JPS63289440A - Assay of component - Google Patents

Assay of component

Info

Publication number
JPS63289440A
JPS63289440A JP62032775A JP3277587A JPS63289440A JP S63289440 A JPS63289440 A JP S63289440A JP 62032775 A JP62032775 A JP 62032775A JP 3277587 A JP3277587 A JP 3277587A JP S63289440 A JPS63289440 A JP S63289440A
Authority
JP
Japan
Prior art keywords
sample
measurement
measured
reagent
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62032775A
Other languages
Japanese (ja)
Other versions
JPH0814540B2 (en
Inventor
Tadashi Hamanaka
浜中 忠
Motoo Goto
後藤 元雄
Yutaka Miki
豊 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP62032775A priority Critical patent/JPH0814540B2/en
Publication of JPS63289440A publication Critical patent/JPS63289440A/en
Publication of JPH0814540B2 publication Critical patent/JPH0814540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To obtain a correct an highly reliable measured value, by a method wherein a first sample is added after the measurement of a blind detection value or a rate of change in blind detection of a measuring reagent and moreover, a second sample is added after a fixed time to measure a variation value or a rate of change separately. CONSTITUTION:First, a blind detection value A1 or a rate A2 of change in blind detection for a fixed time of a measuring reagent held in a container measurable by an optical or physical means are measured. Then, a first sample is added to the measuring reagent and a variation value B1 after a fixed time or a rate B 2 of change for a fixed time are measured. Moreover, a second sample is added and a variation value C1 after a fixed time and a rate C2 of change for a fixed time are measured to assay. In other words, measuring data for two samples are obtained in one container to avoid a shortcoming- difficult in the control of accuracy while maintaining advantage in a monotest method. This also allows the avoiding of effect on a measured value by an event which will accidentally take place in a discrete type automatic analyzer and of effect by a reagent or aging of a machine itself.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は溶液中の成分の測定方法に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for measuring components in a solution.

[発明の背景] 臨床検査の分野に於て、測定対象物質を化学反応又は酵
素反応により変化させその変化を光学的或は物理的手段
を用いて測定する溶液中の成分の測定方法はよく用いら
れる方法であるが、最近では、従来の測定試薬に比へ必
要な量のみの測定試薬を簡単に調製することが可能なこ
とから緊急時の検査用としてこの方法を利用したモノテ
ストタイプの試薬の使用頻度が増加する傾向にある。こ
こで言うモノテストタイプの試薬とは、測定試薬が1検
体分毎に製剤型となったものをさし、例えば測定試薬を
1測定分ずつ適当な容器に分注して、凍結乾燥しておき
、使用時に水或は専用の溶解液で溶かして測定試液を調
製し、それに検体を加えて反応させた後、例えばその呈
色或は濁度等を測定することにより溶液中の成分を測定
することのできるような試薬を言う。これらモノテスト
タイブの試薬の製剤型としては、上記の他、錠剤様のも
のや、或は所謂ドライケミストと呼ばれる、例え、ば測
定試薬を濾紙、不織布、フィルム等に含浸乾燥或は塗布
乾燥させたものなどもこの範暗に入れることができる。
[Background of the Invention] In the field of clinical testing, a method for measuring components in a solution is often used, in which a substance to be measured is changed by a chemical reaction or an enzymatic reaction, and the change is measured using optical or physical means. However, recently, monotest type reagents using this method have been developed for emergency testing because it is possible to easily prepare only the required amount of measurement reagent compared to conventional measurement reagents. The frequency of use is increasing. The monotest type reagent referred to here refers to a measurement reagent in the form of a formulation for each sample.For example, the measurement reagent is dispensed into a suitable container for each measurement, and then freeze-dried. Prepare the measurement reagent solution by dissolving it in water or a special dissolving solution before use, add the sample to it, react it, and then measure the components in the solution by measuring its coloration or turbidity, etc. A reagent that can be used to In addition to the above-mentioned formulations, these monotest type reagents may be tablet-like, or so-called dry chemist formulations, such as filter paper, nonwoven fabric, film, etc., in which the measurement reagent is impregnated and dried, or coated and dried. Things like this can also be included in this category.

しかしながら、モノテストタイプの試薬(以下、モノ試
薬と略称する。)を用いた測定法(以下、モノテスト法
と略称する。)には、精度管理面に於ヤては、重大な欠
点があった。即ち、現在のモノテスト法に於て、1検体
の測定を行う場合少なくとも3本のモノ試薬(各々、試
薬盲検用、検体測定用、標準測定用として使用する。)
が必要であるため、各々のモノ試薬の試薬盲検、測定時
の呈色感度等のバラツキは、必然的に誤差範囲内でなけ
れはならない訳であるが、現実的には液量のバラツキ、
保存状態の差異等により、誤差範囲内にあるとは言い難
く、また、それを確認する為には、実際にその試薬を使
用してみる以外にはなく、測定が正確に行われているか
どうかを確認することは、事実上不可能であった。
However, the measurement method (hereinafter referred to as the Monotest method) using a Monotest type reagent (hereinafter referred to as the Monoreagent) has serious drawbacks in terms of quality control. Ta. That is, in the current monotest method, when measuring one sample, at least three monoreagents (each used for reagent blind testing, sample measurement, and standard measurement) are required.
Therefore, variations in reagent blind testing of each monoreagent, color sensitivity during measurement, etc. must necessarily be within the error range, but in reality, variations in liquid volume,
Due to differences in storage conditions, etc., it is difficult to say that it is within the error range, and the only way to confirm this is to actually use the reagent, and whether or not the measurement is being performed accurately. It was virtually impossible to confirm.

