JPS63289074A - Fin material for heat exchanger - Google Patents

Fin material for heat exchanger

Info

Publication number
JPS63289074A
JPS63289074A JP62124366A JP12436687A JPS63289074A JP S63289074 A JPS63289074 A JP S63289074A JP 62124366 A JP62124366 A JP 62124366A JP 12436687 A JP12436687 A JP 12436687A JP S63289074 A JPS63289074 A JP S63289074A
Authority
JP
Japan
Prior art keywords
group
fin material
film
water
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62124366A
Other languages
Japanese (ja)
Inventor
Kazuo Kikuchi
菊地 和夫
Yuzo Yokota
横田 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP62124366A priority Critical patent/JPS63289074A/en
Publication of JPS63289074A publication Critical patent/JPS63289074A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fin material protected from formation of cracks during, e.g., bending and from stagnation of condensed water and excelling in hydrophilicity and durability, by forming a film containing a specified silicon compound on the surface of the body of a fin material. CONSTITUTION:The surface of the body of a light fin material (A) which is preferably excellent in heat transfer property and moldability, such as a thin aluminum sheet, is coated with a solution formed by dissolving 100pts.wt. film- forming composition (B) comprising a mixture of a film-forming substance such as an acrylic resin or a water-soluble melamine resin, a curing catalyst, PVA and a metal compound which forms a chelate compound of PVA by coordination and 10-40pts.wt. silicon compound (C), as a hydrophilicity-imparting agent, of the formula [wherein R1 is CH3, C2H5 or beta-methoxyethyl group, R2 is CH3 or OR1, and A is vinyl, beta-(3,4-epoxycyclohexyl)ethyl, gamma-glycidoxypropyl, gamma-methacryloxy, gamma-aminopropyl or the like] in water or an organic solvent and dried.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、熱交換器用フィン材に関し、特にその表面上
に凝縮水が溜らないようにした熱交換器用フィン材に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a fin material for a heat exchanger, and more particularly to a fin material for a heat exchanger that prevents condensed water from accumulating on its surface.

(ロ)従来の技術 熱交換器には、熱交換効率を向上させるために伝熱性に
優れたアルミニウム製のフィンが取り付けられているも
のがある。この熱交換器を用いて冷房を行う場合、フィ
ン間で温かい空気を冷やすわけであるが、この際フィン
の表面上に凝縮水が付着することがある。この付着し滞
留した凝縮水によりフィン間の風路が狭められて通風量
が低下したり、或いは騒音が発生したりすることがあっ
た。更に、この凝縮水が通風方向へ飛散し冷房装置の各
所や家屋の各所を汚すこともあった。
(b) Conventional technology Some heat exchangers are equipped with aluminum fins that have excellent heat conductivity in order to improve heat exchange efficiency. When performing air conditioning using this heat exchanger, warm air is cooled between the fins, but condensed water may adhere to the surfaces of the fins. This adhering and stagnant condensed water may narrow the air passage between the fins, reducing the amount of ventilation or causing noise. Furthermore, this condensed water sometimes scatters in the direction of ventilation, staining various parts of the air conditioner and the house.

このため、フィンの表面を親水化して凝縮水を薄い水膜
として流下させる方法が従来より行われている。親水化
の方法としては、例えばアクリル酸系樹脂の如き皮膜形
成性物質と水ガラスとの混合物を塗布する方法が知られ
ている。即ちこの方法は、フィン本体の表面に皮膜を形
成し、そこに親水性の物質である水ガラスを混入してお
いて、フィンの表面の親水化を図ろうとするものである
For this reason, a method has conventionally been used in which the surface of the fin is made hydrophilic so that the condensed water flows down as a thin water film. As a method for making the surface hydrophilic, for example, a method of applying a mixture of a film-forming substance such as an acrylic resin and water glass is known. That is, this method attempts to make the surface of the fin hydrophilic by forming a film on the surface of the fin body and mixing water glass, which is a hydrophilic substance, into the film.

(ハ)発明が解決しようとする問題点 しかしこの方法は、親水化の点では一応満足しうるが、
フィン材に穿孔加工や曲げ加工を施す際クラックが発生
し、フィン材の表面の皮膜がff111かれ易いという
欠点があった。これは皮膜中に無機系の化合物が混合さ
れているためと思われる。
(c) Problems to be solved by the invention However, although this method is somewhat satisfactory in terms of hydrophilization,
Cracks occur when the fin material is subjected to drilling or bending, and the film on the surface of the fin material is easily damaged. This is thought to be because inorganic compounds are mixed in the film.

