JPS6328514Y2 - - Google Patents

Info

Publication number
JPS6328514Y2
JPS6328514Y2 JP17755979U JP17755979U JPS6328514Y2 JP S6328514 Y2 JPS6328514 Y2 JP S6328514Y2 JP 17755979 U JP17755979 U JP 17755979U JP 17755979 U JP17755979 U JP 17755979U JP S6328514 Y2 JPS6328514 Y2 JP S6328514Y2
Authority
JP
Japan
Prior art keywords
magnetron
anode cylinder
radiator
magnetic
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17755979U
Other languages
Japanese (ja)
Other versions
JPS5695054U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17755979U priority Critical patent/JPS6328514Y2/ja
Publication of JPS5695054U publication Critical patent/JPS5695054U/ja
Application granted granted Critical
Publication of JPS6328514Y2 publication Critical patent/JPS6328514Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は電子レンジ用マグネトロンの改良に
関する。
[Detailed Description of the Invention] This invention relates to an improvement of a magnetron for a microwave oven.

最近、永久磁石としてフエライト磁石を使用し
たマグネトロンが実用化されつつあるが、この種
のマグネトロンでは、陽極円筒の両端に取付けら
れた一対のポールピースと、これらポールピース
上に同軸的に配設される一対のフエライト磁石
と、これら磁石同士を連結する強磁性体ヨークと
が磁気的に結合されている。
Recently, magnetrons that use ferrite magnets as permanent magnets are being put into practical use.This type of magnetron has a pair of pole pieces attached to both ends of an anode cylinder, and a pair of pole pieces arranged coaxially on these pole pieces. A pair of ferrite magnets and a ferromagnetic yoke connecting these magnets are magnetically coupled.

ところが、このようなマグネトロンにおいて
は、フエライト磁石の熱減磁特性は約0.2%/℃
であり、約10%の熱減磁があるため、陽極電圧
(bm)が約10%低下するという欠点がある。そ
こで、フエライト磁石を用いた磁気回路の温度特
性を補償するために、磁石の外周域いは内周に整
磁鋼リングを配設して漏洩磁束を変化させるもの
が提案されているが、元来、漏洩磁束はそれほど
多くはなく、温度補償をするためには整磁鋼リン
グの体積が大きくなるという欠点がある。又陽極
円筒自体を整磁鋼で形成することも提案されてい
るが、この場合は作用空間の必要磁界が得難いと
いう欠点がある。
However, in such magnetrons, the thermal demagnetization characteristic of ferrite magnets is approximately 0.2%/℃.
Since there is thermal demagnetization of about 10%, there is a drawback that the anode voltage (bm) decreases by about 10%. Therefore, in order to compensate for the temperature characteristics of a magnetic circuit using ferrite magnets, it has been proposed to arrange a magnetic shunt ring around the outer or inner circumference of the magnet to change the leakage magnetic flux. Since then, the leakage magnetic flux is not so large, and there is a drawback that the volume of the magnetic shunt steel ring becomes large in order to perform temperature compensation. It has also been proposed that the anode cylinder itself be made of magnetic shunt steel, but this has the disadvantage that it is difficult to obtain the necessary magnetic field in the working space.

この考案は上記事情に鑑みなされたもので、従
来の欠点を除去すると共に充分なフエライト磁石
の温度補償を行なつたマグネトロンを提供するこ
とを目的とする。
This invention has been made in view of the above circumstances, and aims to provide a magnetron which eliminates the drawbacks of the conventional magnetron and also provides sufficient temperature compensation for the ferrite magnet.

