JPS63285329A - Electronically controlled dynamic pressure bearing - Google Patents

Electronically controlled dynamic pressure bearing

Info

Publication number
JPS63285329A
JPS63285329A JP11817587A JP11817587A JPS63285329A JP S63285329 A JPS63285329 A JP S63285329A JP 11817587 A JP11817587 A JP 11817587A JP 11817587 A JP11817587 A JP 11817587A JP S63285329 A JPS63285329 A JP S63285329A
Authority
JP
Japan
Prior art keywords
shaft
electromagnet
dynamic pressure
housing
rotational frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11817587A
Other languages
Japanese (ja)
Inventor
Katsunori Ishii
克典 石井
Shigemitsu Oguchi
小口 重光
Kyoichi Arai
亨一 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11817587A priority Critical patent/JPS63285329A/en
Publication of JPS63285329A publication Critical patent/JPS63285329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To enable high rigidity, low vibration and high reliability extending over the whole rotational frequency by exciting an electromagnet of a magnetic bearing to generate repulsive force or attraction force in the axial direction or in the direction of shaft diameter, in a rotational frequency region lacking dynamic pressure. CONSTITUTION:A permanent magnet 51 magnetized in the radial and axial directions is provided on a part of a shaft 1, and an electromagnet 6 is disposed on a housing 3 confronting with the magnet. At the time of stopping, low rotational frequency or high rotational frequency under the shortage of lubrication, the electromagnet 6 is excited to generate lines of magnetic force 8, thereby repulsing and attracting the permanent magnet 51 on the shaft to keep a gap in a pressure chamber 4 constant. On the other hand, in a rotational frequency region where dynamic pressure is sufficiently increased, the electromagnet 6 is low-excited or non-excited not to increase over-current loss at the magnetic bearing portions 5, 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回転および静止時における軸の軸方向および
/または径方向の正確な位置規制と、起動時あるいは停
止時等の低回転数あるいは動圧力の変動時における安定
で高信頼な回転駆動を実現する高剛性軸受に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides accurate axial and/or radial position regulation of a shaft during rotation and rest, and low rotational speed or dynamic pressure during startup or stopping. This invention relates to a high-rigidity bearing that achieves stable and highly reliable rotational drive during fluctuations in speed.

本発明は、例えば光ディスクや磁気ディスク等の記憶装
置のスピンドルモータのように起動・停止時や外部から
の衝撃力が加わった場合にも安定で高信頼な回転駆動を
要求される高剛性軸受に関するものである。
The present invention relates to high-rigidity bearings, such as spindle motors of storage devices such as optical disks and magnetic disks, which require stable and highly reliable rotational drive even when starting and stopping or when external impact force is applied. It is something.

従来の技術 従来の動圧軸受は、第4図に示すように軸1とハウジン
グ3との間に空気、油、グリース等の流体4が介在する
ような非接触形の軸受であり、原理的には高回転数領域
において高剛性・低振動・長寿命等の高い性能を実現で
きる。
2. Description of the Related Art A conventional hydrodynamic bearing is a non-contact type bearing in which a fluid 4 such as air, oil, or grease is interposed between a shaft 1 and a housing 3, as shown in FIG. It is possible to achieve high performance such as high rigidity, low vibration, and long life in the high rotation speed range.

発明が解決しようとする問題点 この従来の動圧軸受の回転速度と負荷容量との関係を示
す第3図の実線から分かるように、静止時や低回転数時
あるいは潤滑が不足する場合の高回転数時においては圧
力を発生しないので、軸の位置が正確に保てないという
問題点がある。そのため、例えば光ディスクや磁気ディ
スク等の記憶装置のスピンドルモータに適用した場合に
は、適正回転数領域においてはヘッドと記録情報トラッ
クとの間の位置ずれが極めて小さくなって高トラツク密
度化(大容量化)が実現できるという利点がある。一方
、起動時や停止時あるいは外部からの衝撃力が加わった
場合には軸とハウジングとが接触して軸受損傷等が発生
し易いため、記憶装置信頼性を低下させるという欠点が
ある。
Problems to be Solved by the Invention As can be seen from the solid line in Figure 3, which shows the relationship between rotational speed and load capacity of this conventional hydrodynamic bearing, high Since no pressure is generated when the rotation speed is high, there is a problem that the position of the shaft cannot be maintained accurately. Therefore, when applied to the spindle motor of a storage device such as an optical disk or a magnetic disk, the positional deviation between the head and the recording information track becomes extremely small in the appropriate rotation speed range, resulting in high track density (high capacity). It has the advantage of being able to realize On the other hand, when starting or stopping or when an external impact force is applied, the shaft and the housing come into contact and damage to the bearing is likely to occur, resulting in a disadvantage that the reliability of the storage device is reduced.