また、測定対象物質を化学反応又は酵素反応により変化
させその変化を光学的或は物理的手段を用いて測定する
溶液中の成分の測定方法は現在自動分析機、特にディス
クリート方式と呼ばれる測定方法、即ち、1検体毎に特
定の測定セル中で測定試薬と反応させ、その変化を測定
する方法を用いた多検体処理の可能な自動分析機に応用
され利用されているが、この装置に於やでも、例えば突
発的に起こる測定試薬の分注誤差、光学系の突然(の異
常、個々のセルでの汚れ、傷或は歪みの差による測定状
況の変化等による測定値への影響を回避しているとは言
い難く、また、測定試薬自体の経時的変化により反応時
の呈色感度が変化したり、機械の測定系の経時的変動に
よる影響もある場合もあって、長時間にわたって測定を
継続する場合には、正確な測定値が得られているかどう
かを確認するためには一定時間毎に標準或は濃度既知の
検体の測定を再度やり直す必要がある等の問題点があっ
た。
In addition, currently methods for measuring components in solutions in which the substance to be measured is changed by a chemical reaction or an enzymatic reaction and the change is measured using optical or physical means are currently being carried out using automatic analyzers, especially a measuring method called the discrete method. In other words, it is applied to an automatic analyzer capable of processing multiple samples using a method in which each sample is reacted with a measurement reagent in a specific measurement cell and the change is measured. However, for example, it is possible to avoid the influence on measured values due to sudden dispensing errors of measurement reagents, sudden abnormalities in the optical system, dirt in individual cells, changes in measurement conditions due to scratches or differences in distortion, etc. Moreover, the color sensitivity during the reaction may change due to changes in the measurement reagent itself over time, and there may also be effects due to changes over time in the measuring system of the machine, so it is difficult to carry out measurements over a long period of time. If the method is continued, there are problems such as the need to repeat the measurement of the standard or a sample of known concentration at regular intervals in order to confirm whether accurate measurement values are being obtained.

[発明の目的コ 本発明は、上記した如き状況に鑑み、モノテスト法での
利点を保持したまま、精度管理が難しいという欠点を回
避し、また、ディスクリート方式の自動分析機に於て突
発的に起こる事態による測定値への影響及び試薬或は機
械自体の経時的変動による影響を回避し正確で且つ信頼
性の高い測定値が得られる方法を提供することを目的と
する。
[Purpose of the Invention] In view of the above-mentioned circumstances, the present invention avoids the disadvantage of difficulty in accuracy control while retaining the advantages of the mono test method, and also provides a method for handling unexpected problems in discrete automatic analyzers. It is an object of the present invention to provide a method that can obtain accurate and reliable measured values by avoiding the influence of events that occur on measured values and the influence of changes in reagents or the machine itself over time.

[発明の構成コ 上記目的を達成するため、本発明は次の構成からなる。[Components of the invention In order to achieve the above object, the present invention consists of the following configuration.

「成分の測定に於て、 (a)初めに、測定試薬の盲検値A1若しくは一定時間
に於ける盲検変化率A2を測定し、(b)次に、該測定
試薬に第1試料を添加し、一定時間後の変動値B、若し
くは一定時間に於ける変化率B2を測定し、 (c)更にこれに第2試料を添加し、一定時間後の変動
値C2、若しくは一定時間に於ける変化率C2を測定す
ることにより定量することを特徴とする成分の定量方法
。」 即ち、本発明者らは、成分の測定に於て、光学的或は物
理的手段によって測定可能な容器中に保  持された測
定試薬の盲検値A、若しくは′−一定時間於ける盲検変
化率A2を初めに測定し、次に、該測定試薬に第1試料
を添加し、一定時間後の変動値B1若しくは一定時間に
於ける変化率B2を測定し、更にこれに第2試料を添加
し、一定時間後の変動値CI、若しくは一定時間に於け
る変化率C2を測定することにより、即ち、l容器内に
於―で2検体分の測定データを得ることにより、モノテ
スト法での利点を保持した走ま、精度管理が難しいとい
う欠点を回避し、また、ディスクリ−F方式の自動分析
機に於いて突発的に起こる事態による測定値への影響及
び試薬或は機械自体の経時的変動による影響を回避し正
確で且つ信頼性の高い測定値が得られることを見出し本
発明を完成するに到った。
"In the measurement of components, (a) first measure the blinded value A1 of the measurement reagent or the blinded rate of change A2 over a certain period of time; (b) then add the first sample to the measurement reagent. (c) Add a second sample to this and measure the fluctuation value C2 after a certain period of time or the rate of change B2 in a certain period of time. A method for quantifying a component, characterized by quantifying it by measuring the rate of change C2 of the component. The blinded value A or '-blind rate of change A2 over a certain period of time is first measured, and then the first sample is added to the measurement reagent, and the change after a certain period of time is measured. By measuring the value B1 or the rate of change B2 over a certain period of time, further adding a second sample to this, and measuring the fluctuation value CI after a certain period of time or the rate of change C2 over a certain period of time, that is, By obtaining measurement data for two samples in one container, it retains the advantages of the monotest method, avoids the disadvantage of difficult accuracy control, and allows automatic analysis of the discrete F method. The present invention was accomplished by discovering that it is possible to obtain accurate and reliable measured values by avoiding the effects of unexpected events on the measured values in the machine and the effects of changes in reagents or the machine itself over time. reached.

