JPS6328504B2 - - Google Patents

Info

Publication number
JPS6328504B2
JPS6328504B2 JP57053280A JP5328082A JPS6328504B2 JP S6328504 B2 JPS6328504 B2 JP S6328504B2 JP 57053280 A JP57053280 A JP 57053280A JP 5328082 A JP5328082 A JP 5328082A JP S6328504 B2 JPS6328504 B2 JP S6328504B2
Authority
JP
Japan
Prior art keywords
type
znte
light
layer
gasb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57053280A
Other languages
Japanese (ja)
Other versions
JPS58170079A (en
Inventor
Sadao Adachi
Hiroshi Kanbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57053280A priority Critical patent/JPS58170079A/en
Publication of JPS58170079A publication Critical patent/JPS58170079A/en
Publication of JPS6328504B2 publication Critical patent/JPS6328504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は可視光領域を含む広範囲の波長領域
(0.55μm〜1.8μm)で使用可能な半導体受光素子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor light receiving element that can be used in a wide wavelength range (0.55 μm to 1.8 μm) including the visible light region.

従来技術と問題点 可視光を受光することができる従来の素子とし
ては、GdS結晶を用いた光起電力型,光導電型の
素子、或はZnTeとZnSeとのヘテロ接合を利用し
た素子がある。このうち、CdS結晶を用いた素子
は、光から電気への交換効率及び応答特性に問題
がある。また、ZnTeとZnSeとのヘテロ接合を利
用した素子は、両者の格子定数(ZnTe=6.103
Å,ZnSe=5.667Å)が大きく異なるものである
から、格子不整合に起因した欠点(例えば、素子
の機械的な歪みに伴なう信頼性の低下、界面準位
密度の増加に伴なう耐逆電圧特性の低下等)があ
つた。また波長領域も可視光から赤外光に亘る非
常に広い受光素子はなかつた。
Conventional technology and problems Conventional devices that can receive visible light include photovoltaic type and photoconductive type devices using GdS crystals, and devices using heterojunctions of ZnTe and ZnSe. . Among these, elements using CdS crystals have problems with light-to-electricity exchange efficiency and response characteristics. In addition, an element using a heterojunction of ZnTe and ZnSe has a lattice constant of both (ZnTe=6.103
Å, ZnSe = 5.667 Å), so defects caused by lattice mismatch (e.g., decreased reliability due to mechanical distortion of the device, increased interface state density) (decreased reverse voltage characteristics, etc.). Furthermore, there has been no light-receiving element with a very wide wavelength range from visible light to infrared light.

発明の目的 本発明は前述の如き欠点を改善したものであ
り、その目的は、信頼性,応答特性に優れ、且つ
可視光領域を含む広範囲の波長領域(0.55μm〜
1.8μm)で使用可能な半導体受光素子を提供する
ことにある。以下実施例について詳細に説明す
る。
Purpose of the Invention The present invention is to improve the above-mentioned drawbacks.The purpose of the present invention is to provide excellent reliability and response characteristics, and a wide wavelength range (from 0.55 μm to 0.55 μm) including the visible light region.
1.8μm) is provided. Examples will be described in detail below.

発明の実施例 第1図は本発明の実施例の断面図であり、1は
p形ZnTe基板、2はp形GaSb層、3はn形
GaSb層、4はn側電極、5はp側電極、6は凹
部であり、該凹部6より光を入射させるものであ
る。尚、同図に示した素子は逆バイアスを印加し
ておき、光が入射することにより増加する逆方向
電流に基づいて光の検出を行なうものである。第
2図は第1図に示した素子のエネルギーバンド図
であり、光の入射により励起されたキヤリアのう
ち、少数キヤリアであるp形GaSb層2の電子、
n形GaSb層3の正孔が反対導電領域に向つて移
動し、これにより逆方向電流が増加するものであ
る。
Embodiment of the Invention FIG. 1 is a cross-sectional view of an embodiment of the present invention, in which 1 is a p-type ZnTe substrate, 2 is a p-type GaSb layer, and 3 is an n-type
In the GaSb layer, 4 is an n-side electrode, 5 is a p-side electrode, and 6 is a recess through which light is incident. Note that the element shown in the figure is configured to apply a reverse bias and detect light based on a reverse current that increases when light is incident. FIG. 2 is an energy band diagram of the device shown in FIG. 1. Among carriers excited by incident light, electrons in the p-type GaSb layer 2, which are minority carriers,
The holes in the n-type GaSb layer 3 move toward the opposite conductivity region, thereby increasing the reverse current.

