through a large number of fine orifices to the web in which the heat-resistant fibers and undrawn fibers are mixed, and the water flow is applied between each fiber. Intertwine. The heat shrinkage rate of the nonwoven fabric is greatly improved by the entanglement treatment using these water jets.
その理由については未だ明らかではないが、その理由と
して考えられる点を以下述べると、まずウェブの水平方
向に配列していた各繊維が水流噴射により垂直方向を含
む3次元にランダムに配列されその結果として、面とし
ての収縮率が低下する構造的な作用、第2には、未延伸
繊維は一般的に収縮性の非常に高い繊維であるが、これ
らの未延伸繊維が、水流の作用により部分的に延伸及び
分子配向せしめられ、この結果として未延伸繊維の耐熱
安定性が高まり収縮率が低下するという分子的な作用、
第3には、緊張状態にある繊維が水流の圧力により、局
部的な弛緩作用を受けその結果として熱収縮率が低下す
るという構造的分子的緊張緩和作用、及び、第4として
耐熱性繊維及び未延伸繊維の短繊維が有する潜在収縮性
が、水流絡合後の乾燥工程により湿熱ヒートセットと同
様の処理を受け、その結果として不織布の熱収縮率が低
下すること等が考えられる。The reason for this is not yet clear, but the following are possible reasons: First, each fiber that was arranged horizontally on the web is randomly arranged in three dimensions, including the vertical direction, by the water jet. The second reason is that undrawn fibers generally have very high shrinkage, but these undrawn fibers partially shrink due to the action of water flow. Molecular action that causes unstretched fibers to be stretched and molecularly oriented, resulting in increased heat resistance stability of unstretched fibers and reduced shrinkage rate
Thirdly, the fibers under tension undergo a local relaxation effect due to the pressure of the water flow, and as a result, the heat shrinkage rate decreases. It is conceivable that the latent shrinkage of the short fibers of the undrawn fibers undergoes a treatment similar to moist heat heat setting during the drying process after hydroentanglement, resulting in a decrease in the thermal shrinkage rate of the nonwoven fabric.
何れにせよ、本発明において、水流絡合の工程は、20
0乃至375@Cの温度における熱収縮率を飛躍的に減
少せしめる手段として最も重要である。In any case, in the present invention, the step of hydroentanglement is
It is most important as a means to dramatically reduce the thermal shrinkage rate at temperatures of 0 to 375@C.
絡合せしめられた不l!布は、次いで、熱圧着により未
延伸繊維の結合作用により繊維間が融着され、寸法安定
性に優れ、しかも、強度等の機械的特性も従来のものよ
り格段に優れた本発明の不織布となる。又、この熱圧着
は、結合作用のみてはなく、耐熱性繊維及び未延伸繊維
に対するヒートセット作用も有すると考えられ、熱圧着
により、不織布の乾熱収縮率をより低下せしめると言う
補助作用も有する。Intertwined infidels! The fabric is then thermocompressed to fuse the fibers by the bonding action of the undrawn fibers, resulting in the nonwoven fabric of the present invention having excellent dimensional stability and mechanical properties such as strength that are significantly superior to conventional fabrics. Become. In addition, this thermocompression bonding is thought to have not only a bonding effect but also a heat setting effect on heat-resistant fibers and undrawn fibers, and thermocompression bonding also has an auxiliary effect of further reducing the dry heat shrinkage rate of the nonwoven fabric. have
この熱圧着における温度および圧力は、未延伸繊維が加
圧により可塑化あるいは溶融することて各繊it閏を結
合することが可能な条件が適宜選択され・例えば、未延
伸ポリエステル繊維であれば120乃至220″′C1
未延伸ポリフエニレンサルフアイド繊維であれば140
乃至240″C1あるいは、未延伸芳香族ポリアミド1
m維であれば250乃至350”Cの温度と、30乃至
300に3/cmの線圧力が適当と考えられる。又、こ
れらに利用する装置としては、平板加熱プレス装置、回
転ヒートロール装置、あるいは表面に凹凸が設けられた
彫刻ヒートロール装置等何でも良いが、回転ヒートロー
ルを用いると連続生産性および品質安定性に優れるため
有利である。The temperature and pressure in this thermocompression bonding are appropriately selected so that the undrawn fibers can be plasticized or melted under pressure to bond each fiber.For example, if the undrawn polyester fiber is a 〜220″'C1
140 for unstretched polyphenylene sulfide fiber
240″C1 or unstretched aromatic polyamide 1
For m-fibers, a temperature of 250 to 350"C and a linear pressure of 30 to 300 cm are considered appropriate. In addition, devices used for these include a flat plate hot press device, a rotating heat roll device, Alternatively, any device such as an engraved heat roll device with an uneven surface may be used, but it is advantageous to use a rotating heat roll because it has excellent continuous productivity and quality stability.
