JPS63285809A - Superconductive coaxial wire - Google Patents

Superconductive coaxial wire

Info

Publication number
JPS63285809A
JPS63285809A JP62121837A JP12183787A JPS63285809A JP S63285809 A JPS63285809 A JP S63285809A JP 62121837 A JP62121837 A JP 62121837A JP 12183787 A JP12183787 A JP 12183787A JP S63285809 A JPS63285809 A JP S63285809A
Authority
JP
Japan
Prior art keywords
superconducting
loss
dielectric
superconductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62121837A
Other languages
Japanese (ja)
Inventor
Haruo Yoshikiyo
吉清 治夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62121837A priority Critical patent/JPS63285809A/en
Publication of JPS63285809A publication Critical patent/JPS63285809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce the unevenness of characteristic impedance and the like and to make the frequency property of loss excellent by using a molten quartz type glass as a dielectric and an oxide superconductor as a superconductive inner conductor and a superconductive outer conductor. CONSTITUTION:As the material of a dielectric 3, a molten quartz type glass whose dielectric loss is small in a normal temperature and melting point is high is used. As the superconductor, an oxide superconductor which is an R-M-Cu type oxide (R:La or Y, M:Ba or Sr) is used. Such a superconductor can be made into a thin membrane in a spattering, the MBE method, or a spread-and-heat-treatment method. In such a way, a superconductive outer conductor 4 is formed as a thin membrane directly over the molten quartz glass whose outer diameter production accuracy is good, and the outer diameter accuracy of the outer conductor can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極細心で伝送特性の良い超伝導同軸線に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting coaxial line that is extremely fine and has good transmission characteristics.

〔従来の技術〕[Conventional technology]

超伝導同軸線は、極めて低損失で広帯域の伝送線路とし
て研究されてきた。また、電力伝送も可能な特徴がある
Superconducting coaxial lines have been studied as extremely low-loss, broadband transmission lines. It also has the feature of being able to transmit electric power.

同軸線の損失αは、一般に次式で表わされる。Coaxial line loss α is generally expressed by the following equation.

α=αg+αr (dB、/Km )        
[: ]、 ]a、= ’Z 2 X / 0”εr 
’ f ”−δ(dB/Km)    [2)αr= 
fir &X / 06(Rs(f)/、?Zo)(/
/7td/+/7’rdj)(dVKIn)〔3〕 ここで、αgは誘電体損失、α1は導体損失であり、ε
1は比誘電率、fは周波数(GH2単位)、Rs (f
は導体の表面抵抗W)、zOは線路の特性インピーダン
ス(Ω)、d/、d2 は同軸線の内部および外部導体
径(雪層単位)である。誘電体損失はfに比例し、超伝
導体の導体損失は、Rsの周波数依存性によりほぼr2
に比例することが知られておシ、各々の、損失絶対値は
常温の値に比べ極めて小さい。
α=αg+αr (dB,/Km)
[: ], ]a, = 'Z 2 X / 0''εr
' f ''-δ (dB/Km) [2) αr=
fir &X/06(Rs(f)/,?Zo)(/
/7td/+/7'rdj) (dVKIn) [3] Here, αg is dielectric loss, α1 is conductor loss, and ε
1 is the relative dielectric constant, f is the frequency (in GH2 units), Rs (f
is the surface resistance W) of the conductor, zO is the characteristic impedance (Ω) of the line, and d/, d2 are the diameters of the inner and outer conductors of the coaxial line (in units of snow layer). Dielectric loss is proportional to f, and superconductor conductor loss is approximately r2 due to the frequency dependence of Rs.
It is known that the absolute value of each loss is extremely small compared to the value at room temperature.

これまでに鉛を超伝導体とし、誘電体にテフロン系のF
KPを用いた外径/、 6 xmの超伝導同軸線におい
て、式〔1〕の損失として、次の実験結果が得られてい
る。
Until now, lead has been used as a superconductor, and the dielectric material is Teflon-based F.
In a superconducting coaxial line with an outer diameter of 6 x m using KP, the following experimental results have been obtained as the loss of formula [1].