本発明に於て、溶液中での反応により測定を行う場合で
あって測定対象成分濃度既知(その濃度をSlとする。
In the present invention, the measurement is performed by reaction in a solution, and the concentration of the component to be measured is known (the concentration is defined as Sl).

)の第1試料を標準として利用して第2試料中の測定対
象成分濃度s2の測定を行う場合には、S2は式−1又
は2によって得られる。
) is used as a standard to measure the concentration s2 of the component to be measured in the second sample, S2 is obtained by equation-1 or 2.

式−1, 1試料の採取量(1)を、■3は第2試料の採取量(1
)を示し、AH,A2+ BI+ B2+ C1t C
2+ Si。
Equation-1, the amount of sample collected (1), and ■3 is the amount of sample collected (1) of the second sample.
), AH, A2+ BI+ B2+ C1t C
2+ Si.

S2は前記に同じ。] また、ドライケミストリ或は、 1 >Vl:(V++V2+V3) > 0 、95の
条件で実施する場合には液量による誤差をほぼ無視し得
るので、これらの場合には近似式として式−1又は2の
代りに式−3又は4によってS2を得ることができる。
S2 is the same as above. ] In addition, when performing dry chemistry or under the conditions of 1 > Vl: (V++ V2 + V3) > 0, 95, errors due to liquid volume can be almost ignored, so in these cases, formula-1 or formula-1 can be used as an approximate formula. S2 can be obtained by Equation-3 or 4 instead of 2.

式−3、 と比へて無視し得るほど小さい場合には、更に式−3又
は4からA1又はA2を省略することもできる。
If A1 or A2 is negligibly small compared to Equation-3 or Equation-3, A1 or A2 can be further omitted from Equation-3 or Equation-4.

一方、測定対象成分濃度既知の試料が第2試料(その濃
度をS2とする。)である場合には式−1,2,3,4
の代りに次に示す式−1’ 、2’ 。
On the other hand, when the sample whose concentration of the component to be measured is known is the second sample (its concentration is S2), formulas -1, 2, 3, 4
In place of , the following formulas-1' and 2' are used.

3’ 、4’を用いることにより同様に第1試料中の測
定対象成分濃度S1を求めることが可能である。
By using 3' and 4', it is possible to similarly determine the concentration S1 of the component to be measured in the first sample.

式−3′、 式−4′、 利な点は、第1試料と第2試料の採取量さえ一定にして
おけば(例えば同じピペットで採取するのであれば、そ
のピペット1体の採取量が表示されている値と異なって
いても特に問題はない。入測定試薬の液量が多少変動し
ても測定上特に問題のないことは、前述したことからも
明らかである。゛本発明に於て用いられる試料としては
液状のものであればとくに限定されないが、臨床検査の
分野であれば例えば血液、血清、血漿、尿、髄液等の生
体体液が挙げられる。これら試料中の測定対象成分とし
ては、例えばグルコース、コレステロール、遊離脂肪酸
、トリグリセライド、胆汁酸、尿酸などの基質や、乳酸
脱水素酵素、α−ヒドロキシ酪酸脱水素酵素、コリンエ
ステラーゼ、モノアミンオキシダーゼ、アミラーゼ、ア
ルカリホスファターゼ、トランスアミナーゼ、ロイシン
アミノペプチダーゼ、γ−グルタミルトランスペプチダ
ーゼなどの酵素類等が挙げられるが、これらに限定され
るものでないことは言うまでもない。また、測定対象成
分濃度既知の試料としては、通常市販されている標準液
或は管理血清等を用いれば、簡便であるが、これらに基
づいて濃度検定を行った上記した如き試料を代りに用い
ても特に問題はない。
The advantage of Equation 3' and Equation 4' is that as long as the amounts of the first and second samples are kept constant (for example, if they are collected with the same pipette, the amount of each pipette collected is the same). There is no particular problem even if the value differs from the displayed value.It is clear from the above that there is no particular problem in the measurement even if the liquid volume of the input measurement reagent varies slightly. Samples to be used are not particularly limited as long as they are liquid, but in the field of clinical testing, examples include biological fluids such as blood, serum, plasma, urine, and spinal fluid. Examples include substrates such as glucose, cholesterol, free fatty acids, triglycerides, bile acids, and uric acid, as well as lactate dehydrogenase, α-hydroxybutyrate dehydrogenase, cholinesterase, monoamine oxidase, amylase, alkaline phosphatase, transaminase, and leucine aminopeptidase. Examples include enzymes such as γ-glutamyl transpeptidase, but needless to say, they are not limited to these.In addition, as samples with known concentrations of the components to be measured, commercially available standard solutions or controlled Although it is convenient to use serum or the like, there is no particular problem in using the above-mentioned samples whose concentration has been assayed based on the serum.

本発明で用いられる、光学的或は電気的測定手段として
は、例えば電位、電導度、吸光度、濁度、反射光量、蛍
光、化学的又は生物学的発光等の測定が挙げられるが特
に限定されるものではない。
Examples of optical or electrical measuring means used in the present invention include, but are not particularly limited to, measuring electric potential, conductivity, absorbance, turbidity, amount of reflected light, fluorescence, chemical or biological luminescence, etc. It's not something you can do.

本発明で用いられる測定試薬としては、上記した如き試
料中に含有される測定対象成分と反応し上述した如き光
学的或は電気的変化を生じるものであれば特に限定され
るものではないが、例えば臨床検査の分野で通常使用で
きる測定試薬であれば溶液タイプのものであってもドラ
イケミストリ用のものであってもよい。
The measurement reagent used in the present invention is not particularly limited as long as it reacts with the component to be measured contained in the sample as described above and causes the optical or electrical change as described above. For example, as long as it is a measurement reagent commonly used in the field of clinical testing, it may be of a solution type or one for dry chemistry.