以下、図面を参照してこの考案の実施例を詳細
に説明する。この考案のマグネトロンは第1図お
よび第2図に示すように構成され、マグネトロン
発振部本体1はペイン及び陰極を内蔵する陽極円
筒2、陰極ステム3、及び出力部4を有してい
る。そして陽極円筒2をはさんで軸方向両側に一
対の環状フエライト磁石5,6が、各々陰極ステ
ム3、出力部4の一部を同軸的に取り囲むように
して配置され、磁束集中用磁性体板7,8を介し
て磁気的に接続されている。更に陽極円筒2,磁
束集中用磁性体板7,8、磁石5,6を取り囲む
ように枠状のヨーク9,10が配設されねじ1
1,12により連結され、それぞれ磁石5,6の
外側磁極面に接して磁気的に結合している。陽極
円筒2の外周には、複数の冷却フインからなる縦
吹型ラジエータ21が固着されている。そしてヨ
ーク9,10のとくに上板部9aにより冷却風の
道路から遮られるところに、ラジエータフインの
ない空間Sが形成されている。また、陰極ステム
3にはチヨークコイル22とコンデンサ23から
なるフイルタが接続され、このフイルタ及び陰極
ステム3を覆うようにシールドボツクス24が配
設されている。尚、図中の符号25は絶縁筒、2
6は導風用のカバー、27はガスケツト、28,
29は取付用ねじである。冷却風は、矢印fの如
く上方からカバー26内に導入され、ラジエータ
21に導かれる。
Hereinafter, embodiments of this invention will be described in detail with reference to the drawings. The magnetron of this invention is constructed as shown in FIGS. 1 and 2, and a magnetron oscillating section main body 1 has an anode cylinder 2 containing a pane and a cathode, a cathode stem 3, and an output section 4. A pair of annular ferrite magnets 5 and 6 are arranged on both sides of the anode cylinder 2 in the axial direction so as to coaxially surround a part of the cathode stem 3 and the output part 4, respectively, and a magnetic flux concentration plate They are magnetically connected via 7 and 8. Furthermore, frame-shaped yokes 9 and 10 are arranged to surround the anode cylinder 2, magnetic flux concentration magnetic plates 7 and 8, and magnets 5 and 6, and the screws 1
1 and 12, and are magnetically coupled in contact with the outer magnetic pole surfaces of magnets 5 and 6, respectively. A vertically blown radiator 21 consisting of a plurality of cooling fins is fixed to the outer periphery of the anode cylinder 2 . A space S without a radiator fin is formed in a portion of the yokes 9, 10 that is blocked from the road by the cooling air, particularly by the upper plate portion 9a. Further, a filter consisting of a choke coil 22 and a capacitor 23 is connected to the cathode stem 3, and a shield box 24 is disposed to cover the filter and the cathode stem 3. In addition, the reference numeral 25 in the figure is an insulating cylinder, 2
6 is a cover for wind guidance, 27 is a gasket, 28,
29 is a mounting screw. Cooling air is introduced into the cover 26 from above as indicated by an arrow f, and is guided to the radiator 21.

そこで、ヨークの上板部9aで遮られるととも
にラジエータフインのない両側空間Sに、温度上
昇によつて磁束が減少する特性を有する強磁性
体、すなわち第2図に示す長方形の整磁鋼板1
3,14が、両磁石5,6間であつて且つ前記陽
極円筒2の両側外周近傍に軸方向に平行に配設さ
れている。そしてこれら整磁鋼板はそれぞれ金属
支持片15,16及びリベツト17,18,1
9,20によりヨーク9に伝熱的に支持されてい
る。尚、整磁鋼とは常温から約400℃の範囲で、
温度上昇に伴ない透磁率が減少する高導磁率材で
ある。
Therefore, in the space S on both sides that is blocked by the upper plate part 9a of the yoke and has no radiator fin, a ferromagnetic material having a property that the magnetic flux decreases as the temperature rises, that is, the rectangular magnetic shunt steel plate 1 shown in FIG.
3 and 14 are arranged parallel to the axial direction between the two magnets 5 and 6 and near the outer periphery on both sides of the anode cylinder 2. These magnetic shunt steel plates have metal support pieces 15, 16 and rivets 17, 18, 1, respectively.
It is thermally supported by the yoke 9 by 9 and 20. In addition, magnetic shunt steel has a temperature range from room temperature to approximately 400℃.
It is a high magnetic permeability material whose magnetic permeability decreases as the temperature rises.