そこで、本発明の目的は、起動・停止時等の低回転数時
あるいは動圧力の変動時においても軸・ハウジング間を
完全非接触に保つことによって、全回転数において高剛
性・低振動・高信頼性を実現するような動圧軸受を提供
することにある。
Therefore, an object of the present invention is to maintain complete non-contact between the shaft and the housing even at low rotational speeds such as when starting and stopping, or when dynamic pressure fluctuates, thereby achieving high rigidity, low vibration, and high resistance at all rotational speeds. The objective is to provide a hydrodynamic bearing that achieves reliability.

問題点を解決するための手段 上記の目的を達成するために、本発明は、軸とハウジン
グとの間で形成される動圧軸受と、上記軸の一部に設け
た磁性材と上記ハウジングの一部に設けた電磁石との間
で形成される磁気軸受とによって複合軸受を構成し、回
転の起動・停止時等のような動圧力が不足する回転数領
域では軸方向あるいは軸径方向に反発あるいは吸引力を
発生するように上記磁気軸受の電磁石を励磁し、動圧力
が高まる回転数領域では電磁石を低励磁あるいは無励磁
とするような電磁制御を行うようにした点を特徴として
いる。
Means for Solving the Problems In order to achieve the above object, the present invention provides a dynamic pressure bearing formed between a shaft and a housing, a magnetic material provided on a part of the shaft, and a hydrodynamic bearing formed between the shaft and the housing. A composite bearing is constructed with a magnetic bearing formed between an electromagnet installed in a part, and repulses in the axial direction or radial direction in rotation speed regions where dynamic pressure is insufficient, such as when starting and stopping rotation. Alternatively, the electromagnetic control is performed such that the electromagnet of the magnetic bearing is excited to generate an attractive force, and the electromagnet is kept under excitation or non-excitation in a rotational speed region where dynamic pressure increases.

本発明の上記の軸の一部に設けられる磁性材は軸の径方
向および/または軸方向に着磁された永久磁石で構成す
ることができる。この永久磁石は軸に形成した溝中に充
填した磁性材を着磁するか、分割したリング状またはロ
ッド状等の永久磁石を軸に形成した収容部内に埋め込む
か、軸の底部に取り付けることによって軸と一体化する
ことができる。
The magnetic material provided on a part of the shaft of the present invention can be composed of a permanent magnet magnetized in the radial direction and/or axial direction of the shaft. This permanent magnet can be produced by magnetizing a magnetic material filled in a groove formed in the shaft, by embedding a divided ring-shaped or rod-shaped permanent magnet in a housing formed in the shaft, or by attaching it to the bottom of the shaft. Can be integrated with the shaft.

上記の軸の一部に設けられる磁性材は軸方向に配置され
た軟磁性材で構成することもできる。この軟磁性材は軸
をくりぬいて形成した収容部内に埋め込むことによって
軸に取り付けることができる。
The magnetic material provided on a portion of the shaft may also be composed of a soft magnetic material disposed in the axial direction. This soft magnetic material can be attached to the shaft by embedding it in a housing formed by hollowing out the shaft.