以下、本発明を実施例に基き更に具体的に説明するが、
本発明は、これらの実施例に限定されるものではない。Hereinafter, the present invention will be explained in more detail based on Examples.
The present invention is not limited to these examples.
[実施例1]
芳香族ポリアミド繊mU、sデニール、38n+m長)
50重量%と、未延伸ポリエステル1tt(5デニール
。[Example 1] Aromatic polyamide fiber mU, s denier, 38n+m length)
50% by weight and 1tt unstretched polyester (5 denier).
44mm長)50重量%とを均一に混綿し、カード法に
よりウエブを形成し、次いで、オリフィス径0.15m
m、オリフィス数1000個/mのノズルを用いて、水
圧80kg/cn+2水吐出fil120ffi /
minの条件で水流を噴射して各1a維を3次元に絡合
せしめた後、100℃の温度で乾燥して、目付603/
m2、厚み0.6mmの水流絡合不織布を得た。44 mm length) and 50% by weight were uniformly mixed together to form a web using a carding method, and then a web with an orifice diameter of 0.15 m was formed.
m, using a nozzle with 1000 orifices/m, water pressure 80kg/cn+2 water discharge fil120ffi/
After spraying a water stream under the conditions of
A hydroentangled nonwoven fabric having a thickness of 0.6 mm and a thickness of 0.6 mm was obtained.
この不織布を2枚重ね合わせ、平滑な表面を有する回転
ヒートロール間を線圧カフ0kg/cm、温度200℃
の条件で2回通過せしめて熱圧着し、目付120g/m
2、厚みが0−15mmの本発明による耐熱性不織布を
得た。Two sheets of this non-woven fabric are layered and passed between rotating heat rolls with a smooth surface at a linear pressure cuff of 0 kg/cm and a temperature of 200°C.
Passed twice under the following conditions and bonded under heat to obtain a fabric weight of 120 g/m.
2. A heat-resistant nonwoven fabric according to the present invention having a thickness of 0-15 mm was obtained.
得られた不織布の耐熱性を調べるため、熱風循環炉を用
いて200乃至375℃の温度で3分間熱処理を行い、
熱処理後の収wI率及び引張り強度を測定した。In order to examine the heat resistance of the obtained nonwoven fabric, heat treatment was performed for 3 minutes at a temperature of 200 to 375°C using a hot air circulation furnace.
The yield wI rate and tensile strength after heat treatment were measured.
その結果を第1表に示す。The results are shown in Table 1.
又、これとの比較のため、実施例1と同一組成のウェブ
を水流絡合の工程のみを省略して熱圧着したもの(比較
例1)及び市販の芳香族ポリアミド湿式不織布(比較例
2)について、実施例1と同一の試験を行った。この結
果も第1表に示す。In addition, for comparison, a web with the same composition as in Example 1 was thermocompressed by omitting only the hydroentangling process (Comparative Example 1) and a commercially available aromatic polyamide wet-laid nonwoven fabric (Comparative Example 2). The same test as in Example 1 was conducted. The results are also shown in Table 1.
第1表からも明らかなように、本発明による耐熱性不織
布は、他のものに比べて極めて低い収縮率を示し、皺や
層間剥離によるバブリングの発生が全く無い優れた品質
のものであフた。As is clear from Table 1, the heat-resistant nonwoven fabric according to the present invention exhibits an extremely low shrinkage rate compared to other fabrics, and is of excellent quality with no occurrence of bubbling due to wrinkles or delamination. Ta.
尚、収縮率及び減量の測定は30X30cmの試験片に
縦横各3点の25cm長のマーキングを正確に行い、熱
処理後の重量減、及び、収縮した縦横の平均値を示し、
又、引張り強度は、5cm幅の試験片を100mm/m
i nで定速伸張して測定した。In addition, the shrinkage rate and weight loss were measured by accurately marking 25 cm long at 3 points each length and width on a 30 x 30 cm test piece, and showing the weight loss after heat treatment and the average value of the shrinkage length and width.
In addition, the tensile strength is measured using a 5cm wide test piece at 100mm/m.
