JPS63287477A - Fermentation by immobilized microorganism and apparatus therefor - Google Patents

Fermentation by immobilized microorganism and apparatus therefor

Info

Publication number
JPS63287477A
JPS63287477A JP12102187A JP12102187A JPS63287477A JP S63287477 A JPS63287477 A JP S63287477A JP 12102187 A JP12102187 A JP 12102187A JP 12102187 A JP12102187 A JP 12102187A JP S63287477 A JPS63287477 A JP S63287477A
Authority
JP
Japan
Prior art keywords
cell
honeycomb
medium
microorganisms
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12102187A
Other languages
Japanese (ja)
Other versions
JPH0588103B2 (en
Inventor
Yoshihiro Kamiya
神谷 佳宏
Mitsuo Kawase
三雄 川瀬
Takeshi Majima
馬島 剛
Katsuo Wakao
若生 勝雄
Katsuhiko Sawada
澤田 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEN KAGAKU KK
NGK Insulators Ltd
Nikken Chemicals Co Ltd
Original Assignee
NIKKEN KAGAKU KK
NGK Insulators Ltd
Nikken Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEN KAGAKU KK, NGK Insulators Ltd, Nikken Chemicals Co Ltd filed Critical NIKKEN KAGAKU KK
Priority to JP12102187A priority Critical patent/JPS63287477A/en
Publication of JPS63287477A publication Critical patent/JPS63287477A/en
Publication of JPH0588103B2 publication Critical patent/JPH0588103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To improve cultivation efficiency, by lifting a liquid culture medium through a vertical through-hole honeycomb cell by the lifting action of bubbles and, at the same time, lowering a part of lifted medium through the outside or inside of the cell, thereby circulating the liquid medium. CONSTITUTION:A culture vessel 3 contains a vertical through-hole honeycomb cell 4 composed of porous ceramics. A liquid medium containing reaction substrate is put into the culture vessel 3, air is introduced into the culture vessel 3 from its bottom and lifted along the vertical hole of the cell and made to contact and react with enzyme-producing microorganisms supported on a wall surface of the cell. In the above process, a part of the medium lifted through the vertical hole of the cell by the floating force of introduced air bubbles is circulated by descending through the outside 7 or inside of the cell. The flow rate of the medium in the cell can be increased by this process to enable the maintenance of the attached amount of the microorganisms constantly at the optimum level, improvement in the contact efficiency between the substrate and the microorganisms, remarkable acceleration of the reaction and stabilization of the reaction over a long period.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固定化微生物による醗酵方法とそれに用いら
れる装置、さらに詳しくは、反応基質含有液体培地を、
その底部より曝気しつつ、セラミックス多孔質体よりな
る貫通セル型ハニカムの垂直セル中を通し、該セル内の
セラミックス隔壁上に吸着担持された酵素産生微生物と
接触させて反応せしめる方法およびそれに用いる装置に
関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a fermentation method using immobilized microorganisms and an apparatus used therein, more specifically, a liquid medium containing a reaction substrate,
A method of passing through the vertical cells of a through-cell type honeycomb made of a porous ceramic material while aerating from the bottom thereof, and causing a reaction by contacting with enzyme-producing microorganisms adsorbed and supported on the ceramic partition walls in the cells, and an apparatus used therein. Regarding.

(従来の技術) 近年、固定化酵素は糖類、アミノ酸などの生産用触媒、
分析用触媒等として実用化され、その開発・利用は急速
に進展しつつある。また一方、微生物が生産する酵素を
純粋に単離・精製して固定するためめ煩雑な手間を省く
ため、酵素産生菌などの微生物自体を担体に固定して利
用する微生物固定化技術の研究が進められ、例えば有機
高分子担体を用いた包括法により菌体を固定する方法な
どのあるものは既に実用化されている。しかしながらこ
のような有機質担体は機械的刺激で破壊し易く、また酸
素や基質との接触効率が小さいという欠点がある。
(Prior art) In recent years, immobilized enzymes have been used as catalysts for the production of sugars, amino acids, etc.
It has been put into practical use as an analytical catalyst, and its development and use are progressing rapidly. On the other hand, in order to purely isolate, purify, and immobilize the enzymes produced by microorganisms, research into microorganism immobilization technology that uses microorganisms such as enzyme-producing bacteria by immobilizing them on carriers is underway to save time and effort. Some methods have already been put into practical use, such as methods for immobilizing bacterial cells by entrapment methods using organic polymer carriers. However, such organic carriers have the disadvantage that they are easily destroyed by mechanical stimulation and have low contact efficiency with oxygen and substrates.