本発明の好ましい一実施例では軸とハウジングとの間の
間隙量を計測する変位計が設けられている。一般に、磁
気の反発あるいは吸引を無制御で行う磁気軸受では、大
きな隙間変動に伴う不安定動作かあ・ることが知られて
いる。従って、そのような場合には上記変位計で得られ
た軸・ハウジング間の隙間を制御量として、予め基準値
として設定した隙間の目標値に対して励磁電流の自動制
御を行えばよい。上記変位計としては隙間すなわち間隙
量を静電容量や光や圧力等を計測原理とする。
In a preferred embodiment of the invention, a displacement gauge is provided to measure the amount of gap between the shaft and the housing. Generally, it is known that magnetic bearings that perform uncontrolled magnetic repulsion or attraction are subject to unstable operation due to large gap fluctuations. Therefore, in such a case, the excitation current may be automatically controlled with respect to a target value of the gap set in advance as a reference value, using the gap between the shaft and the housing obtained by the displacement meter as a control amount. The above-mentioned displacement meter uses capacitance, light, pressure, etc. as a principle for measuring the gap, that is, the gap amount.

ものが一般的であるが、軸・ハウジング間の隙間を計測
できるものであればどのような形態・構成でもよい。
Although this is common, any form or configuration may be used as long as it can measure the gap between the shaft and the housing.

作用 以上説明したように、本発明による電磁制御式動圧軸受
においては、永久磁石あるいは軟磁性材と電磁石とから
構成された磁気軸受を具備し、磁気の反発あるいは吸引
力を利用して動圧軸受の圧力室を適正な隙間で確保でき
るようにした。従って、本発明によれば、全回転数領域
において高剛性・低振動・省力・長寿命化が可能な軸受
を提供することができる。
Function As explained above, the electromagnetically controlled dynamic pressure bearing according to the present invention is equipped with a magnetic bearing composed of a permanent magnet or a soft magnetic material and an electromagnet, and uses magnetic repulsion or attraction to control dynamic pressure. The pressure chamber of the bearing can be secured with an appropriate clearance. Therefore, according to the present invention, it is possible to provide a bearing that has high rigidity, low vibration, labor saving, and long life in the entire rotation speed range.

実施例 以下、添付図面を用いてこの発明の具体的実施例につい
て本発明の詳細な説明する。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to specific examples of the present invention with reference to the accompanying drawings.

第1図は本発明による電磁制御式動圧軸受の一実施例の
概念図を示している。この本実施例では、軸1の一部に
径方向と軸方向(軸底部)に着磁された永久磁石5Iを
設け、またこれと対面してハウジング3側に電磁石6を
設けている。また、本実施例では、該電磁石6近傍に軸
・ハウジング間の隙間を計測する変位計9を設けである
FIG. 1 shows a conceptual diagram of an embodiment of an electromagnetically controlled hydrodynamic bearing according to the present invention. In this embodiment, a permanent magnet 5I magnetized in the radial direction and the axial direction (bottom of the shaft) is provided on a part of the shaft 1, and an electromagnet 6 is provided on the housing 3 side facing the permanent magnet 5I. Further, in this embodiment, a displacement meter 9 is provided near the electromagnet 6 to measure the gap between the shaft and the housing.

上記のような実施例によれば、静止時や低回転数時ある
いは潤滑不足下での高回転数時には、上記電磁石6を磁
力線8が発生するように励磁させて、軸側の永久磁石5
1を反発あるいは吸引させることによって圧力室4の隙
間を一定に保てるので、負荷容量の不足を補うことがで
きる。また、動圧力が十分高まる回転数領域では、上記
磁気軸受部5.6の渦電流損が増加しないように電磁石
6を低励磁あるいは無励磁にすれば省力化に有効である
According to the embodiment described above, when the electromagnet 6 is at rest, at a low rotational speed, or at a high rotational speed under insufficient lubrication, the electromagnet 6 is excited to generate magnetic lines of force 8, and the permanent magnet 5 on the shaft side is excited.
By repelling or attracting 1, the gap in the pressure chamber 4 can be kept constant, making it possible to compensate for the lack of load capacity. Further, in a rotational speed range where the dynamic pressure is sufficiently high, it is effective to save labor by setting the electromagnet 6 to low excitation or non-excitation so that the eddy current loss of the magnetic bearing portion 5.6 does not increase.

上記電磁石6の励磁と回転速度の関係を、例えば第3図
の破線のように設定すれば、軸受の負荷容量としては動
圧力と磁気力の加算によって全回転数において一定とな
る。
If the relationship between the excitation of the electromagnet 6 and the rotational speed is set, for example, as shown by the broken line in FIG. 3, the load capacity of the bearing will be constant over the entire rotational speed due to the addition of dynamic pressure and magnetic force.