α=0.6f十0.0タfz   (dn、Ab ) 
  ・・・・・・〔4〕すなわち、/ GHzにおいて
、0. J−、!r dB/KlI+の低損失であり、
/ G)Iz以下ではほとんど誘電体損失が主要である
ことがわかる。しかしながら、動作温度は、超伝導体材
料の臨界温度TOの関係から液体ヘリウム温度(lA2
K)であp、動作環境を作るだめの断熱外被等を含む冷
却系のコストが高いこと、保守を含め扱いにくいことな
どから実用性が低かった。
α=0.6f×0.0tafz (dn, Ab)
...[4] That is, at /GHz, 0. J-,! Low loss of r dB/KlI+,
/ G) It can be seen that below Iz, dielectric loss is the main factor. However, the operating temperature is determined by the liquid helium temperature (lA2
K) had low practicality due to the high cost of the cooling system, including the heat insulating jacket that creates the operating environment, and the difficulty of handling and maintenance.

しかし、最近に至り、臨界温度Tcが液体窒素温度(7
7K)を越える超伝導体が発見され、常温超伝導体の開
発も十分前えうる状況に至ってきた。
However, recently, the critical temperature Tc has changed to liquid nitrogen temperature (7
A superconductor with a temperature exceeding 7 K) has been discovered, and the situation has reached a point where the development of room-temperature superconductors is well within reach.

高Tc超伝導体を同軸線に適用すると、上記冷却系の問
題が除去できるため、本来の低損失性が利用できること
になる。
When a high Tc superconductor is applied to a coaxial line, the problem of the cooling system mentioned above can be eliminated, and the original low loss property can be utilized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高Tc超伝導体を適用した同軸線における問題点は、■
誘電体損失が、通常使われている低損失グラスチックで
は、極低温動作の場合に比較して、温度が高くなる程増
加し、常温近傍では約2桁増加する。■高Tc超伝導体
の適用に対し、誘電体層を劣化させる可能性がある。■
極細心間軸化にともなう特性インピーダンス不均等の増
加が考えられ伝送特性を劣化させる、などである。
The problems with coaxial lines using high Tc superconductors are:
In commonly used low-loss glass, the dielectric loss increases as the temperature rises compared to the case of cryogenic operation, and increases by about two orders of magnitude near room temperature. ■For application of high Tc superconductors, there is a possibility of deteriorating the dielectric layer. ■
It is thought that characteristic impedance inequalities will increase due to ultra-fine center-to-center shafts, which will deteriorate transmission characteristics.

■の誘電体損失において、たとえば低損失プラスチック
であるポリエチレ/では、442にの液体ヘリウム温度
、/ GHz付近において、−δ=(37〜7.0)×
/(Y6であるが、常温では−δ=、2./X#)−’
と2桁大きくなる数値が報告されている。テフロンや同
系統材料などについても同様である。■は現在知られて
いる酸化物超伝導材料は、1000°C前後の熱処理を
必要とするため、そのような高温に耐え得る材料である
ことが必要であり、プラスチック材料ではかなり困難と
考えられる。■の問題は次のようなものである。超伝導
同軸線を導体損失が問題にならない周波数帯で用いるも
のとすると、損失は同軸線径に依らず前記誘電体損失の
みで定まるため、極細心化が可能となる。細心にすると
線径の長さ方向の変動(径に対する変動比率)が、一般
には大きくなり特性インピーダンス変動に伴う伝送特性
上の問題が生じる。即ちこれは、抵抗が極めて小さいた
め、多重反射が減衰せずに残り、時間領域で残留脈動が
発生すること、損失周波数特性では大きな過剰損失の脈
動が生じることである。ところが、極細心化の場合、第
3図に示す従来の超伝導細心同軸線の外部導体の製法例
のように銅等の外部導体ベース≠Oの表面に鉛等の超伝
導体弘/を圧延やメッキで形成したテープ等を誘電体3
/の外周に被覆する方法では、外径変動を小さく押える
のは困難であった。
In the dielectric loss of (2), for example, in polyethylene, which is a low-loss plastic, at a liquid helium temperature of 442, / around GHz, -δ = (37 to 7.0) ×
/(Y6, but at room temperature -δ=, 2./X#)-'
It has been reported that the number increases by two orders of magnitude. The same applies to Teflon and similar materials. ■Currently known oxide superconducting materials require heat treatment at around 1000°C, so the material must be able to withstand such high temperatures, which is considered to be quite difficult with plastic materials. . The problem in ■ is as follows. If the superconducting coaxial line is used in a frequency band where conductor loss is not a problem, the loss will be determined only by the dielectric loss, regardless of the coaxial line diameter, and ultra-fine cores will be possible. If careful attention is paid, the variation in the wire diameter in the length direction (the variation ratio with respect to the diameter) will generally increase, causing problems in transmission characteristics due to variation in characteristic impedance. That is, because the resistance is extremely small, multiple reflections remain unattenuated, resulting in residual pulsations in the time domain, and large excessive loss pulsations in the loss frequency characteristics. However, in the case of ultra-fine conductors, as shown in Figure 3, which is an example of the method for manufacturing the outer conductor of a conventional superconducting fine coaxial line, a superconductor such as lead is rolled onto the surface of an outer conductor base such as copper ≠ O. Dielectric material 3
With the method of coating the outer periphery of /, it was difficult to keep the variation in outer diameter small.