かかる有機質担体に比してガラス、セラミックスなどの
無機質担体は、寸法安定性が大きいこと、劣化または死
滅した微生物を燃焼除去して再使用し得ること、または
細菌および溶液のpH変化や化学的侵食に対して抵抗性
を有することなどの長所を具えるうえ、無機質担体に対
する微生物の固定は物理的吸着によるため、基質や酸素
との接触効率が良好であり、調整容易にして安価である
という利点の故に、微生物固定化無機質担体を利用した
バイオリアクターの研究開発かにわかに活発化しつつあ
る。
Compared to such organic carriers, inorganic carriers such as glass and ceramics have greater dimensional stability, can be reused by burning off degraded or killed microorganisms, and are less susceptible to pH changes and chemical attack of bacteria and solutions. In addition to having advantages such as being resistant to Therefore, research and development of bioreactors using microorganism-immobilized inorganic carriers is rapidly gaining momentum.

従来公知の最も典型的なこの種のバイオリアクターは、
第2図にその概要を示した如く、下部に反応基質含有液
体培地供給口lを、また上部に反応生成物含有液体培地
排出口2を具えた筒状竪型反応槽3内に、微生物固定化
用セラミックス多孔質体よりなる貫通セル型ハニカム4
をそのセル5の長軸、が実質的に垂直となるように嵌装
してなる。
The most typical bioreactor of this type known to date is
As shown in the outline in Fig. 2, microorganisms are immobilized in a cylindrical vertical reaction tank 3 equipped with a reaction substrate-containing liquid medium supply port 1 at the bottom and a reaction product-containing liquid medium outlet 2 at the top. Through-cell honeycomb 4 made of porous ceramic material
are fitted so that the long axis of the cell 5 is substantially vertical.

ハニカム4は反応槽3の水平断面の略々全体を占める寸
法・配置を有するため、下方の供給口1より供給され上
方の排出口より溢流排出される前記培地Sの垂直方向の
流れは、ハニカムの垂直セル中を貫流する。またこの装
置は培地に酸素を供給拡散させるための曝気手段6を槽
底部に有する。
Since the honeycomb 4 has a size and arrangement that occupies almost the entire horizontal section of the reaction tank 3, the vertical flow of the medium S that is supplied from the lower supply port 1 and overflows and discharged from the upper discharge port is as follows. Flow through the vertical cells of the honeycomb. This device also has an aeration means 6 at the bottom of the tank for supplying and diffusing oxygen to the culture medium.

かかる装置においては、下部供給口より圧入される培地
中の基質は、曝気気泡とともにハニカムセル中を上昇す
る間にセル内壁に吸着担持された微生物と接触して微生
物の生産する酵素の作用によって反応し、反応生成物と
ともに上部排出口より排出される。この際、反応効率の
維持ないしは上昇を図るべく培地流速を適宜な値に保つ
とともに、微生物の代謝に必要な量の酸素を曝気によっ
て供給する。
In such a device, the substrate in the culture medium that is injected through the lower supply port, while rising through the honeycomb cells together with aeration bubbles, comes into contact with the microorganisms adsorbed and supported on the inner walls of the cells, and undergoes a reaction due to the action of enzymes produced by the microorganisms. It is discharged from the upper outlet along with the reaction products. At this time, the flow rate of the medium is maintained at an appropriate value in order to maintain or increase the reaction efficiency, and the amount of oxygen necessary for the metabolism of the microorganisms is supplied by aeration.

(発明が解決しようとする問題点) 上記のような反応系においては、一般に時間の経過とと
もに増殖した微生物がハニカム内に蓄積し、セルを狭窄
し遂には閉塞して曝気気泡の通過を妨げ、気泡はハニカ
ム底部で会合滞留して培地の円滑な流れを阻害するとと
もに、培地に対する酸素の拡散溶解量が減少する。その
ため、たとえ基質が流通しても微生物、特に内層部の微
生物の活動は酸欠により衰え、目的とする反応生成物の
収量は急速に減少するに至る。収量を回復せんがために
培地流速を上昇せしめれば反応時間が減少するのみなら
ず、急速な液流の生ずる剪断力によって微生物が離脱流
亡し、却って効率が益々低下するという悪循環を生ずる
(Problems to be Solved by the Invention) In the above-mentioned reaction system, microorganisms that have proliferated over time generally accumulate in the honeycomb, narrowing the cells and eventually blocking them, preventing the passage of aeration bubbles. Air bubbles aggregate and remain at the bottom of the honeycomb, obstructing the smooth flow of the medium, and reducing the amount of oxygen diffused and dissolved into the medium. Therefore, even if the substrate is distributed, the activity of microorganisms, especially those in the inner layer, declines due to lack of oxygen, leading to a rapid decrease in the yield of the desired reaction product. Increasing the flow rate of the medium in order to restore the yield not only reduces the reaction time, but also causes microorganisms to escape and be washed away by the shear force generated by the rapid liquid flow, creating a vicious cycle in which efficiency is further reduced.