第1図に示した素子を製造するにはp形ZnTe
基板1上に気相成長法等の手段により、p形
GaSb層2、n形GaSb層3を順次成長させ、次に
p形ZnTe基板1の裏面にマスクを設け、次に例
えばHCl:HNO3=1:1のエツチング液を用い
てエツチングを行ない、凹部6を形成する。そし
て、この後、n側電極4、p形電極5を形成し、
第1図に示した素子を得る。尚、ZnTeは自己補
償作用の為、p形の結晶しか作成できないが、気
相成長法,液相成長法により、品質の良い結晶を
得ることができる。
To manufacture the device shown in Figure 1, p-type ZnTe
A p-type film is formed on the substrate 1 by means such as a vapor phase growth method.
A GaSb layer 2 and an n-type GaSb layer 3 are grown in sequence, and then a mask is provided on the back surface of the p-type ZnTe substrate 1, and then etching is performed using, for example, an etching solution of HCl:HNO 3 =1:1 to form the recesses. form 6. After that, an n-side electrode 4 and a p-type electrode 5 are formed,
The device shown in FIG. 1 is obtained. Note that ZnTe has a self-compensating effect, so only p-type crystals can be produced, but high-quality crystals can be obtained by vapor phase growth or liquid phase growth.

第3図は第1図の光電変換素子の光波長に対す
る外部量子効率を示したものであり、同図から明
らかなように、第1図の光電変換素子は、p形
ZnTe基板1の材料を特にp形ZnTeを使用して、
バンドギヤツプの大きな―属結晶を使用して
いるので、p形GaSb層2とn形GaSb層3のpn
接合面で検出した可視光、赤外光がいずれも第1
層のp形ZnTe基板1を透過して、可視域(緑色)
である波長が0.55μmの光から赤外域である波長
が1.8μmの光まで、広範囲の波長領域の光を受光
することができる。また第1図に示した素子は、
p形ZnTe基板1上にp形GaSb層2、n形GaSb
層3を順次成長させたものであり、ZnTeとGaSb
との格子定数(ZnTe=6.103Å,GaSb=6.096
Å)は、ほぼ等しいものであるから、ZnTe―
ZnSeのヘテロ接合を利用した従来素子のように、
素子に歪みが生じたり、或は界面準位密度が大と
なるようなことはなく、従つて、素子の信頼性、
耐逆電圧特性を向上させることができる。また、
第1図の素子は逆方向電流を利用して光を検出す
るようにしているものであるから、CdS結晶を利
用した光起電力型,光導電型の従来素子よりも応
答特性を向上させることができる。
Figure 3 shows the external quantum efficiency of the photoelectric conversion element in Figure 1 with respect to the optical wavelength, and as is clear from the figure, the photoelectric conversion element in Figure 1 is of the p-type.
Especially using p-type ZnTe as the material of the ZnTe substrate 1,
Since a metal crystal with a large bandgap is used, the pn of p-type GaSb layer 2 and n-type GaSb layer 3 is
Both visible light and infrared light detected at the bonding surface are the first
Visible range (green) transmitted through the p-type ZnTe substrate 1 of the layer
It can receive light in a wide range of wavelengths, from light with a wavelength of 0.55 μm to light with a wavelength of 1.8 μm in the infrared region. Moreover, the element shown in FIG.
P-type GaSb layer 2 and n-type GaSb layer on p-type ZnTe substrate 1
Layer 3 is grown sequentially, and ZnTe and GaSb
The lattice constants (ZnTe=6.103Å, GaSb=6.096
Å) are almost equal, so ZnTe―
Like conventional devices using ZnSe heterojunctions,
There is no distortion in the device or an increase in interface state density, and therefore the reliability of the device is improved.
Reverse voltage resistance characteristics can be improved. Also,
The device shown in Figure 1 uses reverse current to detect light, so it has improved response characteristics compared to conventional photovoltaic and photoconductive devices that use CdS crystals. Can be done.