なお、以上の永久磁石5、電磁石6、変位計9の個数、
配置等は、上記の効果が得られるように設定すればよく
、本実施例に限定されるものではない。
In addition, the number of permanent magnets 5, electromagnets 6, displacement meters 9,
The arrangement and the like may be set so as to obtain the above effects, and are not limited to this embodiment.

第2図は、本発明の他の実施例による電磁制御式動圧軸
受の概念図である。この場合には、軟磁性材5□を軸内
部に軸方向に搭載している。電磁石6は磁力線8が軸方
向に分布するようなソレノイド状にハウジング3側に配
置しである。従って、上記電磁石を励磁すると軸1は磁
力線8に従って磁化され、それに伴って軸径方向に位置
規制される。また、軸1の位置はVCM (Voice
 Co11 Motor)の原理と同様にして、電磁石
6の搭載位置や励磁の強さによって、軸方向に位置規制
される。これらによって、第1図に示した実施例と同様
の効果を発揮することができる。
FIG. 2 is a conceptual diagram of an electromagnetically controlled hydrodynamic bearing according to another embodiment of the present invention. In this case, the soft magnetic material 5□ is mounted inside the shaft in the axial direction. The electromagnet 6 is arranged on the housing 3 side in a solenoid shape such that lines of magnetic force 8 are distributed in the axial direction. Therefore, when the electromagnet is excited, the shaft 1 is magnetized according to the lines of magnetic force 8, and the position of the shaft 1 is regulated in the radial direction of the shaft. Also, the position of axis 1 is VCM (Voice
Similarly to the principle of the electromagnet 6 (Co11 Motor), the position in the axial direction is regulated depending on the mounting position of the electromagnet 6 and the strength of excitation. With these, effects similar to those of the embodiment shown in FIG. 1 can be achieved.

本発明による構成は、上記の実施例に限定されるもので
はなく、電磁制御を適用した動圧軸受であればどのよう
な構成でも同様の効果が得られることは当該業者であれ
ば容易に理解できよう。
Those skilled in the art will easily understand that the configuration according to the present invention is not limited to the above-described embodiments, and that the same effect can be obtained with any configuration of a dynamic pressure bearing to which electromagnetic control is applied. I can do it.

発明の詳細 な説明したように、本発明による電磁制御式動圧軸受は
、軸・ハウジング間に形成された動圧軸受と、上記軸の
一部に設けられた磁性材と上記ハウジングの一部に設け
られた電磁石との間に形成された磁気軸受とから成る複
合軸受を有し、回転の起動・停止時のような低回転数領
域あるいは潤滑不足における動圧力低下の場合には軸方
向あるいは軸径方向に反発あるいは吸引力を発生するよ
うに磁気軸受の電磁石を励磁し、動圧力が高まる適正回
転数領域では低励磁あるいは無励磁とするような電磁制
御を行うようにしたものである。
As described in detail, the electromagnetically controlled hydrodynamic bearing according to the present invention includes a hydrodynamic bearing formed between a shaft and a housing, a magnetic material provided on a part of the shaft, and a part of the housing. It has a composite bearing consisting of a magnetic bearing formed between an electromagnet installed in the axial direction or The electromagnet of the magnetic bearing is excited to generate repulsive or attractive force in the radial direction of the shaft, and electromagnetic control is performed such that it is not excited or not excited in the appropriate rotational speed range where dynamic pressure increases.