本発明者は、かかる悪循環を断ち、微生物固定化セラミ
ックスハニカムを利用し、高い反応効率と収量との経時
的低下を来たさない醗酵方法並びに装置を提供すべく鋭
意研究の結果、本発明に到達したものである。
The present inventor has conducted extensive research in order to break such a vicious cycle and provide a fermentation method and device that utilizes a microorganism-immobilized ceramic honeycomb and that does not cause a decrease in reaction efficiency and yield over time. It has been reached.

(問題点を解決するための手段) 本発明に係る固定化微生物による醗酵方法は、。(Means for solving problems) The fermentation method using immobilized microorganisms according to the present invention is as follows.

反応基質含有液体培地を、その底部より曝気しつつ、セ
ラミックス多孔質体よりなる貫通セル型ハニカムの垂直
セル中を通し、該セル内のセラミックス隔壁上に吸着担
持された酵素産生微生物と接触させて反応せしめる方法
において、前記セルの下端開口部を指向して曝気された
気泡の浮上刃によって形成された流速をもってセル内を
上昇する前記培地の一部をセルの上端開口部よりハニカ
ム外部あるいは内部の還流路を経て下降還流せしめ再び
前記セル下端開口部へ導き、該培地の昇降循環流を形成
することによって、前記セラミックス隔壁上の微生物の
吸着量を適正に維持することを特徴とする。
A reaction substrate-containing liquid medium is passed through the vertical cells of a through-cell honeycomb made of a ceramic porous body while being aerated from the bottom, and brought into contact with enzyme-producing microorganisms adsorbed and supported on the ceramic partition walls in the cells. In the reaction method, a portion of the medium rising inside the cell at a flow velocity formed by floating blades of aerated air bubbles directed toward the lower end opening of the cell is transferred from the upper end opening of the cell to the outside or inside of the honeycomb. It is characterized in that the amount of microorganisms adsorbed on the ceramic partition wall is maintained at an appropriate level by refluxing the medium downward through the reflux path and guiding it again to the lower end opening of the cell to form an upward and downward circulating flow of the medium.

本発明方法の好適な態様においては、前記セル内を上昇
する液体培地の線速度は20〜500 mtn/秒、好
ましくは100〜300 mm7秒である。
In a preferred embodiment of the method of the invention, the linear velocity of the liquid medium rising in the cell is 20-500 mtn/sec, preferably 100-300 mtn/sec.

また本発明方法においては、前記垂直通路の下端開口部
を指向して曝気された気泡は、好ましくは該開口部へ導
かれる。
Further, in the method of the present invention, the bubbles aerated toward the lower end opening of the vertical channel are preferably guided to the opening.

本発明方法を実施するための装置は、反応基質含有液体
培地供給口および反応生成物含有該培地排出口を具えた
筒状竪型反応槽内に、微生物固定化用セラミックス多孔
質体よりなる貫通セル型ハニカムをセルの長軸が実質的
に垂直となるように装填してなり、下方よりハニカム内
へ向かって曝気するための曝気手段を有する装置におい
て、垂直に延びる培地下降用還流路をハニカムの外部あ
゛るいは内部に形成したことを特徴とする固定化微生物
による醗酵装置である。
The apparatus for carrying out the method of the present invention is a cylindrical vertical reaction tank equipped with a reaction substrate-containing liquid medium supply port and a reaction product-containing liquid medium outlet, and a through-hole made of a ceramic porous body for immobilizing microorganisms. In an apparatus in which a cell-type honeycomb is loaded so that the long axis of the cells is substantially vertical, and has an aeration means for aerating from below into the honeycomb, a reflux path for descending the culture medium extending vertically is connected to the honeycomb. This is a fermentation device using immobilized microorganisms, characterized in that it is formed on the outside or inside of a.

本発明装置におけるハニカムは、好ましくは反応槽横断
面積の少なくとも約30%の横断面積を有し、またその
好ましい高さは培地ヘッドの少なくとも約30%である
。また好適なセルピッチ径は約1.0〜20mmであり
、20mmを超えると表面積が過小となり、菌体の充分
な量を担持し得ないため好ましくない。
The honeycomb in the apparatus of the invention preferably has a cross-sectional area of at least about 30% of the cross-sectional area of the reaction vessel, and its preferred height is at least about 30% of the medium head. Further, a suitable cell pitch diameter is about 1.0 to 20 mm, and if it exceeds 20 mm, the surface area becomes too small and a sufficient amount of bacterial cells cannot be supported, which is not preferable.

本発明装置の好適な態様においては、曝気された空気を
ハニカム底部のセル開口部へ案内するための案内部材が
ハニカム底部に設けられる。
In a preferred embodiment of the device of the invention, a guide member is provided at the honeycomb bottom for guiding the aerated air to the cell openings at the honeycomb bottom.