尚、実施例に於いては、p形ZnTe基板1上に
p形GaSb層2、n形GaSb層3を設けるようにし
たが、p形,n形GaSb層2,3の代わりにp形,
n形Ga0.98In0.02Sb層を設けるようにしても良い。
Ga0.98In0.02Sbはその格子定数がZnTeの格子定数
と厳密に等しいものであるから、前述したと同様
に、従来素子と比較して信頼性,耐逆電圧特性を
向上させることができる。また、Ga0.98In0.02Sb
の禁制帯幅はGaSbの禁制帯幅とほぼ等しいもの
であり(Ga0.98In0.02Sb=0.68eV,GaSb=
0.69eV)、素子の受光範囲は素子材料の禁制帯幅
により決定されるものであるから、Ga0.98In0.02
Sbを用いた受光素子も、GaSbを用いた受光素子
とほぼ同様の受光波長範囲を有することになる。
また、実施例に於いては、p形ZnTe基板上にp
形GaSb層,n形GaSb層を設けるようにしたが、
p形ZnTe基板上に直接n形GaSb層、或はn形
Ga0.98In0.02Sb層を設けるようにしても良いこと
は勿論である。また、格子定数がZnTeとほぼ等
しいものであればGa0.98In0.02Sb以外のGa1-xInx
Sbを用いても良いことは勿論である。また、実
施例は通常のフオトダイオードに本発明を適用し
た場合についてのものであるが、アバランシエフ
オトダイオード等にも本発明を適用できることは
勿論である。
In the embodiment, the p-type GaSb layer 2 and the n-type GaSb layer 3 were provided on the p-type ZnTe substrate 1, but instead of the p-type and n-type GaSb layers 2 and 3, p-type,
An n-type Ga 0.98 In 0.02 Sb layer may also be provided.
Since the lattice constant of Ga 0.98 In 0.02 Sb is strictly equal to that of ZnTe, the reliability and reverse voltage resistance characteristics can be improved compared to conventional elements, as described above. Also, Ga 0.98 In 0.02 Sb
The forbidden band width of is almost equal to that of GaSb (Ga 0.98 In 0.02 Sb=0.68eV, GaSb=
Ga 0.98 In 0.02
A light-receiving element using Sb also has a light-receiving wavelength range that is almost the same as a light-receiving element using GaSb.
In addition, in the example, p-type ZnTe substrate is
Although a type GaSb layer and an n type GaSb layer were provided,
Direct n-type GaSb layer on p-type ZnTe substrate or n-type
Of course, a Ga 0.98 In 0.02 Sb layer may also be provided. Also, if the lattice constant is almost equal to ZnTe, Ga 0.98 In 0.02 Ga 1-x In x other than Sb
Of course, Sb may also be used. In addition, although the embodiments relate to the case where the present invention is applied to a normal photodiode, it goes without saying that the present invention can also be applied to an avalanche photodiode and the like.

発明の効果 以上説明したように、本発明はZnTeとGaSbと
のヘテロ接合、或はZnTeとZnTeとほぼ格子定数
の等しいGaInSbとのヘテロ接合を利用して受光
素子を構成したものであるから、可視光領域を含
む広範囲の波長領域(0.55μm〜1.8μm)での使
用が可能であり、且つ信頼性,素子特性を向上で
きる利点がある。
Effects of the Invention As explained above, the present invention configures a light receiving element using a heterojunction between ZnTe and GaSb, or a heterojunction between ZnTe and GaInSb, which has approximately the same lattice constant. It can be used in a wide wavelength range (0.55 μm to 1.8 μm) including the visible light region, and has the advantage of improving reliability and device characteristics.

