JPS63289250A - Fuel supply device for liquified petroleum gas internal combustion engine - Google Patents

Fuel supply device for liquified petroleum gas internal combustion engine

Info

Publication number
JPS63289250A
JPS63289250A JP12276787A JP12276787A JPS63289250A JP S63289250 A JPS63289250 A JP S63289250A JP 12276787 A JP12276787 A JP 12276787A JP 12276787 A JP12276787 A JP 12276787A JP S63289250 A JPS63289250 A JP S63289250A
Authority
JP
Japan
Prior art keywords
fuel
orifice
negative pressure
fuel supply
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12276787A
Other languages
Japanese (ja)
Inventor
Masaki Fujisaki
藤咲 正記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carburetor Co Ltd
Original Assignee
Nippon Carburetor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carburetor Co Ltd filed Critical Nippon Carburetor Co Ltd
Priority to JP12276787A priority Critical patent/JPS63289250A/en
Publication of JPS63289250A publication Critical patent/JPS63289250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To enable delicate flow control to be carried out by constituting so that the negative pressure regulated in the bypass passage around a throttle valve is introduced into the upper chamber, partitioned by a diaphragm, of a regulator in which liquified petroleum fuel is vaporized to carry out pressure regulation. CONSTITUTION:Liquid LPG is supplied from a fuel bomb 1 through a solenoid valve 2 to a regulator 3, and is heated and vaporized by a hot water being flowed through thereinto from a radiator, and is regulated to a prescribed pressure. The LPG fuel regulated in pressure enters a fuel measuring part 4 to be measured, and then is discharged into an intake pipe 9. In this case, a bypass passage bypassing a throttle valve 8 is provided, and on the way thereof an orifice 14 is interposed, and further in parallel with this orifice 14 an air control valve 25 is connected. Furthermore, even on the upstream side, further, than the connecting part of the bypass passage for the air control valve 25, an orifice 15 is interposed, and a composite negative pressure passage 16 branched from the downstream side of this orifice 15 is connected to the upper chamber of the regulator 3.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、自動車や作業用機械などに利用する、液化
石油ガス内燃機関の燃料供給装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a fuel supply system for a liquefied petroleum gas internal combustion engine used in automobiles, working machines, and the like.

従来の技術 従来の液化石油ガス(以下LPGと略す。)の燃料供給
システムはベーパライザーとミキサーから成り、その燃
料計量方法は吸入空気の流速により発生するペンチエリ
−負圧によって、ベーパライザーで気化・調圧した燃料
を制御する方法である。この方式はフィトリング等の小
量の空気流量域では発生するベンチュリー負圧が小さい
から、燃料の噴出が不安定になる。この対策として、ベ
ンチュリー径を小さくしてベンチュリーの負圧を高め燃
料の噴出を安定させている。しかし、ベンチュリー径を
小さくすると、大空気流量を必要とする全開高速域では
、これが抵抗となって出力が犠牲となる欠点があった。
BACKGROUND OF THE INVENTION A conventional fuel supply system for liquefied petroleum gas (hereinafter referred to as LPG) consists of a vaporizer and a mixer. This is a method of controlling pressure-regulated fuel. In this method, the venturi negative pressure generated is small in a small air flow area such as in a fitting ring, so fuel injection becomes unstable. As a countermeasure to this, the diameter of the venturi is made smaller to increase the negative pressure of the venturi and stabilize the injection of fuel. However, reducing the diameter of the venturi has the disadvantage that in the fully open high speed range, which requires a large air flow rate, this becomes a resistance and the output is sacrificed.