前記培地下降用流路の横断面積は好ましくはセル横断面
積の総和の少なくとも1/2である。
The cross-sectional area of the medium descending channel is preferably at least 1/2 of the total cross-sectional area of the cells.

また上記下降用流路は好ましくは反応槽の内壁に沿って
形成される。
Further, the descending flow path is preferably formed along the inner wall of the reaction tank.

以下に本発明の構成を添付図面に示した態様についてさ
らに詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described in further detail below with respect to the embodiments shown in the accompanying drawings.

第1図は本発明装置の具体例の概要説明図である。FIG. 1 is a schematic explanatory diagram of a specific example of the apparatus of the present invention.

同図において、基質含有液体培地の供給口1および反応
生成物と未反応基質とを含有する培地を排出する排出口
2を具えた、円筒状または角筒状などの筒状竪型反応槽
3はその内部に微生物固定化用のセラミックス多孔質体
、例えば焼結体よりなる貫通セル型ハニカム4を収容す
る。ハニカムは、両端が開口した複数の平行なセル5の
長軸が実質的に垂直となるように装填される。実質的に
垂直とはセルを貫流する培地が円滑に流れる限りにおい
て若干の傾斜は許容される意に解するものとする。また
反応槽3の底部には曝気手段6、例えば圧縮空気供給源
に連通ずる散気用多孔盤または散気筒など、を設け、ハ
ニカム底部のセル下端開口部を指向して曝気し得るよう
に構成する。
In the figure, a cylindrical vertical reaction tank 3, such as a cylindrical or rectangular tube shape, is provided with a supply port 1 for a substrate-containing liquid medium and a discharge port 2 for discharging a medium containing a reaction product and an unreacted substrate. A porous ceramic body for immobilizing microorganisms is housed therein, for example, a through-cell type honeycomb 4 made of a sintered body. The honeycomb is loaded so that the long axes of the plurality of parallel open-ended cells 5 are substantially perpendicular. Substantially vertical is understood to mean that a slight inclination is acceptable as long as the medium flowing through the cell flows smoothly. Further, an aeration means 6, such as a perforated aeration plate or an aeration cylinder communicating with a compressed air supply source, is provided at the bottom of the reaction tank 3, and the structure is configured such that aeration can be directed toward the lower end openings of the cells at the bottom of the honeycomb. do.

かかる本発明装置の最大の要点は、セル5内を貫流して
上昇した培地が、再び下降し得る還流路7をハニカムの
外部に垂直に延設したことにある。
The most important point of the device of the present invention is that a return flow path 7 is provided vertically outside the honeycomb, through which the culture medium that has flowed through the cells 5 and ascended can descend again.

図示の例にあっては、還流路7はハニカムの外壁と反応
槽の内壁とで区画された横断面環状をなすが、例えば第
3図に示すように環状ハニカム4の中心空間部を還流路
としてもよく、また第4図に例示した如く、円筒状反応
槽と、それに内接する角柱状ハニカムとの間隙を還流路
としてもよい。
In the illustrated example, the reflux passage 7 has an annular cross section divided by the outer wall of the honeycomb and the inner wall of the reaction tank, but for example, as shown in FIG. Alternatively, as illustrated in FIG. 4, the gap between the cylindrical reaction tank and the prismatic honeycomb inscribed therein may be used as the reflux path.

要はハニカムを貫流して上昇した培地が層流をなして下
降し得るよう、流体抵抗を減少するに充分な横断面積を
具えれば還流路の配置は任意に決定し得る。
In short, the arrangement of the return flow path can be arbitrarily determined as long as it has a cross-sectional area sufficient to reduce fluid resistance so that the culture medium that has flowed upward through the honeycomb can descend in a laminar flow.

さらに本発明装置は、曝気された気泡をハニカム底部の
セル開口部へ案内するための案内部材8をハニカム底面
と曝気手段との間の空間適宜位置に設けることが好まし
く、かかる案内部材は例えば逆漏斗状の環状部材が好適
である。
Furthermore, in the apparatus of the present invention, it is preferable that a guide member 8 for guiding aerated bubbles to the cell openings at the bottom of the honeycomb be provided at an appropriate position in the space between the bottom surface of the honeycomb and the aeration means. A funnel-shaped annular member is preferred.