〔問題点を解決するための手段〕[Means for solving problems]

したがって、本発明は、上記■、■に対しては■常温に
おいて誘電体損失の小さい材料であって、かつ■融点が
高く、超伝導体となじみのよい材料を適用することであ
シ、具体的には誘電体材料として溶融石英系ガラスを用
いる。文献= American工n5titute 
Physics Handbook 、 3rd、 e
6 > j −/31. McGraw−Hill(1
5i’7.2)によれば、常温における溶融石英の−δ
として、2X / 0−5(10MHz )。
Therefore, the present invention solves the above problems (1) and (2) by applying a material that (1) has low dielectric loss at room temperature, and (2) has a high melting point and is compatible with superconductors. Typically, fused silica glass is used as the dielectric material. Literature = American engineering n5tituto
Physics Handbook, 3rd, e
6 > j −/31. McGraw-Hill (1
According to 5i'7.2), -δ of fused silica at room temperature
As, 2X/0-5 (10MHz).

/ X / () −’ (/ ()OMHz ) +
 I X / 0−5(/ OG Hz )なる数々に
ヒ゛′I豫IC−電であり 値例が報告されている。石英のこの値は前記ポリエチレ
ンに比較して小さい上、更に高周波帯において低損失に
なる傾向がある。
/ X / () −' (/ ()OMHz) +
Examples of values have been reported for IX/0-5 (/OG Hz). This value of quartz is smaller than that of polyethylene, and it also tends to have lower loss in high frequency bands.

■に対しては、本発明は、外径製作精度の良い誘電体外
周表面に直接、超伝導外部導体を、たとえば、スパッタ
法、蒸着法、気相成長法、塗布熱処理法等の方法を用い
て薄膜として形成し、外部導体の外径精度を高める手段
により解決しようとするものである。特に、誘電体に溶
融石英ガラスを使用すると、その外径精度、表面程度は
現在の光フアイバ製作技術によれば極めて高い精度で形
成し得る。
Regarding (2), the present invention uses a method such as sputtering, vapor deposition, vapor growth, or coating heat treatment to directly form a superconducting external conductor on the outer circumferential surface of the dielectric material with high precision in manufacturing the outer diameter. This problem is solved by forming the outer conductor as a thin film and improving the accuracy of the outer diameter of the outer conductor. In particular, when fused silica glass is used as the dielectric material, its outer diameter and surface quality can be formed with extremely high precision using current optical fiber manufacturing technology.

超伝導体としては、最近、液体窒素温度(77K)を越
える温度で動作する酸化物超伝導体が発見されてきた。
As superconductors, oxide superconductors that operate at temperatures exceeding liquid nitrogen temperature (77K) have recently been discovered.

R−M −Ou系酸化物(R: La又はY。R-M-Ou-based oxide (R: La or Y.