また、燃料の小流量域をガソリン用気化器のスルーシス
テムと同じように、ベーパライザー1次室より0.3 
Kp / cdで調圧した燃料を、この小流量域に噴出
させ、ペンチエリ−径の選択を最大出力の大空気流量で
行なう方法があるが、スローシステムとベンチュリー負
圧による燃料ノズルからの燃料出始めの継りにおいて、
滑らかな空燃比制御は困難である。従って、ベンチュリ
ー径の選択はこの燃料継りを考慮した選択に妥協せざる
を得ない欠点があった。
In addition, similar to the through system of a gasoline vaporizer, the small flow rate range of fuel can be controlled by 0.3
There is a method of injecting fuel whose pressure is regulated by Kp/cd into this small flow rate region and selecting the pentier diameter at a large air flow rate of maximum output, but it is difficult to eject fuel from the fuel nozzle using a slow system and venturi negative pressure. In the beginning,
Smooth air-fuel ratio control is difficult. Therefore, when selecting the diameter of the venturi, there was a drawback that a compromise had to be made in consideration of this fuel connection.

一方、特開昭59−192856のように、ベーパライ
ザー1次室内LPGを気化・調圧して、0.31’P/
jのLPGを直接絞り弁上流側に噴出させ、かつ、ベン
チュリーを外して、出力向上を狙ったシステムがある。
On the other hand, as in JP-A-59-192856, LPG in the primary chamber of the vaporizer is vaporized and pressure regulated to 0.31'P/
There is a system that aims to improve output by injecting LPG directly upstream of the throttle valve and removing the venturi.

このシステムの燃料計を方法はリニアステップアクチュ
エーターを用いて、第に一ドルと第2ニードルを同軸上
に配置し、小流量から大流量までの全燃料流量をカバー
しながら連続的に燃料流量を制御している。しかし、こ
の燃料流量制御方法では、加速時の追従性に問題があり
、加速補正用として別の噴射システムが必要となる。ま
た、急減速時の追従性にも問題があって、燃料カット等
の複雑なシステムを設けなければならないという欠点が
あった。
The fuel meter for this system uses a linear step actuator, firstly the first needle and second needle are arranged coaxially, and the fuel flow rate is continuously measured while covering the entire fuel flow rate from small flow to large flow. It's in control. However, this fuel flow rate control method has a problem with followability during acceleration, and requires a separate injection system for acceleration correction. Additionally, there is a problem in followability during sudden deceleration, and there is a drawback that a complicated system such as a fuel cut must be installed.

また、前記のリニアステップ7クチユエーターの替りに
、デユーティ制御のンレノイドバルプの使用が考えられ
る。現在のデューティソレノイドバルブは流量の制御範
囲が狭く、小流量から大流量まで制御するものはない。
Furthermore, instead of the linear step 7 cutuator described above, it is possible to use a duty-controlled lenoid valve. Current duty solenoid valves have a narrow flow rate control range, and there are no valves that can control from small to large flow rates.

また、流量精度も10%程度で制御としては不適当であ
る。これを具体的な数字によって説明すると、2000
ωエンジンの要求燃料流1巾はLPG噴射圧が0.3 
Kg/cdのとき、アイドルから全開高速までは約2.
5 t7rrittから210t/NRである。この流
量域の精度は±3%で、アイドリングのとぎは±0.0
75 L/mixを要求している。これに対し、現行の
デューティソレノイドバルブは20〜80%のデエーテ
イ域が流量の比例制御域である。従って、最大流量を2
10t/mとすると最小流量は10t/馴以上となり、
z51/mixの必要最小流量は制御不可能となる。今
後の改良によって最小流量が制御可能となったとしても
、デエーテイ巾1%の制御は3゜5t/m1s(=21
0/60 )で、±0.075t/朋の流量精度を保証
するためにはパルス巾精度を±O,021%にしなけれ
ばならない。現在の制御周波数は150Hz前後である
から、パルス巾は6.67m5で、分解能は1.4μs
(6,67X0.0IXO,021)となり、約0.7
 MHzの制御となる。マイクロコンピュータのクロッ
クはIMHzであるから実際上制御不可能である。
Further, the flow rate accuracy is approximately 10%, which is inappropriate for control. To explain this using concrete numbers, 2000
ω Engine's required fuel flow width is 0.3 LPG injection pressure.
Kg/cd, from idle to full throttle high speed is approximately 2.
5 t7rritt to 210t/NR. The accuracy of this flow rate range is ±3%, and the idling edge is ±0.0.
75 L/mix is required. On the other hand, in the current duty solenoid valve, the duty range of 20 to 80% is the proportional control range of the flow rate. Therefore, the maximum flow rate is 2
If it is 10t/m, the minimum flow rate will be 10t/m or more,
The required minimum flow rate of z51/mix becomes uncontrollable. Even if future improvements make it possible to control the minimum flow rate, control of the dewatering width of 1% would be 3°5t/mls (=21
0/60), and in order to guarantee a flow rate accuracy of ±0.075t/home, the pulse width accuracy must be ±0.021%. Since the current control frequency is around 150Hz, the pulse width is 6.67m5 and the resolution is 1.4μs.
(6,67X0.0IXO,021), which is about 0.7
MHz control. Since the microcomputer clock is IMHz, it is practically uncontrollable.