(作 用) 上述の構成になる本発明装置は、先ずその反応   “
に必要な微生物を培養懸濁した液を反応槽に充填し、ハ
ニカムに微生物を吸着担持せしめる。次いで、供給口1
より反応基質を含有した液体培地を供給し、底部の曝気
手段6よりハニカム底面を指向して曝気すれば、気泡は
ハニカムセル中を上昇し、その浮上刃によって形成され
た流速をもって培地がセルを貫流してハニカム上面へ送
られ、還流路7を通って下降し、再びセル下端開口部へ
達する。このようにして矢示の昇降循環流が形成される
。気泡案内部材8は特に操作開始時の気泡をセル内へ誘
導し気泡浮上刃をセル内部に集中して循環流を形成する
のに役立つ。
(Function) The apparatus of the present invention having the above-mentioned configuration first performs the reaction "
A reaction tank is filled with a suspension of cultured microorganisms required for this purpose, and the microorganisms are adsorbed and carried on the honeycomb. Next, supply port 1
When a liquid medium containing a more reactive substrate is supplied and aeration is directed toward the bottom surface of the honeycomb from the aeration means 6 at the bottom, air bubbles rise in the honeycomb cells, and the medium flows through the cells with the flow velocity formed by the floating blades. It flows through and is sent to the upper surface of the honeycomb, descends through the reflux path 7, and reaches the lower end opening of the cell again. In this way, the upward and downward circulation flow shown by the arrow is formed. The bubble guide member 8 is particularly useful for guiding bubbles into the cell at the start of operation and concentrating the bubble floating blades inside the cell to form a circulating flow.

このような系においてハニカムセルを通過する液体培地
は上昇気泡に押し上げられてその流速が適宜に上昇し、
セル壁との間に適当な剪断力が作用するので、経時とと
もに増殖してセル内の隔壁上に吸着担持されている微生
物の一部を取除き、適正吸着量に調節することができる
。このような調節作用を行うための好適な流速は、線速
度にし2 (1〜500mm/秒、さらに好ましくは1
00〜300mm/秒の範囲にある。流速が上記範囲を
超えて過大であると微生物の離脱流口が激しく反応効率
が低下し、また過小であると微生物の増殖によりセルが
狭窄し、甚だしい場合は閉塞して円滑な酸素並びに基質
の供給が阻害され、同様に反応効率は低下する。
In such a system, the liquid medium passing through the honeycomb cells is pushed up by rising air bubbles, and its flow rate increases accordingly.
Since an appropriate shearing force acts between the cells and the cell walls, it is possible to remove some of the microorganisms that have grown over time and are adsorbed and supported on the partition walls within the cells, thereby adjusting the adsorption amount to an appropriate amount. A suitable flow rate for performing such an adjusting action is a linear velocity of 2 (1 to 500 mm/s, more preferably 1
It is in the range of 00 to 300 mm/sec. If the flow rate is too high and exceeds the above range, the reaction efficiency will be drastically reduced, and if it is too low, the cell will become narrowed due to the proliferation of microorganisms, and in extreme cases, it will become blocked, making it difficult for smooth oxygen and substrate flow. The supply is inhibited and the reaction efficiency is reduced as well.

上記の流速は曝気量の増減によって調節することがてき
る。適切な曝気量は反応槽の容量およびヘッド、培地の
供給量および粘度、セルピッチなどのハニカム構造、な
どによって左右されるが、通常0.3〜1.5 VVM
程度、好ましくは約0.5〜1、QVVMが好適である
The above flow rate can be adjusted by increasing or decreasing the amount of aeration. The appropriate amount of aeration depends on the capacity and head of the reaction tank, the supply amount and viscosity of the medium, the honeycomb structure such as cell pitch, etc., but is usually 0.3 to 1.5 VVM.
A degree of QVVM, preferably about 0.5 to 1, is suitable.

ここに、VVMとは単位時間当り、装置容積に対する曝
気容量の比率を表わす。
Here, VVM represents the ratio of aeration capacity to device volume per unit time.

本発明により、適切な曝気量の選択により微生物の過度
の増殖付着が防止され、気泡はその良好な通過状態が維
持されるとともに循環流により下降して長時間培地中に
滞留するため、培地中への酸素溶解量の指標すなわち総
括酸素移動容量係数(KLa値)は著増し、微生物の働
きは活発化する。
According to the present invention, excessive growth and adhesion of microorganisms is prevented by selecting an appropriate aeration amount, and air bubbles are maintained in a good state of passage, descending due to circulation flow, and staying in the medium for a long time. The overall oxygen transfer capacity coefficient (KLa value), which is an indicator of the amount of oxygen dissolved in the water, increases significantly, and the activity of microorganisms becomes active.

またハニカム中を通過する培地の流速は増大するため基
質と微生物との接触効率も大となる。かかる接触効率の
増大と上記KLa値の増加に伴う微生物の活性化とは相
乗的に作用して、反応生成物の収量は従来法の約3倍に
も達することが実証された。
Furthermore, since the flow rate of the medium passing through the honeycomb increases, the contact efficiency between the substrate and microorganisms also increases. It has been demonstrated that this increase in contact efficiency and the activation of microorganisms due to the increase in KLa value act synergistically, and the yield of the reaction product is approximately three times that of the conventional method.