そこで本発明者等はこの点を解決すべく鋭意検討した結
果、フィン材の表面に形成される皮膜中に有機系のある
特定の親水化剤を混入してお(ことにより、クランクが
発生せず且つ十分な親水性の表面を持つフィン材が得ら
れることを見出し本発明に至ったのである。
Therefore, the inventors of the present invention made extensive studies to solve this problem, and found that a specific organic hydrophilic agent was mixed into the film formed on the surface of the fin material (thereby, the occurrence of cranking could be prevented). The inventors discovered that it is possible to obtain a fin material that has a surface that is both hydrophilic and sufficiently hydrophilic, leading to the present invention.

(ニ)問題点を解決するための手段及び作用即ち本発明
は、フィン材本体表面に、下記一般式(I)で表される
珪素化合物を含有する皮膜が形成されていることを特徴
とする熱交換器用フィン材に関すやものである。
(d) Means and effects for solving the problem, that is, the present invention is characterized in that a film containing a silicon compound represented by the following general formula (I) is formed on the surface of the fin material main body. This is a fin material related to heat exchangers.

一般式(I); キシ−エチル基よりなる群から選ばれた基を表し、R2
はメチル基又はOR,基を表し、Aはビニル基。
General formula (I); represents a group selected from the group consisting of xy-ethyl group, R2
represents a methyl group or an OR group, and A is a vinyl group.

β−(3,4−エポキシシクロヘキシル)−エチル基。β-(3,4-epoxycyclohexyl)-ethyl group.

γ−グリシドキシプロピル基、γ−メタクリロキシプロ
ピル基、N−β(アミノエチル)−γ−アミノプロピル
基、γ−アミノプロピル基、γ−クロロプロピル基及び
γ−メルカプトプロピル基よりなる群から選ばれた基を
表す。) フィン材本体としては、伝熱性の良好なものであればど
のような材質のものでも用いうるが、特に、伝熱性に優
れている点、各種の成型加工がし易い点、重量が軽い点
からアルミニウム薄板が最も好ましい。
From the group consisting of γ-glycidoxypropyl group, γ-methacryloxypropyl group, N-β(aminoethyl)-γ-aminopropyl group, γ-aminopropyl group, γ-chloropropyl group and γ-mercaptopropyl group Represents a selected group. ) For the fin material body, any material can be used as long as it has good heat conductivity, but it is particularly important to have excellent heat conductivity, ease of various molding processes, and light weight. A thin aluminum plate is most preferred.

皮膜を形成させるために用いる皮膜形成性物質としては
、アクリル酸系樹脂、メラミン樹脂、エポキシ樹脂、フ
ェノール樹脂、ポリアミド樹脂等従来公知の樹脂が用い
られる。これらの中でもアルミニウム製フィン材本体と
の密着力に優れているアクリル酸系樹脂が好ましい。
As the film-forming substance used to form the film, conventionally known resins such as acrylic acid resins, melamine resins, epoxy resins, phenol resins, and polyamide resins are used. Among these, acrylic acid resin is preferred because it has excellent adhesion to the aluminum fin material body.

また皮膜形成性物質として、水溶性メラミン樹脂と、該
水溶性メラミン樹脂の硬化触媒と、ポリビニルアルコー
ルと、該ポリビニルアルコールに配位されてキレート化
合物を生成する金属化合物とよりなる混合物(以下、「
皮膜形成性組成物」という。)を用いるのも好ましい。
In addition, as a film-forming substance, a mixture (hereinafter referred to as "
"Film-forming composition". ) is also preferable.

これは、皮膜の強度が向上すると共に皮膜自体の親水性
も向上するからである。
This is because the strength of the film is improved and the hydrophilicity of the film itself is also improved.

ここで、皮膜形成性組成物について若干詳細に説明する
と以下のとおりである。
Here, the film-forming composition will be explained in some detail as follows.

水溶性メラミン樹脂は市販の単量体樹脂、及び重縮合度
がある程度進んだダイマー型樹脂等の多量体樹脂のいず
れを使用しても良い。水・冷性メラミン樹脂の硬化触媒
としては塩化アンモニウム。
As the water-soluble melamine resin, either a commercially available monomer resin or a multimer resin such as a dimer type resin with a certain degree of polycondensation may be used. Ammonium chloride is used as a curing catalyst for water/cold melamine resin.