発明が解決しようとする問題点 本発明は以上の点を解決し、1ケのデユーティソレノイ
ドパルプで、加減速を含む全燃料流量域を精度よく流量
制御し、かつ、ベンチュリーを持たない簡単なシステム
で、出力と精度を向上させようとするものである。
Problems to be Solved by the Invention The present invention solves the above-mentioned problems, and enables precise flow control over the entire fuel flow range including acceleration/deceleration with one duty solenoid pulp, and a simple method that does not have a venturi. The system seeks to improve output and accuracy.

問題を解決するための手段 (1)  スロットルチャンバー7の絞り弁下流側にオ
リィフィス14を設け、このオリィフィス14と、l1
lJKエヤコントロールバルブ25を設ける。絞り弁8
の上流側にもオリィフィス15を設けて、これらオリィ
フィス14と15で発生した負圧を合成負圧通路16を
通して、レギュレータ上部室23に加え、レギュレータ
3のLPG圧力を制御し、燃料流量を制御しようとする
ものである。
Means for solving the problem (1) An orifice 14 is provided on the downstream side of the throttle valve of the throttle chamber 7, and this orifice 14 and l1
lJK air control valve 25 is provided. Throttle valve 8
An orifice 15 is also provided on the upstream side of the orifice 15, and the negative pressure generated in these orifices 14 and 15 is applied to the regulator upper chamber 23 through the combined negative pressure passage 16 to control the LPG pressure in the regulator 3 and the fuel flow rate. That is.

(2)スロットルチャンバー7の絞り弁下流側圧圧力上
ンサ27とオリィフィス14を設け、絞り弁上流側にデ
ューティソレノイドバルブ28を設ける。オリィフィス
14とデューティソレノイドバルブ28で調節された負
圧は合成負圧通路16を通って、レギュレータ上部室2
31C与えられ、レギュレータ3のLPG圧力を制御し
て、燃料流量を制御しようとするものである。
(2) A pressure sensor 27 and an orifice 14 are provided on the downstream side of the throttle valve of the throttle chamber 7, and a duty solenoid valve 28 is provided on the upstream side of the throttle valve. The negative pressure regulated by the orifice 14 and the duty solenoid valve 28 passes through the synthetic negative pressure passage 16 to the regulator upper chamber 2.
31C and controls the LPG pressure of the regulator 3 to control the fuel flow rate.

本発明は、以上の構成による液化石油ガス内燃機関の燃
料供給装置である。
The present invention is a fuel supply device for a liquefied petroleum gas internal combustion engine having the above configuration.

作   用 本発明はレギュレータ上部室23の圧力を制御すること
によって、レギュレータ下部制御室20のLPG圧力を
吸入管負圧と関連して制御し、燃料を計量するデューテ
ィソレノイドバルブ5にかかる燃料圧力を変化させて、
燃料流量の制御範囲を拡大し、かつ、きめ細かな流量制
御を行なおうとするものである。
Operation The present invention controls the LPG pressure in the regulator lower control chamber 20 in relation to the suction pipe negative pressure by controlling the pressure in the regulator upper chamber 23, thereby controlling the fuel pressure applied to the duty solenoid valve 5 for metering fuel. change it,
This aims to expand the control range of fuel flow rate and perform fine flow control.