The measurement was performed by stretching at a constant speed.
[以下余白]
第 1 表
[実施例2]
芳香jlx ホ’) 7 ミF繊&ti(1,5デニー
ル、38mm長)40重量%と、ポリフェニレンサルフ
ァイド繊維(3デニール、51mm長)40重置火と、
未延伸ポリフェニレンサルファイド繊維(10デニール
、51mm長)2Offi 量%とを均一に混綿し、実
施例1と同一方法、同一条件で、目付80g/II+2
、厚みo、smmの水流絡合不織布を作成した。[Margins below] Table 1 [Example 2] Aromatic jlx e') 7 40% by weight of MiF fiber & TI (1.5 denier, 38 mm length) and 40 layers of polyphenylene sulfide fiber (3 denier, 51 mm length) were placed on fire. and,
Unstretched polyphenylene sulfide fiber (10 denier, 51 mm length) was uniformly blended with 2 Offi amount % and processed in the same manner and under the same conditions as Example 1 to obtain a fabric weight of 80 g/II+2.
A hydroentangled nonwoven fabric having a thickness of o and smm was prepared.
次いで、この不織布を実施例1と同一の回転ヒートロー
ル間を線圧カフ0kg/am、温度220℃の条件て通
過せしめて熱圧着し、厚みが0−13nvの本発明によ
る耐熱性不織布を得た。Next, this nonwoven fabric was passed through the same rotating heat rolls as in Example 1 under the conditions of a linear pressure cuff of 0 kg/am and a temperature of 220°C and thermocompression bonded to obtain a heat-resistant nonwoven fabric according to the present invention having a thickness of 0 to 13 nv. Ta.
この不織布についても、耐熱性を調べるため、実施例1
と同様に熱風循環炉で、200乃至375”Cの温度で
3分間熱処理を行い、熱処理後の収縮率及び引張り強度
を測定した。In order to examine the heat resistance of this nonwoven fabric, Example 1
Similarly, heat treatment was performed for 3 minutes at a temperature of 200 to 375''C in a hot air circulating oven, and the shrinkage rate and tensile strength after the heat treatment were measured.
その結果を第1表に示す。The results are shown in Table 1.
又、これとの比較のため、実施例2と同一組成のウェブ
を水流絡合の工程のみを省略して熱圧着したもの(比較
例3)及び芳香族ポリアミド繊維100%からなるウエ
ブを水流絡合せしめ、回転ヒートロールで圧密化した不
織布(比較例4)について、実施例2と同一の試験を行
った。この結果も第2表に示す。In addition, for comparison, a web with the same composition as in Example 2 was bonded under heat by omitting only the hydroentanglement process (Comparative Example 3), and a web made of 100% aromatic polyamide fiber was bonded by hydroentanglement. The same test as in Example 2 was conducted on the nonwoven fabric (Comparative Example 4) that was laminated and consolidated with a rotating heat roll. The results are also shown in Table 2.
第2表からも明らかなように、本発明による耐熱性不織
布は、他のものに比べて極めて低い収縮率を示し、更に
、耐熱性についてもより一層優れた品質のもので、しか
も、ポリフェニレンサルファイド繊維が耐水性、耐薬品
性を具備しているので、芳香族ポリアミド繊維の欠点で
ある温熱収縮率の改善されたものであった。As is clear from Table 2, the heat-resistant nonwoven fabric according to the present invention exhibits an extremely low shrinkage rate compared to other fabrics, and has even better heat resistance. Since the fibers have water resistance and chemical resistance, the thermal shrinkage rate, which is a drawback of aromatic polyamide fibers, has been improved.
尚、湿熱収縮率の測定は30 X 30cmの試験片に
縦横各3点の25cm長のマーキングを正確に行い、不
織布に対し200重量%の水を付着したのち、170℃
の熱風循環乾燥機に投入し、乾燥後の収fi率を測定し
た。In addition, the wet heat shrinkage rate was measured by accurately marking 25 cm long at 3 points in the vertical and horizontal directions on a 30 x 30 cm test piece, and after applying 200% water by weight to the nonwoven fabric, the test piece was heated at 170°C.
The sample was placed in a hot air circulation dryer, and the yield rate after drying was measured.