従って、従来の動圧軸受で問題となっていた軸・ハウジ
ング間の接触による静摩擦に起因した回転不能(負荷容
量不足)、軸受損傷等を解決することができる。これは
、永久磁石あるいは軟磁性材と電磁石とから構成された
磁気軸受を具備し、磁気の反発あるいは吸引力を利用し
て動圧軸受の圧力室を適正な隙間で確保できるようにし
たからである。しかも、動圧軸受側の負荷容量が十分に
なる回転数領域で低励磁あるいは無励磁とするような電
磁制御を取り入れることによって、通常の磁気軸受で問
題となる高速回転時の渦電流損を解決することができる
、。従って、本発明によれば、全回転数領域において高
剛性・低振動・省力・長寿命化が可能な軸受を提供する
ことができる。
Therefore, problems with conventional hydrodynamic bearings such as inability to rotate (insufficient load capacity) and damage to the bearing due to static friction caused by contact between the shaft and the housing can be solved. This is because it is equipped with a magnetic bearing made of a permanent magnet or a soft magnetic material and an electromagnet, and uses magnetic repulsion or attraction to secure the pressure chamber of the dynamic pressure bearing with an appropriate gap. be. In addition, by incorporating electromagnetic control to reduce or de-energize in the rotation speed range where the load capacity on the hydrodynamic bearing side is sufficient, it solves the problem of eddy current loss during high-speed rotation, which is a problem with ordinary magnetic bearings. can do,. Therefore, according to the present invention, it is possible to provide a bearing that has high rigidity, low vibration, labor saving, and long life in the entire rotation speed range.

【図面の簡単な説明】[Brief explanation of the drawing]

第を図は、本発明による電磁制御式動圧軸受の一実施例
の概念図、 訣 第中図は、本発明による電磁制御式動圧軸受の他の実施
例の概念図、 第合図は、動圧軸受における負荷容量(ラジアル荷重)
と回転速度の関係を示す図であり、実線は動圧軸受の場
合を、また破線は磁気軸受の場合を示しており、 第千図は、従来の動圧軸受の基本構成を示す図である。 (図中符号) 1・・・軸、      2・・・グループ、3・・・
ハウジング、  4・・・圧力室、51 ・・・永久磁
石、 52 ・・・軟磁性材、6・・・電磁石、   
 7・・・コイル端子、8・・・磁力線、    9・
・・変位計、特許出願人 日本電信電話株式会社 第1図 第4図 第3図 2・・・・タフレープ グ     4・・・・圧力室
Figure 1 is a conceptual diagram of one embodiment of the electromagnetically controlled hydrodynamic bearing according to the present invention, Figure 1 is a conceptual diagram of another embodiment of the electromagnetically controlled hydrodynamic bearing according to the present invention, Load capacity (radial load) in hydrodynamic bearings
Fig. 10 is a diagram showing the relationship between rotational speed and rotation speed, where the solid line shows the case of a hydrodynamic bearing and the broken line shows the case of a magnetic bearing. Figure 100 is a diagram showing the basic configuration of a conventional hydrodynamic bearing. . (Symbols in the diagram) 1...Axis, 2...Group, 3...
Housing, 4... Pressure chamber, 51... Permanent magnet, 52... Soft magnetic material, 6... Electromagnet,
7... Coil terminal, 8... Lines of magnetic force, 9.
...Displacement meter, patent applicant Nippon Telegraph and Telephone Corporation Fig. 1 Fig. 4 Fig. 3 Fig. 2... Taffle Pug 4... Pressure chamber

Claims (4)

【特許請求の範囲】[Claims] (1)軸とハウジングとの間に形成された動圧軸受と、
上記軸の一部に設けられた磁性材と上記ハウジングの一
部に設けられた電磁石との間に形成された磁気軸受とを
有し、回転の起動・停止時等の動圧力が不足する回転数
領域では軸方向あるいは軸径方向に反発力あるいは吸引
力を発生するように上記磁気軸受の電磁石を励磁し、動
圧力が高まる回転数領域では該電磁石を低励磁あるいは
無励磁とするような電磁制御を行うことを特徴とする電
磁制御式動圧軸受。
(1) A hydrodynamic bearing formed between the shaft and the housing;
Rotation that has a magnetic bearing formed between a magnetic material provided in a part of the shaft and an electromagnet provided in a part of the housing, and that dynamic pressure is insufficient when starting or stopping rotation, etc. In several ranges, the electromagnet of the magnetic bearing is excited to generate a repulsive force or an attractive force in the axial direction or radial direction, and in the rotational speed range where dynamic pressure increases, the electromagnet is de-energized or de-energized. An electromagnetically controlled hydrodynamic bearing that is characterized by its control.
(2)上記の軸の一部に設けられた磁性材が軸の径方向
に着磁された永久磁石であることを特徴とする特許請求
の範囲第1項記載の電磁制御式動圧軸受。
(2) The electromagnetically controlled hydrodynamic bearing according to claim 1, wherein the magnetic material provided on a portion of the shaft is a permanent magnet magnetized in the radial direction of the shaft.
(3)上記の軸の一部に設けられた磁性材が軸方向に配
置された軟磁性材であることを特徴とする特許請求の範
囲第1項記載の電磁制御式動圧軸受。
(3) The electromagnetically controlled hydrodynamic bearing according to claim 1, wherein the magnetic material provided on a portion of the shaft is a soft magnetic material arranged in the axial direction.
(4)上記軸とハウジングとの間の間隙量を計測する変
位計が設けられていることを特徴とする特許請求の範囲
第1項記載の電磁制御式動圧軸受。
(4) The electromagnetically controlled dynamic pressure bearing according to claim 1, further comprising a displacement meter that measures the amount of gap between the shaft and the housing.
JP11817587A 1987-05-15 1987-05-15 Electronically controlled dynamic pressure bearing Pending JPS63285329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11817587A JPS63285329A (en) 1987-05-15 1987-05-15 Electronically controlled dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11817587A JPS63285329A (en) 1987-05-15 1987-05-15 Electronically controlled dynamic pressure bearing