本発明は、コンピュータなどて制御される測定機器に応
用した場合には、特に有利であり、本発明を実施するた
めの専用機器として製作しても良いし、従来からある臨
床検査用の自動分析機等に本発明を実施出来るようなプ
ログラムソフトを追加して実施しても良い。
The present invention is particularly advantageous when applied to measuring instruments controlled by computers, etc., and may be manufactured as a specialized instrument for carrying out the present invention, or may be used for conventional automatic analysis for clinical tests. The present invention may be implemented by adding program software to a machine or the like to implement the present invention.

また、ディスクリート方式を用いた自動分析機に於て、
本発明を1バツチ毎の精度管理用として応用することも
可能である。即ち、例えば吸光度を測定することによっ
て成分の測定を行う際に、標準の吸光度はあらかじめ別
に測定したのち標準中の測定対象成分濃度値で除して特
定の標準係数として記憶させておけば、本発明の方法に
従ってlバッチ毎に測定して得られる値のうち、測定対
象成分濃度未知の試料から得られる吸光度に標準係数を
乗するだけて測定対象成分濃度値を得ることができるの
で、この場合には測定対象成分濃度既知の試料から得ら
れる吸光度は一定の範囲の値が得られているかどうかの
チェックに用いることができる。即ち、突発的に起こる
測定試薬の分注誤差、光学系の突然の異常、個々のセル
での汚れ、傷或は歪み等の差による測定状況の変化等に
よる測定値への影響、測定試薬自体の経時的変化による
反応時の呈色感度の変化による影響或は機械の測定系の
経時的変動による影響等をこれによって回避することが
できる訳である。
In addition, in automatic analyzers using the discrete method,
It is also possible to apply the present invention to quality control for each batch. In other words, when measuring a component by measuring absorbance, for example, the absorbance of the standard can be measured separately in advance, divided by the concentration of the component to be measured in the standard, and stored as a specific standard coefficient. Among the values obtained by measuring each batch according to the method of the invention, the concentration value of the component to be measured can be obtained by simply multiplying the absorbance obtained from the sample whose concentration of the component to be measured is unknown by the standard coefficient. In this case, the absorbance obtained from a sample with a known concentration of the component to be measured can be used to check whether a value within a certain range is obtained. In other words, sudden dispensing errors in the measurement reagent, sudden abnormalities in the optical system, changes in measurement conditions due to differences in dirt, scratches, or distortion in individual cells, and the influence on measurement values, as well as the measurement reagent itself. This makes it possible to avoid the effects of changes in color sensitivity during reaction due to changes over time, or changes over time in the measuring system of the machine.

また、例えば吸光度を測定することによって成分の測定
を行う際に、標準の吸光度はあらかじめ測定したのち標
準中の測定目的成分濃度値で除して特定の標準係数とし
て記憶させておき、第1試料と第2試料を同じものとし
て、本発明の方法によって得られる2つの吸光度データ
に標準係数を乗ずれば、従来法では1つの試料について
1回分の測定しか行えなかった測定試薬量で2回分の測
定を行え、測定値により信頼性が高まるという利点もあ
る。
For example, when measuring a component by measuring absorbance, the absorbance of the standard is measured in advance and then divided by the concentration value of the component to be measured in the standard and stored as a specific standard coefficient. If the two absorbance data obtained by the method of the present invention are multiplied by the standard coefficient, assuming that the and the second sample are the same, it is possible to perform two measurements with the amount of reagent that could be used for one measurement on one sample using the conventional method. Another advantage is that measurements can be taken and the reliability of the measured values is increased.

以下に実施例を挙げて本発明を更に詳細に説明するが、
本発明はこれらにより回答限定されるものではない。
The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to these examples.

[実施例] 実施例1.血清中のグルコースの測定 (測定試薬) グルコースオキシダーゼ       70単位ペルオ
キシダーゼ         3000単位ムタロター
ゼ            6単位4−アミノアンチピ
リン′l0I118フェノール           
 50mgリンWリンカリウム         0.
54gリン酸2カリウム         2.76g
上記物質を精製水に溶解してpHを7.4に調整し、全
量を1001として測定試薬とした。
[Example] Example 1. Measurement of glucose in serum (measuring reagent) Glucose oxidase 70 units Peroxidase 3000 units Mutarotase 6 units 4-aminoantipyrine'10I118 phenol
50mg phosphorus W phosphorus potassium 0.
54g dipotassium phosphate 2.76g
The above substance was dissolved in purified water, the pH was adjusted to 7.4, and the total amount was adjusted to 1001 to prepare a measurement reagent.

(試料) 第1試料としてグルコース濃度100mg/dlの水溶
液を、第2試料として人血清10検体を使用した。
(Sample) An aqueous solution with a glucose concentration of 100 mg/dl was used as the first sample, and 10 human serum samples were used as the second sample.

(操作法) 分光光度計の測定用セル(層長:l(1mm、巾;lO
+nw+。
(Operation method) Measurement cell of spectrophotometer (layer length: l (1 mm, width: lO
+nw+.

高さ;42++u++)に測定試薬を正確に31採取し
、37℃て2〜3分間加温した後、波長505nw+に
於ける吸光度A1を測定した。次いで第1試料を正確に
0.021加えよく混合したのち、37℃で5公園反応
させ、波長505t++++に於ける吸光度B1を測定
した。
At a height of 42++u++), exactly 31 samples of the measurement reagent were sampled, and after heating at 37°C for 2 to 3 minutes, the absorbance A1 at a wavelength of 505nw+ was measured. Next, exactly 0.021 of the first sample was added and mixed well, followed by a 5-park reaction at 37°C, and the absorbance B1 at a wavelength of 505t++++ was measured.