〔以下余白コ
第 2 表
[発明の効果コ
本発明による耐熱性不織布は、上述の通り、従来には無
い低収縮率のものであり、従来避けることのできなかっ
た収縮による皺の発生を完全に防止したものである。[Table 2] Effects of the Invention As mentioned above, the heat-resistant nonwoven fabric according to the present invention has a shrinkage rate that is unprecedentedly low, and completely eliminates wrinkles due to shrinkage that could not be avoided in the past. This was to prevent this.
このため、従来耐熱性不織布が利用されてきた、耐熱電
気絶縁分野、繊維強化プラスチツク分野、建築構造体分
野、あるいは、航空宇宙産業分野等の全ての産業におい
て、作業性は勿論、品質品位あるいは安全性の向上等に
大いに役立つものである。For this reason, in all industries where heat-resistant nonwoven fabrics have traditionally been used, such as heat-resistant electrical insulation, fiber-reinforced plastics, building structures, and the aerospace industry, it is important not only to improve workability but also to improve quality and safety. It is very useful for improving sexual performance.
しかも、水流絡合と、熱融着という2つの結合手段を採
用しているので、利用する耐熱性繊維や未延伸繊維を従
来に無く広範に選択することができるため、例えば、耐
熱用途には不適当であった未延伸ポリエステル繊維を有
効に利用して作業性を格段に高めたり、あるいは、耐水
耐薬品性に優れた芳香族ポリサルファイド繊維を利用し
て高温液体フィルター等に利用したりすることができる
ことも本発明の不織布が有する従来には無い有利な特徴
である。Moreover, since it employs two bonding methods, hydroentanglement and thermal fusion, it is possible to select a wider range of heat-resistant fibers and undrawn fibers than ever before, so for example, for heat-resistant applications. Effective use of undrawn polyester fibers, which were previously unsuitable, to significantly improve workability, or aromatic polysulfide fibers with excellent water and chemical resistance for use in high-temperature liquid filters, etc. It is also an advantageous feature of the nonwoven fabric of the present invention that has not been found in the past.
従って、本発明の耐熱性不織布は、生産性、作業性、汎
用性等に優れ、しかも、品質の安定した安全性の高い製
品を提供することができる従来には無い有用なものであ
る。Therefore, the heat-resistant nonwoven fabric of the present invention is excellent in productivity, workability, versatility, etc., and can provide products with stable quality and high safety, which is unprecedented and useful.
Claims (5)
至20重量%と未延伸繊維20乃至80重量%とからな
る繊維ウエブを、水流の作用により絡合せしめ、次いで
熱圧着により繊維間が融着せしめられた不織布であって
、該不織布の200乃至375℃の温度条件下における
乾熱収縮率が3%以下であることを特徴とする耐熱性不
織布。(1) A fiber web consisting of 80 to 20% by weight of heat-resistant fibers with a fiber length of 20 to 200 mm and 20 to 80% by weight of undrawn fibers is entangled by the action of water flow, and then the fibers are fused by thermocompression bonding. A heat-resistant nonwoven fabric having a dry heat shrinkage rate of 3% or less under a temperature condition of 200 to 375°C.
とも40重量%以上含むことを特徴とする特許請求の範
囲第1項記載の耐熱性不織布。(2) The heat-resistant nonwoven fabric according to claim 1, wherein the heat-resistant nonwoven fabric contains at least 40% by weight of aromatic polyamide fibers.
伸芳香族サルファイド繊維、未延伸芳香族ポリエステル
繊維、未延伸芳香族ポリアミド繊維から選ばれた1又は
2以上の未延伸繊維を20乃至60重量%含むことを特
徴とする特許請求の範囲第1項記載の耐熱性不織布。(3) The heat-resistant nonwoven fabric contains 20 to 60 weight of one or more undrawn fibers selected from undrawn polyester fibers, undrawn aromatic sulfide fibers, undrawn aromatic polyester fibers, and undrawn aromatic polyamide fibers. % of the heat-resistant nonwoven fabric according to claim 1.
200mmで、繊度が0.5乃至10デニールのステー
プル繊維である特許請求の範囲第1項記載の耐熱性不織
布。(4) The heat-resistant nonwoven fabric according to claim 1, wherein the heat-resistant fibers and the undrawn fibers are staple fibers having a fiber length of 20 to 200 mm and a fineness of 0.5 to 10 deniers.
る乾熱収縮率が1.5%以下である特許請求の範囲第1
項記載の耐熱性不織布。(5) Claim 1, wherein the heat-resistant nonwoven fabric has a dry heat shrinkage rate of 1.5% or less under a temperature condition of 325°C or less.