実施例 この発明を図面によって説明すると、第1図において、
液体のLPGは燃料ポンベ1よりLPGソレノイドバル
ブ2を通ってレギュレータ3に供給される。レギュレー
タ断面図第2図において、LPG燃料はレギュレータ人
口17からシート19とパルプ18の隙間を通って下部
制御室20に入り気化する。この時、気化潜熱によるレ
ギュレータ3の凍結を防止するため、ラジェータからの
温水を通す温水通路24が下部制御室20に設けられて
いる。レギュレータ3は気化したLPGft規定圧力に
加圧するために、ダイヤフラム21で上下の部屋に分け
、上部室23にはダイヤフラムスプリング22を設けて
、絞り弁全開時のLPG圧力を規定している。一方、絞
り弁下流側の吸入管負圧はオリィフィス14を通り、絞
り弁上流側のオリィフィス15から入って来た空気で減
圧され、合成負圧通路16を通ってレギュレータ上部室
23に導かれ【いる。LPG燃料はこの負圧とダイヤフ
ラムスプリング22の荷重によって所定圧力に加圧され
る。
Embodiment This invention will be explained with reference to the drawings. In FIG. 1,
Liquid LPG is supplied from a fuel pump 1 to a regulator 3 through an LPG solenoid valve 2. In the regulator sectional view of FIG. 2, LPG fuel enters the lower control chamber 20 from the regulator port 17 through the gap between the sheet 19 and the pulp 18 and is vaporized. At this time, in order to prevent the regulator 3 from freezing due to latent heat of vaporization, a hot water passage 24 through which hot water from the radiator passes is provided in the lower control chamber 20. The regulator 3 is divided into upper and lower chambers by a diaphragm 21 in order to pressurize the vaporized LPG to a specified pressure.The upper chamber 23 is provided with a diaphragm spring 22 to regulate the LPG pressure when the throttle valve is fully opened. On the other hand, the suction pipe negative pressure on the downstream side of the throttle valve passes through the orifice 14, is reduced in pressure by air entering from the orifice 15 on the upstream side of the throttle valve, and is led to the regulator upper chamber 23 through the synthetic negative pressure passage 16. There is. The LPG fuel is pressurized to a predetermined pressure by this negative pressure and the load of the diaphragm spring 22.

この圧力制御されたLPG燃料は燃料計量部4に入り、
デューティソレノイドバルブ5で計量されて、スロット
ルチャンバー7の絞り弁上流側に噴出され、吸入管9を
通ってエンジンに供給される。次に燃料流量の計量方法
について説明する。
This pressure-controlled LPG fuel enters the fuel metering section 4,
It is metered by the duty solenoid valve 5, injected to the upstream side of the throttle valve of the throttle chamber 7, and supplied to the engine through the intake pipe 9. Next, a method of measuring the fuel flow rate will be explained.

エヤフローメータ0等によって計量された空気流量信号
はコントローラー6に入力され、基本燃料流量が決定さ
れる。またLPGの組成を検出するため、LPGソレノ
イドバルブ2に取付けられた温度センサ10と圧力セン
サ11によって、液体LPGの温度と圧力が検出され、
コントローラー6に入力される。そしてLPG組成を判
定し、温度センサ12により気体の温度を検出し、LP
G組成の気化状態の比重量が算出され、標準状態の比重
量と比較した補正値が与えられる。このほかK、エンジ
ンの暖機状態を検出するエンジン冷却水の温度補正と0
2センサによる空燃比補正等が与えられ、エンジンの要
求燃料流量を算出している。
The air flow rate signal measured by the air flow meter 0 or the like is input to the controller 6, and the basic fuel flow rate is determined. In addition, in order to detect the composition of LPG, the temperature and pressure of liquid LPG are detected by a temperature sensor 10 and a pressure sensor 11 attached to the LPG solenoid valve 2.
It is input to the controller 6. Then, the LPG composition is determined, the temperature of the gas is detected by the temperature sensor 12, and the LPG composition is determined.
The specific weight of the G composition in the vaporized state is calculated, and a correction value is given for comparison with the specific weight in the standard state. In addition, K, engine cooling water temperature correction to detect engine warm-up state, and 0
Air-fuel ratio correction etc. are provided by two sensors, and the required fuel flow rate of the engine is calculated.