更に、第2試料を正確に0.02m1加えよく混合した
のち、37℃で5分間反応させ、波長505n―に於け
る吸光度C1を測定した。
Furthermore, after adding exactly 0.02 ml of the second sample and mixing well, the mixture was allowed to react at 37° C. for 5 minutes, and the absorbance C1 at a wavelength of 505 nm was measured.

(グルコース濃度の計算) ・計算方法−1 前記、式−1にv、=3.o、 V2=V3”0.02
. s、=looを代入し、上記操作法で得られたA 
、+ B 1及びC1を代入して第2試料中のグルコー
ス濃度S2を得た。
(Calculation of glucose concentration) - Calculation method-1 In the above equation-1, v, = 3. o, V2=V3”0.02
.. Substituting s, = loo, A obtained by the above operation method
, + B 1 and C1 to obtain the glucose concentration S2 in the second sample.

・計算方法−2 前記、式−3にS、=100を代入し、上記操作法で得
られたAI、B1及びC1を代入して第2試料中のグル
コース濃度S2を得た。
-Calculation method-2 The glucose concentration S2 in the second sample was obtained by substituting S = 100 into Equation-3 and substituting AI, B1, and C1 obtained by the above operation method.

実施例2゜ 測定試薬の採取量を約31とし採取量検定を行っていな
いピペッ)1本で試料の採取を行った以外は実施例1と
同様の測定試薬、試料を使用し、同様の操作法によりA
I、 Bit c、を求め、同様の計算方法−2により
第2試料中のグルコース濃度S2を得た。
Example 2 The same measurement reagent and sample as in Example 1 were used, and the same operations were carried out, except that the sample was collected using a single pipette (the amount of measurement reagent collected was approximately 31, and the sample was not verified). A by law
I, Bit c, was determined, and the glucose concentration S2 in the second sample was obtained using the same calculation method-2.

比較例1.従来法による血清中のグルコースの測定 (測定試薬及び試料) 実施例1と同じものを使用した。Comparative example 1. Measurement of glucose in serum using conventional methods (Measurement reagents and samples) The same material as in Example 1 was used.

(操作法) 試料を正確に0.02m1試験管に採取し、更に測定試
薬を正確に31加え、37℃で5分間反応させ、波長5
05rvに於ける吸光度(第1試料により得られる吸光
度をE’ S l dとし、第2試料により得られる吸
光度をEsとした。)を測定した。試料の代りに精製水
を用いて同様の操作を行いFBIを得た。
(Procedure) Accurately collect a sample into a 0.02ml test tube, add exactly 31ml of measurement reagent, react at 37°C for 5 minutes,
The absorbance at 0.05 rv (the absorbance obtained by the first sample was designated as E' S ld, and the absorbance obtained by the second sample was designated as Es) was measured. FBI was obtained by performing the same operation using purified water instead of the sample.

(グルコース濃度の計算) 次式によりグルコース濃度(■g/d+)を求めた。(Calculation of glucose concentration) Glucose concentration (g/d+) was determined using the following formula.

グルコース濃度=(Es−Eat)÷(Estd−EB
I)X100実施例1.2及び比較例1により得られた
人血清試料中のグルコース濃度を併せて表−1に示す。
Glucose concentration = (Es-Eat) ÷ (Estd-EB
I) Glucose concentrations in the human serum samples obtained in X100 Example 1.2 and Comparative Example 1 are shown in Table 1.

表−1 表−1の結果から明らかな如く、本発明の方法により得
られた値と従来法のそれとの間には有意差は認められな
かった。
Table 1 As is clear from the results in Table 1, no significant difference was observed between the values obtained by the method of the present invention and those obtained by the conventional method.

実施例3.血清中の乳酸脱水素酵素活性の測定(測定試
薬) リン酸2カリウム        770II1gリン
酸lカリウム        122糟gピルビン酸リ
チウム       6.7mgニコチンアミドアデニ
ンジヌクレオチド(還元型)            
    14mg上記物質を精製水に溶解してpoを7
.6に調整し、全量を1001として測定試薬とした。
Example 3. Measurement of lactate dehydrogenase activity in serum (measurement reagent) Dipotassium phosphate 770II 1g Potassium phosphate 122g Lithium pyruvate 6.7mg Nicotinamide adenine dinucleotide (reduced form)
Dissolve 14mg of the above substance in purified water and make po 7
.. 6, and the total amount was set to 1001, which was used as a measurement reagent.

(試料) 第1試料として乳酸脱水素酵素(以下、LDHと略称す
る。)活性既知の人血清く活性値; 300Ll)を、
第2試料として人血清lO検体を使用した。
(Sample) As the first sample, a human serum with known activity of lactate dehydrogenase (hereinafter abbreviated as LDH) (activity value: 300 Ll) was prepared.
A human serum 10 sample was used as the second sample.

(操作法) 分光光度計の測定用セル(層長:10mw++巾;lO
am。
(Operation method) Measurement cell of spectrophotometer (layer length: 10 mw++ width; lO
am.