また、この素子は応答波長範囲が0.55μmから
1.8μmと非常に広い為、新しい可視領域の受光素
子として、或は最近目ざましい発展をとげている
光通信用のGaAs/GaAlAsレーザやInGaAsP/
InPレーザの光の受光素子への応用が期待され
る。
Additionally, this element has a response wavelength range from 0.55 μm.
Because it is extremely wide at 1.8 μm, it can be used as a new photodetector in the visible region, or in GaAs/GaAlAs lasers and InGaAsP/
It is expected that the InP laser will be applied to light receiving elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面図、第2図は第
1図に示した素子のエネルギーバンド図、第3図
は光の波長と外部量子効率との関係を示す図であ
る。 1はp形ZnTe基板、2はp形GaSb層、3はp
形GaSb層、4はn側電極、5はp側電極、6は
凹部である。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is an energy band diagram of the element shown in FIG. 1, and FIG. 3 is a diagram showing the relationship between the wavelength of light and external quantum efficiency. 1 is p-type ZnTe substrate, 2 is p-type GaSb layer, 3 is p-type
4 is an n-side electrode, 5 is a p-side electrode, and 6 is a recess.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に直接、或は、p形GaSb層或はZnTe
とほぼ格子定数の等しいp形GaInSb三元化合物
半導体層を介して、n形GaSb層或はZnTeとほぼ
格子定数の等しいn形GaInSb三元化合物半導体
層を設けた受光素子において、該基板をp形
ZeTeで形成したことを特徴とする半導体受光素
子。
1 Directly on the substrate or p-type GaSb layer or ZnTe
In a light-receiving element in which an n-type GaSb layer or an n-type GaInSb ternary compound semiconductor layer having a lattice constant substantially equal to that of ZnTe is provided via a p-type GaInSb ternary compound semiconductor layer having a lattice constant substantially equal to that of ZnTe, the substrate is shape
A semiconductor light-receiving element characterized by being formed of ZeTe.
JP57053280A 1982-03-31 1982-03-31 Semiconductor photodetecting element Granted JPS58170079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053280A JPS58170079A (en) 1982-03-31 1982-03-31 Semiconductor photodetecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053280A JPS58170079A (en) 1982-03-31 1982-03-31 Semiconductor photodetecting element

Publications (2)

Publication Number Publication Date
JPS58170079A JPS58170079A (en) 1983-10-06
JPS6328504B2 true JPS6328504B2 (en) 1988-06-08

Family

ID=12938321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053280A Granted JPS58170079A (en) 1982-03-31 1982-03-31 Semiconductor photodetecting element

Country Status (1)

Country Link
JP (1) JPS58170079A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843195A1 (en) * 1988-12-22 1990-06-28 Hoechst Ag METHOD FOR PRODUCING STORAGE-STABLE, EASILY SOLUBLE BLEACHING ACTIVATOR GRANULES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320881A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Photo semiconductor device
JPS5475995A (en) * 1977-11-10 1979-06-18 Thomson Csf Electron avalanche photodiode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320881A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Photo semiconductor device
JPS5475995A (en) * 1977-11-10 1979-06-18 Thomson Csf Electron avalanche photodiode

Also Published As

Publication number Publication date
JPS58170079A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
JP5857774B2 (en) Semiconductor photo detector
JPH022691A (en) Semiconductor light receiving device
JPH0389564A (en) Photodiode
US5942771A (en) Semiconductor photodetector
JPH01183174A (en) Semiconductor photodetctor
JPH038117B2 (en)
US4399448A (en) High sensitivity photon feedback photodetectors
JPH07118548B2 (en) III-V group compound semiconductor PIN photo diode
US4729004A (en) Semiconductor photo device
JPS6328504B2 (en)
JPH05291605A (en) Semiconductor photodetector
JPH08204215A (en) Series connected solar cell
Susa et al. Planar type vapor-phase epitaxial In 0.53 Ga 0.47 As photodiode
JPH0567802A (en) Semiconductor photo detector
JPH04342174A (en) Semiconductor photoelectric receiving element
JPH051629B2 (en)
JPS59149070A (en) Photodetector
JPH0437591B2 (en)
JP5391945B2 (en) Light receiving element and epitaxial wafer
JPH0265279A (en) Semiconductor photodetecting element
JP2776228B2 (en) Manufacturing method of semiconductor light receiving element
JPS6138872B2 (en)
JPH03165071A (en) Semiconductor photodetector
JP2825930B2 (en) Semiconductor light receiving element
JP2841876B2 (en) Semiconductor light receiving element