(実施例) 本発明を以下に実施例により説明するが、実施例によっ
て本発明を限定する意図はない。
(Examples) The present invention will be explained below using Examples, but the present invention is not intended to be limited by the Examples.

実施例中、KLa値の測定は、所謂、亜硫酸ソーダ酸化
法によった。
In the examples, the KLa value was measured by the so-called sodium sulfite oxidation method.

実施例1 それぞれ容量が2.5リツトルの第1図および第2図に
示す反応槽(AおよびB)とハニカムを装填しない他は
第2図と同−構造並びに容量の敗気槽(C)とを用いて
、曝気によるKLa値を対比した。各槽に水を満たし、
流れを止めた状態で0.5VVMの曝気量を以って1時
間曝気した後のKLa値はそれぞれ次のとおりであった
Example 1 Reactor tanks (A and B) shown in FIGS. 1 and 2, each with a capacity of 2.5 liters, and a degas tank (C) of the same structure and capacity as in FIG. 2, except that no honeycomb is loaded. The KLa values due to aeration were compared using the following. Fill each tank with water,
The KLa values after aeration for 1 hour at an aeration rate of 0.5 VVM with the flow stopped were as follows.

A(本発明装置)   130 B(公知装置)78 C(対照)     130 すなわち、従来公知の装置已における実験では、気泡の
移動は上昇方向のみに限られるため気泡滞留時間が短く
なったことに加えて、セル中で気泡が会合したために気
泡の表面積が小さくなり酸素溶解量は減少し、KLa 
4mがCと比較して低下した。
A (device of the present invention) 130 B (known device) 78 C (control) 130 That is, in the experiment using the conventionally known device, the bubble movement was limited to the upward direction only, so the bubble residence time was shortened. As a result, the surface area of the bubbles becomes smaller and the amount of dissolved oxygen decreases due to the association of bubbles in the cell.
4m decreased compared to C.

本発明の装置Aでは、循環流の形成によって気泡の下降
方向への流れが生じて滞留時間が長くなり、また、セル
中の流速が大きく気泡の会合が生じにくいためCと略々
間等のKLa値が得られた。
In the device A of the present invention, the formation of a circulating flow causes the bubbles to flow downward, resulting in a longer residence time, and the flow rate in the cell is high, making it difficult for bubbles to aggregate, so that the air bubbles are approximately between the two. KLa values were obtained.

これらの結果より、本発明装置Bは、担体と基質との接
触効率の点でも有利であることが充分首肯される。
These results fully confirm that the device B of the present invention is advantageous in terms of contact efficiency between the carrier and the substrate.

実施例2 内径52mm、液面までのヘッド235 mmの第1図
および第2図に示す型式の500 rd容反応槽にそれ
ぞれセラミックス多孔質体よりなるハニカムを充填した
。第1図の反応槽には、ムライトの焼成体よりなるセル
ピッチ7.4m+nの23mm口X130 mmH、固
体正味容量16m1のハニカム担体を用いた。この反応
槽を第1リアクターと称した。
Example 2 A 500 rd volume reaction tank of the type shown in FIGS. 1 and 2 with an inner diameter of 52 mm and a head up to the liquid level of 235 mm was filled with a honeycomb made of a ceramic porous body. For the reaction tank shown in FIG. 1, a honeycomb carrier made of fired mullite with a cell pitch of 7.4 m+n, 23 mm opening x 130 mmH, and a net solid capacity of 16 ml was used. This reaction vessel was called the first reactor.

第2リアククーとしての第2図の反応槽には、コージェ
ライトの焼成体よりなるセルピッチ2.5manの50
mmφX150 mmH、固体正味容量45m7!のハ
ニカム担体を用いた。
The reaction tank shown in Fig. 2 as the second reactor is made of fired cordierite with a cell pitch of 2.5 man.
mmφX150 mmH, solid net capacity 45m7! A honeycomb carrier was used.

両リアクターのハニカムにそれぞれ酵母、オーレオバシ
ジウム(Aureobasidium) 、sp、5N
−642を吸着担持させ、 グルコース基質     33.5% イースト エキストラクト 1.1% pH5,0 の組成を有する水性液体培地を供給し、1.OVVMの
曝気を行ないつつグルコースを減成してエリスIJ )
−ルを生産した。このときハニカムセル内の流体線速度
は第1リアクターでは200 mm/sec、第2リア
クターでは50mm/secであった。
Yeast, Aureobasidium, sp, 5N were added to the honeycombs of both reactors, respectively.
-642 is adsorbed and supported, and an aqueous liquid medium having a composition of 33.5% glucose substrate, 1.1% yeast extract, and pH 5.0 is supplied; 1. Ellis IJ) by degrading glucose while performing OVVM aeration)
- Produced 100ml. At this time, the fluid linear velocity within the honeycomb cells was 200 mm/sec in the first reactor and 50 mm/sec in the second reactor.