以上のようにこの考案のマグネトロンは、フエ
ライト磁石に接するとともにこれをとり囲むヨー
クの内側に、ヨーク上板部により冷却風路から遮
られるとともに縦吹き型ラジエータのない空間が
形成され、この空間に板状の整磁鋼板が陽極円筒
近傍に軸と平行して位置され、しかも金属支持片
によりヨークの内側壁に伝熱的に支持されてい
る。これによつて整磁鋼板が配置された空間には
冷却風が殆ど入らず、したがつて整磁鋼板は冷却
風の強弱の如何に拘らず陽極円筒からの輻射熱お
よびヨークおよび金属支持片を介して伝導される
熱によりフエライト磁石の温度変化に比較的よく
追随して変化する。このため整磁鋼板の透磁率が
変化し陽極円筒内に供給される磁束密度が一定化
される。このようにフエライト磁石を用いた縦吹
型マグネトロンで、磁気回路の温度特性を充分に
補償することができる。そして、整磁鋼板の位
置、大きさにより温度補償値を任意に選べ、比較
的小さい体積の整磁鋼で充分である。例えば出力
600Wの電子レンジ用マグネトロンで補償磁界
100G(ebm変化で250V相当)に必要な整磁鋼の
量は、20g以下である。
As described above, the magnetron of this invention has a space inside the yoke that is in contact with and surrounds the ferrite magnet, which is blocked from the cooling air path by the yoke upper plate and has no vertically blown radiator. A plate-shaped magnetic shunt steel plate is positioned near the anode cylinder in parallel with the axis, and is thermally supported on the inner wall of the yoke by a metal support piece. As a result, almost no cooling air enters the space where the magnetic shunt steel plate is placed, and therefore, regardless of the strength of the cooling air, the magnetic shunt steel plate receives radiant heat from the anode cylinder and passes through the yoke and metal support piece. The temperature changes relatively well following the temperature change of the ferrite magnet due to the heat conducted by the ferrite magnet. Therefore, the magnetic permeability of the magnetic shunt steel plate changes, and the magnetic flux density supplied to the anode cylinder becomes constant. In this way, the vertical blow type magnetron using ferrite magnets can sufficiently compensate for the temperature characteristics of the magnetic circuit. The temperature compensation value can be arbitrarily selected depending on the position and size of the magnetic shunt steel plate, and a relatively small volume of magnetic shunt steel is sufficient. For example output
Compensating magnetic field with 600W microwave magnetron
The amount of magnetic shunt steel required for 100G (equivalent to 250V with EBM change) is 20g or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案はの実施例に係るマグネトロ
ンを示す断面図、第2図は第1図のマグネトロン
に用いる整磁鋼板を示す斜視図である。 2……陽極円筒、5,6……フエライト永久磁
石、9,10……ヨーク、13,14……整磁鋼
板、15,16……金属支持片、21……ラジエ
ータ、S……ラジエータのない空間。
FIG. 1 is a sectional view showing a magnetron according to an embodiment of this invention, and FIG. 2 is a perspective view showing a magnetic shunt steel plate used in the magnetron of FIG. 1. 2...Anode cylinder, 5,6...Ferrite permanent magnet, 9,10...Yoke, 13,14...Magnetic shunt steel plate, 15,16...Metal support piece, 21...Radiator, S...Radiator No space.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 陽極円筒の軸方向両側にそれぞれフエライト永
久磁石を配設し、更に陽極円筒外周に縦吹き型ラ
ジエータを取付け、且つ前記両磁石を連結するよ
うに枠状ヨークを設けてなるマグネトロンにおい
て、上記ヨークの内側に上記縦吹き型ラジエータ
のない空間を形成し、温度上昇によつて透磁率が
減少する特性を有する整磁鋼板を、上記ラジエー
タのない空間に長手方向が上記陽極円筒の軸方向
と平行になる如く金属支持片で上記ヨークの内側
壁に伝熱的に支持させて配置してなることを特徴
とするマグネトロン。
In a magnetron, a ferrite permanent magnet is arranged on both sides of an anode cylinder in the axial direction, a vertically blown radiator is attached to the outer periphery of the anode cylinder, and a frame-shaped yoke is provided to connect both the magnets. A space without the vertical blow type radiator is formed inside, and a magnetic shunt steel plate having a characteristic that magnetic permeability decreases as the temperature rises is placed in the space without the radiator, the longitudinal direction of which is parallel to the axial direction of the anode cylinder. A magnetron characterized in that the magnetron is disposed so as to be thermally supported by a metal support piece on the inner wall of the yoke.
JP17755979U 1979-12-21 1979-12-21 Expired JPS6328514Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17755979U JPS6328514Y2 (en) 1979-12-21 1979-12-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17755979U JPS6328514Y2 (en) 1979-12-21 1979-12-21

Publications (2)

Publication Number Publication Date
JPS5695054U JPS5695054U (en) 1981-07-28
JPS6328514Y2 true JPS6328514Y2 (en) 1988-08-01

Family

ID=29688136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17755979U Expired JPS6328514Y2 (en) 1979-12-21 1979-12-21

Country Status (1)

Country Link
JP (1) JPS6328514Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353332A (en) * 2004-06-09 2005-12-22 New Japan Radio Co Ltd Magnetron

Also Published As

Publication number Publication date
JPS5695054U (en) 1981-07-28

Similar Documents

Publication Publication Date Title
US4048542A (en) Permanent magnets of different magnetic materials for magnetrons
JPS6328514Y2 (en)
US4338545A (en) Magnetron unit with a magnetic field adjusting means
JPS6322605B2 (en)
US4387323A (en) Permanent magnet structure for linear-beam electron tubes
US3809950A (en) Magnetron
JPS5841717Y2 (en) magnetron
JPS586134Y2 (en) magnetron
US4395657A (en) Magnetron unit with a magnetic field compensating means
JPS5840522Y2 (en) magnetron
GB632210A (en) Improvements in or relating to magnetrons
JPS5811003Y2 (en) magnetron
JPS5455164A (en) Cathode-ray tube of electromagnetic focusing type
JPS6129157Y2 (en)
JPS6026441Y2 (en) magnetron
JPS6117332B2 (en)
GB790405A (en) Velocity-modulated electron tube apparatus
JPS6323865Y2 (en)
JP3164907B2 (en) Magnetron equipment
JPH02112132A (en) Magnetron device
JPS6019355Y2 (en) microwave heating device
JPH05225920A (en) Magnetron device
JPS586137Y2 (en) magnetron device
JPH0668804A (en) Magnetron
JPH0722841Y2 (en) Magnetron