M : Ba又はSr )で代表される酸化物超伝導体
において臨界温度Tcの高い物質を用いるほど本発明の
効果は大きい。また、これらの超伝導材料はスパッタ法
、  MBK法、塗布熱処理法で薄膜化できること、線
材化できることが知られている。この場合、下地となる
誘電体は前記超伝導体が密着性よく形成できることが重
要であるが、本発明の溶融石英材は適している。超伝導
体の表面抵抗は、従来の理論によれば、Tcを臨界温度
、Tを動作温度とすると、exp (−βTc/T) 
(βは定数)に比例することが知ら°れており、Tcが
高いとTO/Tを大きくとれるため、導体損失を無視で
きる程度に低減できる。この点からも、超伝導体として
は前記系統を含む、臨界温度の高い酸化物超伝導体を用
いることが有利である。
The effect of the present invention is greater as a material having a higher critical temperature Tc is used in the oxide superconductor represented by M: Ba or Sr. It is also known that these superconducting materials can be made into thin films and wires by sputtering, MBK, and coating heat treatment methods. In this case, it is important that the superconductor can be formed with good adhesion to the underlying dielectric material, and the fused silica material of the present invention is suitable. According to conventional theory, the surface resistance of a superconductor is exp (-βTc/T), where Tc is the critical temperature and T is the operating temperature.
(β is a constant), and as Tc is high, TO/T can be increased, so conductor loss can be reduced to a negligible level. From this point of view as well, it is advantageous to use oxide superconductors with high critical temperatures, including the above-mentioned types, as superconductors.

〔実施例〕〔Example〕

第1図は、本発明による超伝導同軸線の実施例の断面構
造を示す。/は銅からなる同軸線心線ベース、2はlの
表面に形成された超伝導内部導体、3は石英系ガラスよ
り成る誘電体、≠は誘電体3の外周部に密着性良く形成
した薄膜超伝導体外部導体であり、夕は同軸線の保護用
の被覆である。
FIG. 1 shows a cross-sectional structure of an embodiment of a superconducting coaxial line according to the present invention. / is a coaxial core wire base made of copper, 2 is a superconducting internal conductor formed on the surface of l, 3 is a dielectric made of quartz glass, ≠ is a thin film formed on the outer periphery of dielectric 3 with good adhesion. It is a superconductor outer conductor, and the outer layer is a protective coating for coaxial lines.

第1図の構造を製作工程順に分解して示したものが第2
図である。(a)は超伝導内部導体コの外周部に誘電体
3が外径制御良く被覆された構成状態を示す。この場合
、石英系ガラスから成る誘電体3は光フアイバ製作技術
で培われた外径制御技術を適用し極めて高い精度で、そ
の外径変動を±O1!μm以下に製作することができた
。外径の値は、光ファイバの場合と同程度の200pm
としケーブルとしての可撓性を確保した。(b)は構成
(eL)の外周部に前述の超伝導外部導体グをスパッタ
法を用いて薄膜として形成した構成を示す。ここで、超
伝導体コおよびグは、イツトリウム、バリウム、銅、の
酸化物超伝導体とした。この場合、誘電体の溶融石英は
、酸化物超伝導体の形成に必要な、10OσC前後の熱
処理に耐え得る材料であるとともに、下地材としてなじ
みがよい利点がある。(c)は(b)の構成に保護用の
外被を施した状態を示す。
The structure shown in Figure 1 is disassembled in the order of the manufacturing process and shown in Figure 2.
It is a diagram. (a) shows a configuration state in which the outer periphery of the superconducting inner conductor is coated with a dielectric material 3 with well controlled outer diameter. In this case, the dielectric material 3 made of quartz glass is applied with outer diameter control technology cultivated in optical fiber manufacturing technology, and the outer diameter variation can be controlled with extremely high accuracy by ±01! We were able to manufacture it to a size smaller than μm. The outer diameter value is 200 pm, which is similar to that of optical fiber.
This ensures flexibility as a cable. (b) shows a structure in which the above-mentioned superconducting external conductor is formed as a thin film on the outer periphery of structure (eL) using a sputtering method. Here, superconductors C and G are oxide superconductors of yttrium, barium, and copper. In this case, the dielectric fused silica has the advantage that it is a material that can withstand heat treatment of around 10OσC necessary for forming the oxide superconductor, and is compatible with the base material. (c) shows the configuration of (b) with a protective outer cover applied.

一般に超伝導同軸線における損失は誘電体損失が主要と
なる。常温における前記データによると周波数f = 
/ GHzでは、溶融石英において−δ=り×1o−5
(内挿推定)であり、式〔2〕より、εr=3.7とし
てαg=/乙dB/KInを得る。本実施例においても
ほぼ同様の値が得られた。
Generally, the main loss in superconducting coaxial lines is dielectric loss. According to the above data at room temperature, the frequency f =
/ GHz, in fused silica -δ=ri×1o-5
(interpolation estimation), and from equation [2], αg=/OdB/KIn is obtained with εr=3.7. Almost similar values were obtained in this example as well.