第2リアクターのハニカムは醗酵開始後2週間でセルの
狭窄が顕著となり3週間口には完全に閉塞した。一方、
第1リアクターのハニカムは一ヶ月に亘るも全く閉塞を
生ずることなく、安定した連続運転が可能であった。両
リアクターによる醗酵の結果を次表に示す。
In the honeycomb of the second reactor, cell narrowing became noticeable two weeks after the start of fermentation, and the mouth was completely blocked for three weeks. on the other hand,
The honeycomb of the first reactor was able to operate stably and continuously for one month without any blockages. The results of fermentation in both reactors are shown in the table below.

本水理学的滞留時間 上表からも明らかな通り、本発明方法によれば従来法に
比して生産速度が約3倍にも及んでいることは、基質と
酵母との接触効率が高く、且つ溶存酸素量が大きく酵母
菌体の代謝が旺盛であることを示すものである。
As is clear from the above table of hydraulic retention times, the production rate of the method of the present invention is approximately three times that of the conventional method, which is due to the high contact efficiency between the substrate and yeast. Moreover, the amount of dissolved oxygen is large, indicating that the metabolism of the yeast cells is active.

(発明の効果) 上述の説明から充分理解される通り、本発明方法並びに
装置によれば、循環流の形成上伸ってバイオリアクター
のハニカム担体のセル内の流速増大により微生物吸着l
が常に適正な値に維持されるため、微生物の代謝に必要
且つ充分な量の酸素が曝気により培地に供給拡散され微
生物の活性が良好に維持されるのみならず、また、循環
流の形成による基質と微生物との接触効率の増大という
両者の相乗効果によって生産量が飛躍的に増大するとと
もに、長期間安定した連続運転を可能となし、生産性の
極めて高く、且つ生化学工業上大きい利用価値のあるバ
イオリアクターを提供し得るものである。
(Effects of the Invention) As can be fully understood from the above explanation, according to the method and apparatus of the present invention, the formation of a circulating flow increases the flow rate in the cells of the honeycomb carrier of the bioreactor, thereby increasing the adsorption of microorganisms.
is always maintained at an appropriate value, a sufficient amount of oxygen necessary for the metabolism of microorganisms is supplied and diffused into the culture medium through aeration, and the activity of microorganisms is maintained well. The synergistic effect of increasing contact efficiency between the substrate and microorganisms dramatically increases production volume, and enables stable continuous operation over long periods of time, resulting in extremely high productivity and great utility in the biochemical industry. It is possible to provide a bioreactor with the following characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の態様を示す概要説明図、第2図は
従来公知の醗酵装置を示す概要説明図であり、 第3図および第4図は本発明装置の要部のそれぞれ別の
態様を示す概略平面図である。 1・・・培地供給口    2・・・培地排出口3・・
・反応槽      4・・・ハニカム訃・・セル  
     6・・・曝気手段7・・・還流路     
 訃・・案内部材第2図 第3図 第4図
Fig. 1 is a schematic explanatory diagram showing aspects of the apparatus of the present invention, Fig. 2 is a schematic explanatory diagram showing a conventionally known fermentation apparatus, and Figs. It is a schematic plan view showing an aspect. 1...Medium supply port 2...Medium discharge port 3...
・Reaction tank 4...Honeycomb death...Cell
6...Aeration means 7...Recirculation path
Deceased...Guide member Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 1、反応基質含有液体培地を、その底部より曝気しつつ
、セラミックス多孔質体よりなる貫通セル型ハニカムの
垂直セル中を通し、該セル内のセラミックス隔壁上に吸
着担持された酵素産生微生物と接触させて反応せしめる
方法において、前記セルの下端開口部を指向して曝気さ
れた気泡の浮上刃によって形成された流速をもってセル
内を上昇する前記培地の一部をセルの上端開口部よりハ
ニカム外部あるいは内部の還流路を経て下降還流せしめ
再び前記セル下端開口部へ導き、該培地の昇降循環流を
形成することによって、前記セラミックス隔壁上の微生
物の吸着量を適正に維持することを特徴とする固定化微
生物による醗酵方法。 2、前記セル内を上昇する培地の線速度が20〜500
mm/秒である特許請求の範囲第1項記載の固定化微生
物による醗酵方法。 3、反応基質含有液体培地供給口および反応生成物含有
該培地排出口を具えた筒状竪型反応槽内に、微生物固定
化用セラミックス多孔質体よりなる貫通セル型ハニカム
をセルの長軸が実質的に垂直となるように装填してなり
、下方よりハニカム内へ向かって曝気するための曝気手
段を有する装置において、垂直に延びる培地下降用還流
路をハニカムの外部あるいは内部に形成したことを特徴
とする固定化微生物による醗酵装置。 4、曝気された空気をハニカム底部のセル開口部へ案内
するための案内部材をハニカム底部に設けた特許請求の
範囲第3項記載の固定化微生物による醗酵装置。
[Claims] 1. A reaction substrate-containing liquid medium is passed through the vertical cells of a through-cell honeycomb made of a ceramic porous body while being aerated from the bottom, and is adsorbed and supported on the ceramic partition walls in the cells. In this method, a portion of the medium rising in the cell at a flow rate formed by floating blades of aerated air bubbles directed toward the lower end opening of the cell is directed toward the lower end opening of the cell and brought into contact with the enzyme-producing microorganism. The amount of microorganisms adsorbed on the ceramic partition walls is maintained at an appropriate level by allowing the culture medium to flow downward through the openings through the reflux channels outside or inside the honeycomb and then guided back to the lower end openings of the cells to form an upward and downward circulating flow of the medium. A fermentation method using immobilized microorganisms characterized by the following. 2. The linear velocity of the medium rising in the cell is 20 to 500
A fermentation method using an immobilized microorganism according to claim 1, wherein the fermentation rate is mm/sec. 3. In a cylindrical vertical reaction tank equipped with a reaction substrate-containing liquid medium supply port and a reaction product-containing medium discharge port, a through-cell type honeycomb made of a ceramic porous body for immobilizing microorganisms is placed so that the long axis of the cells is In an apparatus that is loaded substantially vertically and has an aeration means for aerating from below into the honeycomb, a culture medium descending flow path extending vertically is formed outside or inside the honeycomb. Fermentation equipment using characteristic immobilized microorganisms. 4. A fermentation device using immobilized microorganisms according to claim 3, wherein a guide member is provided at the bottom of the honeycomb for guiding the aerated air to the cell openings at the bottom of the honeycomb.
JP12102187A 1987-05-20 1987-05-20 Fermentation by immobilized microorganism and apparatus therefor Granted JPS63287477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12102187A JPS63287477A (en) 1987-05-20 1987-05-20 Fermentation by immobilized microorganism and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12102187A JPS63287477A (en) 1987-05-20 1987-05-20 Fermentation by immobilized microorganism and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS63287477A true JPS63287477A (en) 1988-11-24
JPH0588103B2 JPH0588103B2 (en) 1993-12-21