そしてレギュレータ下部制御室20の燃料圧力を圧力セ
ンサ13で検出し、圧力補正係数を求めて、要求燃料流
量に対するデユーティ信号をコントローラー6より出力
し、デューティソレノイドバルブ5を作動させて、要求
する燃料流量をエンジンに供給している。また、減速時
の吸入管負圧の急激な変化に対しては、アイドリングよ
り高負圧側のある点から開き始めるエヤコントロールバ
ルブ25によって、空気取入口26より空気を取り入れ
、レギュレータ上部室23Kかかる負圧を減圧している
。これを図に示したのが第3図と第4図である。第3図
は吸入管負圧に対するレギュレータ上部室23の圧力を
示し、オリィフィス14と15の径を選択して決める。
Then, the pressure sensor 13 detects the fuel pressure in the regulator lower control chamber 20, calculates the pressure correction coefficient, outputs a duty signal for the required fuel flow rate from the controller 6, operates the duty solenoid valve 5, and controls the required fuel flow rate. is supplied to the engine. In addition, in response to sudden changes in suction pipe negative pressure during deceleration, air is taken in from the air intake port 26 by the air control valve 25, which starts opening at a certain point on the higher negative pressure side than idling, and the negative pressure applied to the regulator upper chamber 23K is The pressure is being reduced. This is illustrated in FIGS. 3 and 4. FIG. 3 shows the pressure in the regulator upper chamber 23 relative to the suction pipe negative pressure, which is determined by selecting the diameters of the orifices 14 and 15.

−500mHg以上の高い負圧で折れ曲がっているのは
エヤコントロールバルブ25が開き、空気取入口26の
径によるものである。第4図は吸入管負圧に対する下部
制御室20の圧力を示し、第3図のように上部室23の
圧力をセットした時の下部制御室20の燃料の圧力関係
を示している。このようにして軽負荷から高負荷になる
にしたがい燃料の圧力を高めて、燃料計量部4にかかる
燃圧を変化させ、燃料流量の制御中を広げようとするも
のである。
The bending at high negative pressure of -500 mHg or more is due to the diameter of the air intake port 26 when the air control valve 25 opens. FIG. 4 shows the pressure in the lower control chamber 20 with respect to the suction pipe negative pressure, and shows the fuel pressure relationship in the lower control chamber 20 when the pressure in the upper chamber 23 is set as shown in FIG. In this way, the fuel pressure is increased as the load changes from light to high, and the fuel pressure applied to the fuel metering section 4 is varied, thereby extending the period during which the fuel flow rate is controlled.

第5図は第1図のオリィフィス15とエヤコントロール
バルブ25の替りに、絞り弁下流側に吸入管負圧センサ
27を設け、絞り弁上流側にデューティソレノイドバル
ブ28とを設けたその他の実施例を示すもので、第4図
に示した吸入管負圧に対するレギュレータ下部制御室2
0の圧力を規準圧力としてコントローラー6のメモリー
に入力しておく、吸入管負圧センサ27が吸入管負圧を
感知すると、フン)p−ラーメモリーの規準圧力を算出
し、圧力センサ13で感知した下部制御室20の圧力を
この規準圧力と同じにするために、コントローラー信号
によってデューティソレノイドバルブ28をON −O
FFさせて空気を導入し、レギュレータ上部室23にか
かる負圧を制御している。これをチャート図で示すと第
6図になる。
FIG. 5 shows another embodiment in which a suction pipe negative pressure sensor 27 is provided on the downstream side of the throttle valve and a duty solenoid valve 28 is provided on the upstream side of the throttle valve in place of the orifice 15 and air control valve 25 shown in FIG. This shows the regulator lower control chamber 2 for the suction pipe negative pressure shown in Figure 4.
0 pressure is input into the memory of the controller 6 as a reference pressure. When the suction pipe negative pressure sensor 27 detects the suction pipe negative pressure, the reference pressure of the p-ler memory is calculated and detected by the pressure sensor 13. In order to make the pressure in the lower control chamber 20 equal to this reference pressure, the duty solenoid valve 28 is turned ON-O by the controller signal.
The negative pressure applied to the regulator upper chamber 23 is controlled by introducing air by turning it FF. This is shown in a chart as shown in Fig. 6.