勿論、この値は前記極低温(lAjK)動作の超伝導同
軸線に比較すれば大きく、長距離大容量ケーブルとして
よりも、電力伝送共用を考慮したりした短距離用のケー
ブルや広帯域の配線ケーブルとして有効であろう。一方
、低損失ポリエチレンを用いたとすれば、−δ=2./
×/(Y’であるのでε1=23としてαg = 、2
 ydB/−と倍である。特性インピーダンス不均等に
ついては、前記、/、 l ffa径の鉛を用いた超伝
導同軸線の例によれば、0. /Ωの特性インピーダン
スの不均等を与える内部導体、外部導体、誘電体の各径
変動許容量は/、、2.2J。
Of course, this value is large compared to the superconducting coaxial line that operates at extremely low temperatures (lAjK), and is suitable for short-distance cables that take shared power transmission into consideration, or broadband wiring cables, rather than long-distance, high-capacity cables. It would be effective as On the other hand, if low-loss polyethylene is used, -δ=2. /
×/(Y', so ε1=23 and αg = , 2
It is twice as high as ydB/-. Regarding the characteristic impedance non-uniformity, according to the above example of the superconducting coaxial line using lead with a diameter of /, l ffa, it is 0. The allowable amount of variation in the diameter of the inner conductor, outer conductor, and dielectric to give an uneven characteristic impedance of /Ω is /, 2.2J.

72μmであシ、特性インピーダンス変動±O1,2Ω
以内の均一性が得られれば滑かな減衰特性になると報告
されている。本発明同軸線では、外部導体径と誘電体径
とは等しく0.2Ωの特性インピーダンス変動を与える
誘電体の許容外径変動は200μm径に対し約7.3μ
mとなる。これは、光ファイバの±0.4−μm内の外
径制御技術によれば十分達成できる。以上のような構成
の超伝導同軸線により極細心でしかも低損失、周波数特
性の良い信号伝送線路が実現できた。
72μm, characteristic impedance variation ±O1,2Ω
It has been reported that if uniformity within this range is achieved, smooth damping characteristics can be obtained. In the coaxial line of the present invention, the outer conductor diameter and the dielectric diameter are equal, and the allowable outer diameter variation of the dielectric that gives a characteristic impedance variation of 0.2 Ω is approximately 7.3 μm for a diameter of 200 μm.
m. This can be fully achieved by controlling the outer diameter of the optical fiber to within ±0.4-μm. Using the superconducting coaxial line configured as described above, we were able to create an extremely fine signal transmission line with low loss and good frequency characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の超伝導同軸線は、液体窒素
温度においても十分に低損失であシ、かつ、超伝導とな
る酸化物超伝導体の形成に適合した溶融石英の誘電体を
使用し、誘電体の外径の製作精度がよいため特性インピ
ーダンス不均等がJ・さく、損失の周波数特性が優れた
超伝導同軸線が再現性よく得られるという効果を有する
As explained above, the superconducting coaxial line of the present invention uses a fused silica dielectric material that has sufficiently low loss even at liquid nitrogen temperatures and is compatible with the formation of oxide superconductors that become superconducting. However, since the manufacturing precision of the outer diameter of the dielectric material is good, the characteristic impedance non-uniformity is reduced by J, and a superconducting coaxial line with excellent loss frequency characteristics can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超伝導同軸線の構造図、第2図は、
前記構造を製作工程順に分解して示した図、第3図は、
従来の細心同軸線の外部導体形成法の一例を示した図で
ある。 /・・・心線ベース、2・・・超伝導内部導体、3,3
/・・・誘電体、り、り/・・・暉伝導外部導体、!・
・・外被、≠O・・・外部導体ベース。 惰1 図 (α)     (b)     (り舅Z図 v3図
Figure 1 is a structural diagram of the superconducting coaxial line of the present invention, and Figure 2 is:
FIG. 3 is a diagram showing the structure disassembled in the order of manufacturing steps.
FIG. 2 is a diagram showing an example of a conventional method for forming an outer conductor of a fine coaxial line. /... Core wire base, 2... Superconducting internal conductor, 3, 3
/...dielectric material, ri, ri/...hui conductive outer conductor,!・
...Outer cover, ≠O...Outer conductor base. Ina 1 Figure (α) (b) (Riga Z diagram v3 diagram