Family

ID=14800846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12102187A Granted JPS63287477A (en) 1987-05-20 1987-05-20 Fermentation by immobilized microorganism and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS63287477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002646A1 (en) * 1997-07-11 1999-01-21 Corning Incorporated Self contained cell growth system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002646A1 (en) * 1997-07-11 1999-01-21 Corning Incorporated Self contained cell growth system
US6107085A (en) 1997-07-11 2000-08-22 Corning Incorporated Self contained cell growth system

Also Published As

Publication number Publication date
JPH0588103B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US4978616A (en) Fluidized cell cultivation process
US5081036A (en) Method and apparatus for cell culture
US4649117A (en) Air lift bioreactor
US4906577A (en) Cell culture bioreactor
US5091315A (en) Bioconversion reactor
JPH03504926A (en) Static oxygen treatment equipment for animal cell suspension culture
US5246855A (en) Reactor for carrying out biological reactions by means of biocatalysts
IL104385A (en) Method and apparatus for growing biomass particles
WO1986005202A1 (en) Fluidized bioreactor and cell cultivation process
JPH078264A (en) Bioreactor
JP5003999B2 (en) Waste water treatment method and apparatus
JPS63287477A (en) Fermentation by immobilized microorganism and apparatus therefor
Nedovic et al. Immobilized yeast bioreactor systems for brewing—Recent achievements
US3506541A (en) Apparatus and method for cultivating cells,tissues and the like
JPS60501389A (en) Fermenter
JP2003088355A (en) Culture apparatus for aerobic microorganism and cultivation using the same
JPH02284694A (en) Trickling filter type bioreactor
JPS63283570A (en) Fermenter
EP0756002A3 (en) Interface bioreactor system
JP3041378B2 (en) Packed bed type culture apparatus and culture method
CN116239218B (en) In-situ water-supply-free embedded anoxic MBBR module for water treatment and use method
CN221027867U (en) Aeration impact anti-sinking device of magnetic biochemical sedimentation tank
CN215479989U (en) MBBR sluicing hopper device
CN211871976U (en) Manganese oxidizing bacteria and biological manganese oxide culture device
EP0276154A2 (en) Method and apparatus for cell culture