第二燐酸アンモニウム、スルファミノ酸アンモニウム等
のアンモニウム塩系触媒、有機アミノアルコールの塩酸
又はスルファミン酸塩、その他ジメチルアニリン塩酸塩
、ピリジン−塩酸系、ピコリン−モノクロル酢酸などの
有機アミン塩系触媒、塩化マグネシウム、塩化亜鉛、硫
酸亜鉛等の無機金属系触媒を挙げることができる。中で
も有機アミン塩系触媒の使用が好ましい。水溶性メラミ
ン樹脂は、その硬化触媒によって三次元網状高分子とな
り、フィン材本体表面に形成された皮膜の主体をなすも
のである。
Ammonium salt catalysts such as diammonium phosphate and ammonium sulfaminate, hydrochloric acid or sulfamate salts of organic amino alcohols, organic amine salt catalysts such as dimethylaniline hydrochloride, pyridine-hydrochloric acid, picoline-monochloroacetic acid, magnesium chloride , zinc chloride, zinc sulfate, and other inorganic metal catalysts. Among them, it is preferable to use an organic amine salt catalyst. The water-soluble melamine resin becomes a three-dimensional network polymer by its curing catalyst, and forms the main body of the film formed on the surface of the fin material main body.

ポリビニルアルコールとしては、市販の完全鹸化型、中
間鹸化型1部分鹸化型のいずれも使用可能であるが、印
刷における支持体としての性能を再現よく製造する目的
では完全鹸化型を用いることが好ましい。ポリビニルア
ルコールは、該ポリビニルアルコールに配位されてキレ
ート化合物を生成する金属化合物によって不溶化される
。この金属化合物としては一般的に硝酸ジルコニウムが
用いられるが、その他のジルコニウム塩等も用いること
ができる。ポリビニルアルコールは主に皮膜の親水性を
向上させるものである。
As the polyvinyl alcohol, any commercially available completely saponified type, intermediately saponified type, or partially saponified type can be used, but it is preferable to use the completely saponified type for the purpose of manufacturing with good reproducibility of performance as a support in printing. Polyvinyl alcohol is insolubilized by a metal compound that is coordinated to the polyvinyl alcohol to form a chelate compound. Zirconium nitrate is generally used as this metal compound, but other zirconium salts can also be used. Polyvinyl alcohol mainly improves the hydrophilicity of the film.

この皮膜形成性組成物の各成分の量的割合は以下のとお
りであるのが好ましい。ポリビニルアルコールの量は、
水溶性メラミン樹脂100重量部に対して50〜200
重量部程度、置部しくは80〜180重量部適度で置部
。ポリビニルアルコールが50重着部より少ないと表面
層の親水性が不足する傾向となるし、また200重量部
を超えると表面層が溶は出して印刷汚れを惹起する恐れ
がある。また、ポリビニルアルコールに配位されてキレ
ート化合物を生成する金属化合物の星は、ポリビニルア
ルコール100重量部に対して2〜10重量部程置部好
ましくは4〜7重量部置部である。金属化合物が2重量
部より少ないとポリビニルアルコールの不溶化が不完全
となる傾向となり、また10重量部を超えると皮膜の親
水性が向上しない傾向となる。
The quantitative proportions of each component in this film-forming composition are preferably as follows. The amount of polyvinyl alcohol is
50 to 200 per 100 parts by weight of water-soluble melamine resin
Approximately 80 to 180 parts by weight, preferably 80 to 180 parts by weight. If the amount of polyvinyl alcohol is less than 50 parts by weight, the surface layer tends to lack hydrophilicity, and if it exceeds 200 parts by weight, the surface layer may dissolve and cause printing stains. The amount of the metal compound that is coordinated with polyvinyl alcohol to form a chelate compound is 2 to 10 parts by weight, preferably 4 to 7 parts by weight, per 100 parts by weight of polyvinyl alcohol. If the amount of the metal compound is less than 2 parts by weight, the insolubilization of polyvinyl alcohol tends to be incomplete, and if it exceeds 10 parts by weight, the hydrophilicity of the film tends not to improve.

更に、水溶性メラミン樹脂の硬化触媒の量は、水溶性メ
ラミン樹脂を硬化させるのに十分な量であればよ(、例
えば水溶性メラミン樹脂100重量部に対して0.1〜
5重量部置部である。
Further, the amount of the curing catalyst for the water-soluble melamine resin may be any amount sufficient to cure the water-soluble melamine resin (for example, 0.1 to 100 parts by weight of the water-soluble melamine resin).
5 parts by weight.