この方式ではデューティソレノイドバルブ28をオリィ
フィスとし、オリィフィス14をデユーティツレ/イド
バルブに入れ替えても同じ制御が得られる。
In this system, the same control can be obtained even if the duty solenoid valve 28 is used as an orifice and the orifice 14 is replaced with a duty valve/id valve.

また、吸入管負圧センサ27の替りK、空気流量センサ
とエンジン回転センサを用いる方法や絞り弁開度センサ
とエンジン回転センサを用いる方法によって、レギュレ
ータ下部制御室2oの規準圧カマツブを作くり、下部制
御室20の圧力を制御することも出来る。
In addition, by replacing the suction pipe negative pressure sensor 27, by using an air flow sensor and an engine rotation sensor, or by using a throttle valve opening sensor and an engine rotation sensor, the standard pressure of the regulator lower control chamber 2o is created. It is also possible to control the pressure in the lower control chamber 20.

第1図の合成負圧通路16の中にある絞り29はレギュ
レータ上部室23の圧力震動を防止するために設けたも
のである。
The throttle 29 in the synthetic negative pressure passage 16 shown in FIG. 1 is provided to prevent pressure fluctuations in the regulator upper chamber 23.

発明の効果 この発明は、ペンチエリ−を必要とせず、燃料を制御す
るデューティソレノイドバルブによって。
Effects of the Invention The present invention does not require a pentier and uses a duty solenoid valve to control fuel.

エンジンの要求する熱料流量域を精度良(十分に制御す
ることができ、出力を向上させることができる。また構
造が簡単であるため、従来の装置を若干変更することで
対応することが出来る。
The heat flow range required by the engine can be controlled accurately (sufficiently), and output can be improved.Also, since the structure is simple, it can be handled by making slight changes to conventional equipment. .

加減速における吸入管負圧の急激な変化に対しても、レ
ギュレータ下部制御室20の圧力応答によって燃料流1
がすばやく制御できるため、車の応答性が良(なる。
Even in response to sudden changes in suction pipe negative pressure during acceleration and deceleration, the fuel flow 1 is controlled by the pressure response of the regulator lower control chamber 20.
can be controlled quickly, making the car more responsive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す系統図、第2図は本発明
のレギエレータ断面図、第3図は吸入管負圧に対するレ
ギュレータ上部室圧力の関係図、第4図は吸入管負正に
対するレギュレータ下部制御室圧力の関係図、第5図は
本発明のその他実施例を示す一部切截した系統図、第6
図はその他実施例のチャート図 (5)と(28)はデューティソレノイドバルブ(ll
)と(13)は圧力センサ (14)と(15)はオリィフィス (20)はレギュレータ下部制御室 (23)はレギュレータ上部室 (25)はエヤコントロールバルブ (27)は吸入負負圧センサ (29)は絞り
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a cross-sectional view of the regierator of the present invention, Fig. 3 is a relationship between the pressure in the upper chamber of the regulator and the negative pressure in the suction pipe, and Fig. 4 is a diagram showing the negative pressure in the suction pipe. FIG. 5 is a partially cutaway system diagram showing another embodiment of the present invention, and FIG.
The figure is a chart of other embodiments (5) and (28) are duty solenoid valves (II).
) and (13) are pressure sensors (14) and (15) are orifices (20) are regulator lower control chambers (23) are regulator upper chambers (25) are air control valves (27) are suction negative pressure sensors (29) ) is the aperture