Claims (2)

【特許請求の範囲】[Claims] (1)線状の超伝導内部導体とその周囲の誘電体とさら
にその周囲の超伝導外部導体とから成る超伝導同軸線に
おいて、誘電体として溶融石英系ガラスを、超伝導内部
導体および超伝導外部導体として酸化物超伝導体を用い
ることを特徴とする超伝導同軸線。
(1) In a superconducting coaxial line consisting of a linear superconducting inner conductor, a dielectric material surrounding it, and a superconducting outer conductor surrounding it, fused silica glass is used as the dielectric material, and the superconducting inner conductor and superconducting A superconducting coaxial line characterized by using an oxide superconductor as an outer conductor.
(2)酸化物超伝導体がR−M−Cu系酸化物(R:L
a又はY、M:Ba又はSr)であることを特徴とする
特許請求の範囲第1項の超伝導同軸線。
(2) The oxide superconductor is R-M-Cu based oxide (R:L
The superconducting coaxial line according to claim 1, wherein the superconducting coaxial line is: a or Y, M: Ba or Sr).
JP62121837A 1987-05-19 1987-05-19 Superconductive coaxial wire Pending JPS63285809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121837A JPS63285809A (en) 1987-05-19 1987-05-19 Superconductive coaxial wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121837A JPS63285809A (en) 1987-05-19 1987-05-19 Superconductive coaxial wire

Publications (1)

Publication Number Publication Date
JPS63285809A true JPS63285809A (en) 1988-11-22

Family

ID=14821156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121837A Pending JPS63285809A (en) 1987-05-19 1987-05-19 Superconductive coaxial wire

Country Status (1)

Country Link
JP (1) JPS63285809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454939A2 (en) * 1990-05-01 1991-11-06 International Business Machines Corporation Oriented superconductors for AC power transmission
GB2411761A (en) * 2004-03-04 2005-09-07 Ali Hussien Liban Superconductor coaxial cable assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454939A2 (en) * 1990-05-01 1991-11-06 International Business Machines Corporation Oriented superconductors for AC power transmission
GB2411761A (en) * 2004-03-04 2005-09-07 Ali Hussien Liban Superconductor coaxial cable assembly

Similar Documents

Publication Publication Date Title
EP0423354B2 (en) Oxide superconductor wire, method of producing the same and article produced therefrom
JPS61151907A (en) Sheathed cable having inorganic insulator
US4330347A (en) Resistive coating for current conductors in cryogenic applications
JPS63285809A (en) Superconductive coaxial wire
US3263193A (en) Superconducting to normal conducting cable transition
US6078827A (en) Monolithic high temperature superconductor coplanar waveguide ferroelectric phase shifter
Myers et al. Superconducting and epitaxial (Tl, Pb) Sr2Ca1− x Y x Cu2O7 thin films by in situ deposition
US6205345B1 (en) Oxide superconducting wire, method of preparing the same, and method of handling the same
JPS63269585A (en) Josephson junction device
JPH0472777A (en) Substrate for superconducting device
US3270400A (en) Process of making niobium stannide bodies
EP0581366B1 (en) Process of producing a coaxial electrical cable with ceramic superconductor material having a high transition temperature
JP3061634B2 (en) Oxide superconducting tape conductor
JPH01134811A (en) Extremely low temperature cable
JP2003526175A (en) High temperature superconducting cable and method of manufacturing the same
JPH01204311A (en) Superconductive cable
JPS63254607A (en) Superconductive linear substance and its manufacture
JPH06187849A (en) High-temperature superconducting cable
EP0517560B1 (en) Method of manufacturing a superconducting microwave component substrate
JPH02256260A (en) Integrated circuit package
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JPS63281315A (en) Optical transmission path
JPH10247426A (en) Coaxial cable
JP2966378B2 (en) Method for producing Ba-K-Bi-O-based superconducting thin film
JPH0597590A (en) Production of oxide high-temperature superconducting thin film and optical element using the same