Publications (1)

Publication Number Publication Date
JPS63285329A true JPS63285329A (en) 1988-11-22

Family

ID=14729984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11817587A Pending JPS63285329A (en) 1987-05-15 1987-05-15 Electronically controlled dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JPS63285329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322369A (en) * 1990-06-27 1994-06-21 Ebara Corporation Dynamic pressure bearing
JP2008121686A (en) * 2007-11-26 2008-05-29 Mitsubishi Heavy Ind Ltd Artificial heart pump
US8157539B2 (en) 2005-09-13 2012-04-17 Mitsubishi Heavy Industries, Ltd. Artificial heart pump
JP2016017427A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Turbocharger thrust reaction force application device, turbocharger including same, and turbocharger thrust reaction force application method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322369A (en) * 1990-06-27 1994-06-21 Ebara Corporation Dynamic pressure bearing
US8157539B2 (en) 2005-09-13 2012-04-17 Mitsubishi Heavy Industries, Ltd. Artificial heart pump
JP2008121686A (en) * 2007-11-26 2008-05-29 Mitsubishi Heavy Ind Ltd Artificial heart pump
JP2016017427A (en) * 2014-07-07 2016-02-01 三菱重工業株式会社 Turbocharger thrust reaction force application device, turbocharger including same, and turbocharger thrust reaction force application method

Similar Documents

Publication Publication Date Title
JP4767488B2 (en) Magnetic levitation pump
US7786638B2 (en) Electric machine having a hybrid bearing
JPH0686503A (en) Motor, polygon mirror motor and disk driving motor
US5545937A (en) Integrated passive magnetic bearing system and spindle permanent magnet for use in a spindle motor
US5751085A (en) Axial gap type electric motor with dynamic pressure air bearing
AU2003245151B2 (en) Device to relieve thrust load in a rotor-bearing system using permanent magnets
US6498411B2 (en) Bearing apparatus
GB2335242A (en) Rotor support with one or two pairs of permanent magnetic bearings and a pivot
EP0746897A1 (en) Air-bearing motor assembly for magnetic recording systems
JP2009192041A (en) Thrust force generation device, electromagnetic machine applying thrust force generation device
JPS63285329A (en) Electronically controlled dynamic pressure bearing
JPH06311698A (en) Magnetically levitated gas dynamic-pressure bearing for axial gap-type motor
JPH09149586A (en) Spindle motor
US6504279B1 (en) Motor mount for small high speed motors
KR101562054B1 (en) Active Hybrid Magnetic - Air Thrust Bearing
JPH0691717B2 (en) Electric machine
US7692343B2 (en) High magnetic reluctance motor assembly
JP2001069719A (en) Dynamic pressure bearing motor
JPH07310746A (en) Dynamic pressure bearing device
JPH0820620B2 (en) Rotating polygon mirror device
JPH10299772A (en) Bearing device
JPH02155452A (en) Motor
KR20020046895A (en) A magnetic bearing and a motor using the magnetic bearing
JPS58180828A (en) Hydraulic bearing cylinder device
JPS58134219A (en) Fluid bearing device