Claims (7)

【特許請求の範囲】[Claims] (1)液化石油燃料を気化し、圧力調整を行なうレギュ
レータ3を持ち、コントローラー6によって作動するデ
ューティソレノイドバルブ5で燃料を制御する燃料供給
装置において、スロットルチャンバー7の絞り弁下流側
にオリィフィス14を設け、このオリィフィス14と並
列にエヤコントロールバルブ25を設ける。また絞り弁
上流側にもオリィフィス15を設けて、オリィフィス1
5とエヤコントロールバルブ25を接続させ、合成負圧
通路16よりレギュレータ上部室23に接続させるよう
に構成した、液化石油ガス内燃機関の燃料供給装置
(1) In a fuel supply device that has a regulator 3 that vaporizes liquefied petroleum fuel and adjusts the pressure, and controls the fuel with a duty solenoid valve 5 operated by a controller 6, an orifice 14 is installed on the downstream side of the throttle valve of the throttle chamber 7. An air control valve 25 is provided in parallel with this orifice 14. Also, an orifice 15 is provided on the upstream side of the throttle valve, and the orifice 1
5 and an air control valve 25, and a fuel supply system for a liquefied petroleum gas internal combustion engine configured to connect an air control valve 25 to a regulator upper chamber 23 through a synthetic negative pressure passage 16.
(2)合成負圧通路16の中に絞り29を取り付けた特
許請求の範囲第1項記載の液化石油ガス内燃機関の燃料
供給装置
(2) A fuel supply system for a liquefied petroleum gas internal combustion engine according to claim 1, in which a throttle 29 is installed in the synthetic negative pressure passage 16.
(3)液化石油燃料を気化し、圧力調整を行なうレギュ
レータ3を持ち、コントローラー6によって作動するデ
ューティソレノイドバルブ5で燃料を制御する燃料供給
装置において、スロットルチャンバー7の絞り弁下流側
にオリィフィス14を設け、絞り弁上流目にデューティ
ソレノイドバルブ28を設け、オリィフィス14と接続
させて、合成負圧通路16よりレギュレータ上部室23
へ接続させる。また吸入管9に吸入管負圧センサ27を
設ける。以上の如く構成された液化石油ガス内燃機関の
燃料供給装置。
(3) In a fuel supply device that has a regulator 3 that vaporizes liquefied petroleum fuel and adjusts the pressure, and controls the fuel with a duty solenoid valve 5 operated by a controller 6, an orifice 14 is provided on the downstream side of the throttle valve of the throttle chamber 7. A duty solenoid valve 28 is provided upstream of the throttle valve, connected to the orifice 14, and connected to the regulator upper chamber 23 from the synthetic negative pressure passage 16.
Connect to. Further, a suction pipe negative pressure sensor 27 is provided in the suction pipe 9. A fuel supply system for a liquefied petroleum gas internal combustion engine configured as described above.
(4)合成負圧通路16の中に絞り29を取り付けた特
許請求の範囲第3項記載の液化石油ガス内燃機関の燃料
供給装置。
(4) A fuel supply system for a liquefied petroleum gas internal combustion engine according to claim 3, wherein a throttle 29 is installed in the synthetic negative pressure passage 16.
(5)スロットルチャンバー7の絞り弁下流側オリィフ
ィス14をデューティソレノイドバルブにし、絞り弁上
流側のデューティソレノイドバルブ28をオリィフィス
に置き換えた特許請求の範囲第3項記載の液化石油ガス
内燃機関の燃料供給装置。
(5) Fuel supply for a liquefied petroleum gas internal combustion engine according to claim 3, in which the orifice 14 on the downstream side of the throttle valve in the throttle chamber 7 is replaced with a duty solenoid valve, and the duty solenoid valve 28 on the upstream side of the throttle valve is replaced with an orifice. Device.
(6)吸入管負圧センサ27の替りに、空気流量センサ
とエンジン回転センサを用いた特許請求の範囲第3項記
載の液化石油ガス内燃機関の燃料供給装置。
(6) A fuel supply system for a liquefied petroleum gas internal combustion engine according to claim 3, which uses an air flow rate sensor and an engine rotation sensor instead of the suction pipe negative pressure sensor 27.
(7)吸入管負圧センサ27の替りに、絞り弁開度セン
サとエンジン回転センサを用いた特許請求の範囲第3項
記載の液化石油ガス内燃機関の燃料供給装置。
(7) A fuel supply system for a liquefied petroleum gas internal combustion engine according to claim 3, in which a throttle valve opening sensor and an engine rotation sensor are used in place of the suction pipe negative pressure sensor 27.
JP12276787A 1987-05-20 1987-05-20 Fuel supply device for liquified petroleum gas internal combustion engine Pending JPS63289250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12276787A JPS63289250A (en) 1987-05-20 1987-05-20 Fuel supply device for liquified petroleum gas internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12276787A JPS63289250A (en) 1987-05-20 1987-05-20 Fuel supply device for liquified petroleum gas internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63289250A true JPS63289250A (en) 1988-11-25