高さ;42mm)に測定試薬を正確に21採取し、35
℃で2〜3分間加温した後、波長340nmに於ける1
分間当りの吸光度の変化率A2を測定した。次いで第1
試料を正確に0.05w+1加えよく混合し、35℃で
加温しながら、波長340nmに於ける1分間当りの吸
光度の変化率B2を測定した。更に第2試料を正確に0
.05m1加えよく混合し、35℃で加温しながら、波
長340nwlに於ける1分間当りの吸光度の変化率C
2を測定した。
Accurately collect 21 samples of the measurement reagent at a height of 42 mm, and
1 at a wavelength of 340 nm after heating at ℃ for 2 to 3 minutes.
The rate of change A2 in absorbance per minute was measured. Then the first
Add exactly 0.05w+1 of the sample and mix well, and while heating at 35° C., the rate of change in absorbance B2 per minute at a wavelength of 340 nm was measured. Furthermore, set the second sample to exactly 0.
.. Add 05ml and mix well, and while heating at 35℃, change rate of absorbance per minute at wavelength 340nwl C
2 was measured.

(LDH活性の計算) 前記、式−2ニV’=2.0. V2=V3=0.05
.5I=300ヲ代入し、上記操作法で得られたA2.
B2及びC2を代入して第2試料中のLDH活性S2を
得た。
(Calculation of LDH activity) The above formula-2 V'=2.0. V2=V3=0.05
.. Substituting 5I=300, A2. obtained by the above operation method.
By substituting B2 and C2, LDH activity S2 in the second sample was obtained.

実施例4.LDH活性の測定 実施例3で使用した試薬のpHを7.5とした(pHの
変動により通常測定感度も変動する。)以外は実施例3
と同様の測定試薬、試料を使用し、同様の操作法により
A2+ 82.C2を求め、同様の計算方法により第2
試料中のLDH活性S2を得た。
Example 4. Measurement of LDH activity Example 3 except that the pH of the reagent used in Example 3 was 7.5 (measurement sensitivity usually changes due to pH fluctuations).
A2+ 82. was measured using the same measurement reagents and samples and the same procedure. Find C2 and use the same calculation method to calculate the second
LDH activity S2 in the sample was obtained.

比較例2.従来法によるLDH活性の測定測定試薬とし
て市販のL D H−UV Te5t wak。
Comparative example 2. LDH-UV Te5twak is commercially available as a reagent for measuring LDH activity using a conventional method.

(和光純薬工業株式会社製)を用いて現品説明書に記載
の標準操作法に従って実施例3と同様の試料中のLDH
活性を求めた。
(manufactured by Wako Pure Chemical Industries, Ltd.) in the same sample as in Example 3 according to the standard operating method described in the product manual.
Activity was determined.

実施例3,4及び比較例2で得られた人血清試料中のL
DH活性値を表−2に併せて示す。
L in human serum samples obtained in Examples 3 and 4 and Comparative Example 2
The DH activity values are also shown in Table-2.

5 表−2 表−2の結果から明らかな如く、本発明の方法を利用す
れば、測定試薬に何等かのトラブルがあった場合でも、
目的成分の測定値には、はとんど影響が無いことがわか
る。
5 Table 2 As is clear from the results in Table 2, if the method of the present invention is used, even if there is some kind of trouble with the measurement reagent,
It can be seen that there is almost no effect on the measured value of the target component.

実施例5.血清中の総コレステロールの測定(測定試薬
) コレステロールエステラーゼ    200単位コレス
テロールオキシダーゼ     40単位ペルオキシダ
ーゼ         600単位アスコルビン酸オキ
シダーゼ    500単位ドアミノアンチピリン  
      4mg3.5−ジメトキシ−N−エチル−
N−(2−ヒドロキシ−3−スルホプロピル)アニリン
′・ナトリウム塩30I118ト リ ト ンX −1
00100mg2−’(N−モルホリノ)エタンスルホ
ン酸 ’t 、 t g水酸化ナトリウム      
   0.15g上記物質を精製水に溶解してp■を6
.1に調整し、全量を1001として測定試薬とした。
Example 5. Measurement of total cholesterol in serum (measurement reagent) Cholesterol esterase 200 units Cholesterol oxidase 40 units Peroxidase 600 units Ascorbate oxidase 500 units Doaminoantipyrine
4mg3.5-dimethoxy-N-ethyl-
N-(2-hydroxy-3-sulfopropyl)aniline' sodium salt 30I118 Triton X-1
00100mg2-'(N-morpholino)ethanesulfonic acid't,tgSodium hydroxide
Dissolve 0.15g of the above substance in purified water and reduce p■ to 6
.. 1, and the total amount was set to 1001, which was used as a measurement reagent.

(試料) 第1試料として、コレステロール100朔gをイソプロ
パツールl0m1に溶解し、これに20χトリトンX−
100水溶液を加え全4110(1mlとしたものを用
い、第2試料として人血清lO検体を使用した。  ・
(操作法) 分光光度計の測定用セル(層長:10mm、巾;10m
m。
(Sample) As the first sample, 100 g of cholesterol was dissolved in 10 ml of isopropanol, and 20 χ Triton
100 aqueous solution was added to make the total 4110 (1 ml), and a human serum 10 sample was used as the second sample.・
(Operation method) Measurement cell of spectrophotometer (layer length: 10 mm, width: 10 m
m.