本発明に用いる親水化剤である珪素化合物は上記の一般
式(I)で表されるものである。具体的には、ビニルト
リエトキシシラン、ビニルトリス(β−メトキシ−エト
キシ)シラン、β−(3,4−エポキシシクロヘキシル
)−エチルトリーメトキシシラン、r−グリシドキシプ
ロビルトリメトキシシラン、T−メタクリロキシプロピ
ルトリメトキシシラン、N−β(アミノエチル)−T−
アミノプロピルトリメトキシシラン、N−β(アミノエ
チル)−丁−アミノプロピルメチルジメトキシシラン、
T−アミノプロピルトリエトキシシラン。
The silicon compound that is the hydrophilizing agent used in the present invention is represented by the above general formula (I). Specifically, vinyltriethoxysilane, vinyltris(β-methoxy-ethoxy)silane, β-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, r-glycidoxyprobyltrimethoxysilane, T-methacrylate Roxypropyltrimethoxysilane, N-β(aminoethyl)-T-
Aminopropyltrimethoxysilane, N-β(aminoethyl)-di-aminopropylmethyldimethoxysilane,
T-aminopropyltriethoxysilane.

γ−クロロプロピルトリメトキシシラン、T−メルカプ
トプロピルトリメトキシシラン等が挙げられる。この中
でも特に、N−β(アミノエチル)−7−アミノプロピ
ルトリエトキシシランを用いるのが好ましい。
Examples include γ-chloropropyltrimethoxysilane and T-mercaptopropyltrimethoxysilane. Among these, it is particularly preferable to use N-β(aminoethyl)-7-aminopropyltriethoxysilane.

フィン材本体表面に皮膜を形成するには、水又は有機溶
剤中に皮膜形成性物質と珪素化合物とを溶解させた溶液
をフィン材本体表面に塗布した後、乾燥して水又は有機
溶剤を蒸発させればよい。有機溶剤としては、ベンゼン
、トルエン、キシレン。
To form a film on the surface of the fin material, a solution of a film-forming substance and a silicon compound dissolved in water or an organic solvent is applied to the surface of the fin material, and then dried to evaporate the water or organic solvent. Just let it happen. Organic solvents include benzene, toluene, and xylene.

エチルベンゼン、エチレングリコール、プロピレングリ
コール、ジエチレングリコール、ジメチルホルムアミド
等が用いられる。
Ethylbenzene, ethylene glycol, propylene glycol, diethylene glycol, dimethylformamide, etc. are used.

皮膜形成性物質と珪素化合物との混合割合は、皮膜形成
性物質100重量部に対して珪素化合物10〜40重量
部程度置部るのが好ましい。珪素化合物の量が10重量
部未満であると形成された皮膜の親水性の程度が低い傾
向となり、また40重量部を超えると皮膜の強度が低下
する傾向となって皮膜にクランクが生じたり或いは皮膜
が剥離したりする傾向が生じる。また、皮膜形成性物質
と珪素化合物とを水又は有機溶剤に溶解させて溶液を作
成する際には、水又は有機溶剤100重量部に対して皮
膜形成性物質及び珪素化合物を1〜5重里部程度熔解さ
せるのが一般的である。
The mixing ratio of the film-forming substance and the silicon compound is preferably about 10 to 40 parts by weight of the silicon compound per 100 parts by weight of the film-forming substance. If the amount of the silicon compound is less than 10 parts by weight, the degree of hydrophilicity of the formed film tends to be low, and if it exceeds 40 parts by weight, the strength of the film tends to decrease, resulting in the formation of cracks in the film or There is a tendency for the film to peel off. In addition, when preparing a solution by dissolving a film-forming substance and a silicon compound in water or an organic solvent, add 1 to 5 parts by weight of the film-forming substance and silicon compound to 100 parts by weight of water or organic solvent. Generally, it is melted to some extent.

(ホ)実施例 実施例1 まず、下記組成の溶液を調製した。(e) Examples Example 1 First, a solution having the following composition was prepared.