Family

ID=14844109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12276787A Pending JPS63289250A (en) 1987-05-20 1987-05-20 Fuel supply device for liquified petroleum gas internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63289250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685639A2 (en) * 1994-06-03 1995-12-06 CENTRO RICERCHE FIAT Società Consortile per Azioni Electronically controlled pressure regulator device for internal combustion engines supplied with a gaseous fuel, particularly methane
JP2021127762A (en) * 2020-02-17 2021-09-02 株式会社ニッキ Gas fuel supply device of engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685639A2 (en) * 1994-06-03 1995-12-06 CENTRO RICERCHE FIAT Società Consortile per Azioni Electronically controlled pressure regulator device for internal combustion engines supplied with a gaseous fuel, particularly methane
EP0685639A3 (en) * 1994-06-03 1996-03-20 Fiat Ricerche Electronically controlled pressure regulator device for internal combustion engines supplied with a gaseous fuel, particularly methane.
JP2021127762A (en) * 2020-02-17 2021-09-02 株式会社ニッキ Gas fuel supply device of engine

Similar Documents

Publication Publication Date Title
US4524745A (en) Electronic control fuel injection system for spark ignition internal combustion engine
US6041765A (en) Internal combustion engine with air/fuel ratio control
US4305364A (en) Fuel control system
US4416239A (en) Electronic control system for an internal combustion engine with correction means for correcting value determined by the control system with reference to atmospheric air pressure
US4349877A (en) Electronically controlled carburetor
EP0650555B1 (en) Carburetor assembly for an internal combustion gas engine
US4194478A (en) Air-fuel ratio control system for an internal combustion engine
US4579097A (en) Fuel supply apparatus and method for internal combustion engines
US4231220A (en) Secondary air control system for an internal combustion engine
US5564387A (en) Idling speed control system and method thereof
US4497300A (en) Fuel supply system for an internal combustion engine
US4206735A (en) Mechanical throttle body injection apparatus
US4373501A (en) Fuel metering system for an internal combustion engine
US4388904A (en) Air-fuel ratio control system
US4211201A (en) Fuel supply apparatus for internal combustion engines
US4503831A (en) Apparatus for air-injection of liquid gas
US3956433A (en) Automatic device for equalizing the adjustment of the carburetter to the operation of an engine not yet running at a steady temperature
GB2107394A (en) I c engine fuel injection installation
US4646706A (en) System for continuous fuel injection
JPS63289250A (en) Fuel supply device for liquified petroleum gas internal combustion engine
US4886034A (en) Internal combustion engine control system
US4214565A (en) Fuel injection apparatus
US4546752A (en) Premixed charge conditioner for internal combustion engine
US4207849A (en) Air-fuel ratio control apparatus of a fuel supply system for an internal combustion engine
JPH06257479A (en) Control device for internal combustion engine