高さ;42+nw+)に測定試薬を正確に31採取し、
37℃で2〜3分間加温した後、波長600ruwに於
ける吸光度A1を測定した。次いで第1試料を正確に0
゜021加えよく混合し、37℃で5分間反応させた後
、波長600nn+に於ける吸光度B1を測定した。更
に、第2試料を正確に0.02+wl加えよく混合し、
37℃で5分間反応させた後、波長600r++sに於
ける吸光度C1を測定した。
Accurately collect 31 samples of measurement reagent at height; 42+nw+),
After heating at 37° C. for 2 to 3 minutes, absorbance A1 at a wavelength of 600 RUW was measured. Then the first sample is set to exactly 0
021 was added, mixed well, and reacted at 37° C. for 5 minutes, and then the absorbance B1 at a wavelength of 600 nn+ was measured. Furthermore, add exactly 0.02+wl of the second sample and mix well.
After reacting at 37°C for 5 minutes, the absorbance C1 at a wavelength of 600r++s was measured.

(総コレステロール濃度の計算) 前記式−3にS、=100を代入し、上記操作法で得ら
れたA1.’B、及びC1を代入して第2試料中の総コ
レステロール濃度S2を得た。
(Calculation of total cholesterol concentration) Substituting S = 100 into the above formula-3, A1. obtained by the above operation method. 'B, and C1 were substituted to obtain the total cholesterol concentration S2 in the second sample.

比較例3.従来法による血清中の総コレステロールの測
定 (測定試薬及び試料) 実施例5と同じものを使用した。
Comparative example 3. Measurement of total cholesterol in serum by conventional method (measurement reagent and sample) The same ones as in Example 5 were used.

(操作法) 試料を正確に0.02w+1試験管に採取し、更に測定
試薬を正確に31加え、37℃で5分閏反応させ、波長
600n密に於ける吸光度(第1試料により得られる吸
光度をE Sldとし、第2試料により得られる吸光度
をESとした。)を測定した。試料の代りに精製水を用
いて同様の操作を行いFBIを得た。
(Procedure) Collect a sample into a 0.02w+1 test tube, add exactly 31ml of measurement reagent, react at 37°C for 5 minutes, and measure the absorbance at a wavelength of 600n (absorbance obtained with the first sample). was defined as E Sld, and the absorbance obtained by the second sample was defined as ES.) was measured. FBI was obtained by performing the same operation using purified water instead of the sample.

(総コレステロール濃度の計算) 次式により紐コレステロール濃度(w+g/d I )
を求料中の総コレステロール濃度を併せて表−3に示す
(Calculation of total cholesterol concentration) String cholesterol concentration (w+g/d I ) using the following formula:
The total cholesterol concentration in the sample is also shown in Table 3.

表−3 表−3の結果から明らかな如く、本発明の方法により得
られた値と従来法のそれとの間には有意差は認められな
かった。
Table 3 As is clear from the results in Table 3, no significant difference was observed between the values obtained by the method of the present invention and those obtained by the conventional method.

[発明の効果] 本発明は以下に述べる如き点で顕著な効果を奏するもの
であり、斯業に貢献するところ甚だ大なるものである。
[Effects of the Invention] The present invention has remarkable effects as described below, and greatly contributes to this industry.

(1)本発明の測定法に於ては、測定試薬の採取量が変
動しても、目的成分の測定値にはに全く或は殆ど影響を
与えない。
(1) In the measurement method of the present invention, even if the amount of sampled reagent varies, it has no or little effect on the measured value of the target component.

(2)本発明の測定法に於ては、測定試薬の測定時の感
度が変動しても測定値に全く或は殆ど影響を与えない。
(2) In the measurement method of the present invention, even if the sensitivity of the measurement reagent during measurement changes, it has no or little effect on the measured value.

(3)本発明の測定法に於ては、測定試薬の試薬盲検が
変動しても測定値に全く或は殆ど影響を与えない。
(3) In the measurement method of the present invention, even if the reagent blindness of the measurement reagent changes, the measurement value is not affected at all or hardly.

(4)本発明の測定法に於ては、多数検体を連続的に測
定中に、測定試薬量が突発的に変動したり、測定試薬自
体或は機械の測定系の経時的変動があった場合でも、測
定対象成分濃度の測定値に全く或は殆ど影響を与えず、
しかも変動の程度を検知することが可能である。
(4) In the measurement method of the present invention, during continuous measurement of a large number of samples, the amount of the measurement reagent suddenly fluctuates, or the measurement reagent itself or the measurement system of the machine changes over time. Even in cases where there is no effect on the measured concentration of the target component,
Furthermore, it is possible to detect the degree of variation.

(5)本発明の測定法に於ては、測定対象成分濃度既知
の試料により得られる測定感度を監視することにより、
検体毎の装置の作動状況或は測定試薬の異常を監視する
ことが可能である。
(5) In the measurement method of the present invention, by monitoring the measurement sensitivity obtained with a sample whose concentration of the component to be measured is known,
It is possible to monitor the operating status of the device or abnormalities in the measurement reagent for each sample.

(6)従来の測定方法では、最低3本の容器(各々、試
薬盲検用、検体測定用、標準測定用として使用する。)
とそれに必要な3測定分の試薬を必要としたが、本発明
の方法によれば、それを1つの容器とl測定分の試薬で
行うことができるので、経済的である。
(6) In the conventional measurement method, at least three containers are used (each used for reagent blind testing, sample measurement, and standard measurement).
However, according to the method of the present invention, this can be carried out using one container and reagents for one measurement, which is economical.