ポリメタクリル酸メチル      2重量部N−β(
アミノエチル)−T−アミノプロピルトリメトキシシラ
ン       0.5重量部キシレン       
     100重量部この溶液を20ciaX30c
mのアルミニウム薄板表面に塗布し、その後150°C
で乾燥してフィン材を得た。
Polymethyl methacrylate 2 parts by weight N-β (
(aminoethyl)-T-aminopropyltrimethoxysilane 0.5 parts by weight xylene
100 parts by weight of this solution was added to 20cia
Coated on the surface of a thin aluminum plate of
A fin material was obtained by drying.

このフィン材の表面の親水性を評価するため、水との接
触角(ゴニオメータ−による測定)を測定した。その結
果、接触角は20度であった。
In order to evaluate the hydrophilicity of the surface of this fin material, the contact angle with water (measured with a goniometer) was measured. As a result, the contact angle was 20 degrees.

実施例2 まず、下記組成の溶液を調製した。Example 2 First, a solution having the following composition was prepared.

水溶性メラミン樹脂        1重量部スルファ
ミン酸グアニジン   0.005重量部ポリビニルア
ルコール       1ffi1部硝酸ジルコニウム
        0.06重量部N−β(アミノエチル
)−T−アミノプロピルトリメトキシシラン     
  0.5重量部水                
100重量部この溶液を20cmX3Qcmのアルミニ
ウム薄板表面に塗布し、その後100’cで乾燥してフ
ィン材を得た。
Water-soluble melamine resin 1 part by weight Guanidine sulfamate 0.005 parts by weight Polyvinyl alcohol 1 ffi 1 part Zirconium nitrate 0.06 parts by weight N-β (aminoethyl)-T-aminopropyltrimethoxysilane
0.5 parts by weight water
100 parts by weight of this solution was applied to the surface of a 20 cm x 3 Q cm aluminum thin plate, and then dried at 100'C to obtain a fin material.

このフィン材の表面の親水性を評価するため、水との接
触角(ゴニオメータ−による測定)を測定した。その結
果、接触角は15度であった。
In order to evaluate the hydrophilicity of the surface of this fin material, the contact angle with water (measured with a goniometer) was measured. As a result, the contact angle was 15 degrees.

実施例3 N−β(アミノエチル)−γ−アミノプロピルトリメト
キシシランに代えてT−グリシドキシプロビルトリメト
キシシランを用いる以外は実施例2と同様の方法でフィ
ン材を得、同様の方法で親水性を評価したところ、接触
角は18度であった。
Example 3 A fin material was obtained in the same manner as in Example 2, except that T-glycidoxypropyltrimethoxysilane was used instead of N-β(aminoethyl)-γ-aminopropyltrimethoxysilane, and the same method was used. When hydrophilicity was evaluated using a method, the contact angle was 18 degrees.

比較例1 下記組成の溶液を用いる以外は、実施例1と同様の方法
でフィン材を得、且つその親水性を試験した。
Comparative Example 1 A fin material was obtained in the same manner as in Example 1, except that a solution having the following composition was used, and its hydrophilicity was tested.

ポリメタクリル酸メチル      2重量部キシレン
            100重量部この結果、水と
の接触角は35度であった。
Polymethyl methacrylate 2 parts by weight Xylene 100 parts by weight As a result, the contact angle with water was 35 degrees.

比較例2 下記組成の溶液を用いる以外は、実施例2と同様の方法
でフィン材を得、且つその親水性を試験した。
Comparative Example 2 A fin material was obtained in the same manner as in Example 2, except that a solution having the following composition was used, and its hydrophilicity was tested.

水溶性メラミン樹脂        1重量部スルファ
ミン酸グアニジン   0.005重量部ポリビニルア
ルコール       lib部硝酸ジルコニウム  
      0.06重量部水           
     100重量部この結果、水との接触角は30
度であった。
Water-soluble melamine resin 1 part by weight Guanidine sulfamate 0.005 part by weight Polyvinyl alcohol Lib part Zirconium nitrate
0.06 parts by weight water
100 parts by weight As a result, the contact angle with water is 30
It was degree.

以上から明らかなように、実施例1〜3で得られたフィ
ン材表面の親水性は、比較例1又は2のものに比べて、
優れていることが判る。
As is clear from the above, the hydrophilicity of the surface of the fin materials obtained in Examples 1 to 3 was higher than that of Comparative Example 1 or 2.
It turns out to be excellent.