Heat-resistant nonwoven fabric as described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61167199A JPS6328962A (en) | 1986-07-15 | 1986-07-15 | Heat resistant nonwoven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61167199A JPS6328962A (en) | 1986-07-15 | 1986-07-15 | Heat resistant nonwoven fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6328962A true JPS6328962A (en) | 1988-02-06 |
JPH0240779B2 JPH0240779B2 (en) | 1990-09-13 |
Family
ID=15845261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61167199A Granted JPS6328962A (en) | 1986-07-15 | 1986-07-15 | Heat resistant nonwoven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6328962A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226975A (en) * | 1988-07-14 | 1990-01-29 | Teijin Ltd | Solid cotton |
JPH0324671U (en) * | 1989-07-18 | 1991-03-14 | ||
JPH05119688A (en) * | 1991-10-28 | 1993-05-18 | Teijin Ltd | Cleaning web for electrophotography |
JPH09119052A (en) * | 1996-08-30 | 1997-05-06 | Asahi Chem Ind Co Ltd | Production of fire-resistant nonwoven fabric |
WO2005001187A1 (en) * | 2003-06-27 | 2005-01-06 | Takayasu Co., Ltd. | Flame-retardant non-woven fabric and method for production thereof |
JP2006138935A (en) * | 2004-11-10 | 2006-06-01 | Takayasu Co Ltd | Heat-resistant acoustic material |
-
1986
- 1986-07-15 JP JP61167199A patent/JPS6328962A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226975A (en) * | 1988-07-14 | 1990-01-29 | Teijin Ltd | Solid cotton |
JPH0324671U (en) * | 1989-07-18 | 1991-03-14 | ||
JPH05119688A (en) * | 1991-10-28 | 1993-05-18 | Teijin Ltd | Cleaning web for electrophotography |
JP2598190B2 (en) * | 1991-10-28 | 1997-04-09 | 帝人株式会社 | Electrophotographic cleaning web |
JPH09119052A (en) * | 1996-08-30 | 1997-05-06 | Asahi Chem Ind Co Ltd | Production of fire-resistant nonwoven fabric |
WO2005001187A1 (en) * | 2003-06-27 | 2005-01-06 | Takayasu Co., Ltd. | Flame-retardant non-woven fabric and method for production thereof |
JP2006138935A (en) * | 2004-11-10 | 2006-06-01 | Takayasu Co Ltd | Heat-resistant acoustic material |
Also Published As
Publication number | Publication date |
---|---|
JPH0240779B2 (en) | 1990-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3511747A (en) | Bonded textile materials | |
EP0534863A1 (en) | Bonded composite nonwoven web and process | |
EP0814189A1 (en) | Bulky nonwoven fabric and method for producing the same | |
KR20180022820A (en) | Non-woven fabric | |
JPH0325537B2 (en) | ||
EP0591609B1 (en) | Nonwoven bonding technique | |
CN1105201C (en) | Cardable blends of dual glass fibers | |
JPH02503333A (en) | Flame-retardant and highly heat-resistant polyimide fibers and molded articles made from the fibers | |
US5336556A (en) | Heat resistant nonwoven fabric and process for producing same | |
JPS6328962A (en) | Heat resistant nonwoven fabric | |
US7381668B2 (en) | Self-extinguishing differentially entangled nonwoven fabrics | |
JPH11137930A (en) | Heat-resistant filter material | |
JP2890470B2 (en) | Paper-like material comprising polyphenylene sulfide fiber and method for producing the same | |
KR0126822B1 (en) | Heat-resistant nonwoven fabic and method of manufacturing said fabric | |
DE10108092B4 (en) | Method of making a tufting carrier | |
JPH06207357A (en) | Thin heat insulating material for clothing with improved drapeness and comfortability | |
KR100398507B1 (en) | Fiber board and method for producing it | |
JPH02259199A (en) | Flame retardant and heat resistant sheetform material and manufacture thereof | |
US5509986A (en) | Process for preparing an ignition resistant carbonaceous material comprising a melt blowing or spunbonding step, a radiation step and a carbonizing step | |
JPH11117163A (en) | Heat resistant nonwoven fabric and its production | |
JP2881604B2 (en) | Heat resistant high density felt | |
JPH0138903B2 (en) | ||
JPH03137260A (en) | Production of heat resistant nonwoven fabric | |
JPH0215654B2 (en) | ||
US20050272340A1 (en) | Filamentary blanket |