特許出願人 和光純薬工業株式会社 手続補正書 1.事件の表示 昭和62年 特許癲 第032775号2、発明の名称 成分の定量方法 3、補正をする者 事件との関係 特許出願人 〒 541 住 所 大阪府大阪市東区道修町3丁目lO番地連絡先
 特許課(東京)置03−270−8571名 称 和
光純薬工業株式会社 5、補正の対象 明細書の発明の詳細な説明の欄。
Patent Applicant Wako Pure Chemical Industries, Ltd. Procedural Amendment 1. Indication of the case 1988 Patent No. 032775 2, Method for quantifying name components of the invention 3, Person making the amendment Relationship with the case Patent applicant 541 Address 3-10 Doshomachi, Higashi-ku, Osaka-shi, Osaka Contact information Patent Division (Tokyo) 03-270-8571 Name Wako Pure Chemical Industries, Ltd. 5 Column for detailed description of the invention in the specification to be amended.

6、補正の内容 (1)明細書9頁14行目に記載の「明らかである。」
の後に改行して以下の文章を挿入する。
6. Contents of the amendment (1) "It is obvious" written on page 9, line 14 of the specification.
After that, insert a new line and insert the following text.

「尚、指定試薬の盲検値A1、若しくは一定時間に於け
る変化率Aλか無視出来る程小さい場合、或は既知であ
る場合には、A1若しくはAiの測定を省略することか
出来ることは言うまでもない。」以上 り
``It goes without saying that if the blind value A1 of the designated reagent or the rate of change Aλ over a certain period of time is negligibly small, or if it is known, the measurement of A1 or Ai can be omitted. That's it.''

Claims (3)

【特許請求の範囲】[Claims] (1)成分の測定に於て、 (a)初めに、測定試薬の盲検値A_1若しくは一定時
間に於ける盲検変化率A_2を測定し、 (b)次に、該測定試薬に第1試料を添加し、一定時間
後の変動値B_1若しくは一定時間に於ける変化率B_
2を測定し、 (c)更にこれに第2試料を添加し、一定時間後の変動
値C_1若しくは一定時間に於ける変化率C_2を測定
することにより定量することを特徴とする成分の定量方
法。
(1) In the measurement of components, (a) First, the blinded value A_1 or the blinded rate of change A_2 over a certain period of time of the measuring reagent is measured, (b) Next, the first After adding the sample, change value B_1 after a certain period of time or rate of change B_ in a certain period of time
(c) further adding a second sample to this, and quantifying by measuring the fluctuation value C_1 after a certain period of time or the rate of change C_2 in a certain period of time. .
(2)測定試薬がモノテストタイプの試薬から供される
ものである、特許請求の範囲第1項に記載の定量方法。
(2) The quantitative method according to claim 1, wherein the measurement reagent is provided from a monotest type reagent.
(3)測定手段が、光学的或は電気的手段によるもので
ある、特許請求の範囲第1項に記載の定量方法。
(3) The quantitative method according to claim 1, wherein the measuring means is optical or electrical means.
JP62032775A 1987-02-16 1987-02-16 Method of quantifying components Expired - Lifetime JPH0814540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032775A JPH0814540B2 (en) 1987-02-16 1987-02-16 Method of quantifying components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032775A JPH0814540B2 (en) 1987-02-16 1987-02-16 Method of quantifying components

Publications (2)

Publication Number Publication Date
JPS63289440A true JPS63289440A (en) 1988-11-25
JPH0814540B2 JPH0814540B2 (en) 1996-02-14

Family

ID=12368214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032775A Expired - Lifetime JPH0814540B2 (en) 1987-02-16 1987-02-16 Method of quantifying components

Country Status (1)

Country Link
JP (1) JPH0814540B2 (en)

Also Published As

Publication number Publication date
JPH0814540B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US5516700A (en) Automated urinalysis method
US20040219624A1 (en) Methods and devices for use in analyte concentration determination assays
US6121050A (en) Analyte detection systems
Tipton Principles of enzyme assay and kinetic studies
Noma et al. Polarographic method for rapid microdetermination of cholesterol with cholesterol esterase and cholesterol oxidase.
US8883439B2 (en) Blood component measurement method utilizing hemolyzed whole blood, and kit for the method
Orsonneau et al. Simple and sensitive determination of urea in serum and urine
CS231174B2 (en) Method of elimininating of disturbung effect of askorbic acid in tested system in proving oxidative-reducing reaction and diagnostic means to perform the method
CS244665B2 (en) Method of enzymatic determination of enzyme substrates
FI57782C (en) REFERENCES FOR ENZYMATIC KINCENTRATIONSBESTAEMNING HOS ETT SUBSTRAT
Idahl et al. Measurements of serum glucose using the luciferin/luciferase system and a liquid scintillation spectrometer
US5055388A (en) Process and reagent composition for determination of fructosamine in body fluids
US5759860A (en) Automated analysis method for detecting bacterial nitrite in urine
US4803158A (en) Composition used for the determination of beta-hydroxybutyric acid and a method for preparing the said composition
Rehak et al. Calorimetric enzymic measurement of uric acid in serum.
JPH11230934A (en) Sample discriminating method
US5776780A (en) Method for quantitatively measuring white blood cells esterase activity in urine
JPS63289440A (en) Assay of component
Sung-Ping et al. Fluorometric enzymatic determination of serum creatinine on the surface of silicone-rubber pads
EP0420893B1 (en) Reducible indicators containing pyrogallol and use thereof
JPS60210998A (en) Test composition, test kit and method for enzymatical measurement of inorganic phosphate
James et al. Reflotron assays of alanine aminotransferase and gamma-glutamyltransferase in whole-blood samples evaluated.
JPS6243490B2 (en)
RU2142137C1 (en) Method for diagnosing primary and secondary muscular dystrophy
Nielsen et al. A Micromethod for the Determination of Para-Aminosalicylic Acid (Aminosallyl)(Pas) and N-Acetyl-Para-Aminosalicylic Acid (Acetyl-Pas)