(へ)発明の効果 本発明に係るフィン材表面に形成されている皮膜は、有
機系の物質を主体として構成され且つ親水性に非常に優
れている。従って、フィン材の親水性の向上を図るため
にフィン材表面の皮膜中に水ガラス等の無機系化合物を
用いる必要がないので、フィン材の穿孔加工や曲げ加工
の際フィン材表面の皮膜にクランクが発生するのを防止
でき、皮膜の耐久性ひいてはフィン材の耐久性を向上さ
せることができる。
(F) Effects of the Invention The film formed on the surface of the fin material according to the present invention is mainly composed of an organic substance and has extremely excellent hydrophilicity. Therefore, it is not necessary to use an inorganic compound such as water glass in the film on the surface of the fin material in order to improve the hydrophilicity of the fin material. It is possible to prevent the occurrence of cranking and improve the durability of the film and, in turn, the durability of the fin material.

Claims (1)

【特許請求の範囲】 フィン材本体表面に、下記一般式( I )で表される珪
素化合物を含有する皮膜が形成されていることを特徴と
する熱交換器用フィン材。 一般式( I ); ▲数式、化学式、表等があります▼( I ) (式中、R_1はメチル基、エチル基及びβ−メトキシ
−エチル基よりなる群から選ばれた基を表し、R_2は
メチル基又はOR_1基を表し、Aはビニル基、β−(
3,4−エポキシシクロヘキシル)−エチル基、γ−グ
リシドキシプロピル基、γ−メタクリロキシプロピル基
、N−β(アミノエチル)−γ−アミノプロピル基、γ
−アミノプロピル基、γ−クロロプロピル基及びγ−メ
ルカプトプロピル基よりなる群から選ばれた基を表す。 )
[Scope of Claims] A fin material for a heat exchanger, characterized in that a film containing a silicon compound represented by the following general formula (I) is formed on the surface of the fin material main body. General formula (I); ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R_1 represents a group selected from the group consisting of methyl group, ethyl group, and β-methoxy-ethyl group, and R_2 represents Represents a methyl group or an OR_1 group, A is a vinyl group, β-(
3,4-epoxycyclohexyl)-ethyl group, γ-glycidoxypropyl group, γ-methacryloxypropyl group, N-β(aminoethyl)-γ-aminopropyl group, γ
- Represents a group selected from the group consisting of aminopropyl group, γ-chloropropyl group, and γ-mercaptopropyl group. )
JP62124366A 1987-05-21 1987-05-21 Fin material for heat exchanger Pending JPS63289074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124366A JPS63289074A (en) 1987-05-21 1987-05-21 Fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124366A JPS63289074A (en) 1987-05-21 1987-05-21 Fin material for heat exchanger

Publications (1)

Publication Number Publication Date
JPS63289074A true JPS63289074A (en) 1988-11-25

Family

ID=14883621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124366A Pending JPS63289074A (en) 1987-05-21 1987-05-21 Fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JPS63289074A (en)

Similar Documents

Publication Publication Date Title
US4954372A (en) Metal surface hydrophilicizing process and composition
JPS63171684A (en) Method for imparting hydrophilicity of aluminum
US4232105A (en) Photosensitive lithographic printing plate with hydrophilic sublayer
JPS63171683A (en) Method for imparting hydrophilicity to aluminum
US5012862A (en) Hydrophilic fins for a heat exchanger
JPS63289074A (en) Fin material for heat exchanger
JP2507060B2 (en) Aluminum heat exchanger and manufacturing method thereof
JPS62129366A (en) Paint for aluminum fin
JP2507070B2 (en) Method for hydrophilizing aluminum fin coil material
JP3890908B2 (en) Organic hydrophilic coating composition and aluminum material for heat exchanger having hydrophilic film
JP2567359B2 (en) Fin material for heat exchanger
JPH0124835B2 (en)
JPH0926288A (en) Surface processed fin for heat exchanger and fabrication method thereof
CN1172136A (en) Slidable light-shielding film
JPS62209184A (en) Fin material for heat exchanger
JPH0574625B2 (en)
KR0180820B1 (en) Shading film
KR100592450B1 (en) Pretreatment method of interlayer of polyester film
JP3274060B2 (en) Aluminum surface treated fin material with excellent stain resistance
JPH0263159B2 (en)
JPH0978002A (en) Highly hydrophilic coating material
JPH0251751B2 (en)
JPH0761746B2 (en) Lithographic printing plate support and method for producing the same
JPH06228347A (en) Easily bondable antistatic polyester film
JPS62129695A (en) Aluminum-made heat exchanger