JPS6328494A - Pressurization type bioreactor - Google Patents

Pressurization type bioreactor

Info

Publication number
JPS6328494A
JPS6328494A JP61172392A JP17239286A JPS6328494A JP S6328494 A JPS6328494 A JP S6328494A JP 61172392 A JP61172392 A JP 61172392A JP 17239286 A JP17239286 A JP 17239286A JP S6328494 A JPS6328494 A JP S6328494A
Authority
JP
Japan
Prior art keywords
carrier
cylinder
tank body
carrier part
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61172392A
Other languages
Japanese (ja)
Inventor
Katsumi Iwasaki
岩崎 克己
Toshiaki Ueda
敏明 植田
Kunio Miyasaka
邦夫 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61172392A priority Critical patent/JPS6328494A/en
Publication of JPS6328494A publication Critical patent/JPS6328494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To improve treatment efficiency by introducing and circulating raw water to a flow type aeration tank where carriers formed by sticking microorganisms to inorg. materials are suspended and subjecting the raw water to a biological decomposing and cleaning treatment in the pressurized state. CONSTITUTION:A tank body 1 is formed by fixing a hollow inverted conical body 4 to the bottom end of a hollow cylindrical body 3 having a perpendicular shaft and a cap 2. A gas-liquid boundary face 7 segmenting a gas part 5 and a liquid part 6 is formed in said body 1. An inside cylinder 8 and outside cylinder 9 are coaxially suspended and provided to the cap 2 apart at a space from the bottom of the body 1. An intermediate cylinder 10 is coaxially erected to the conical body 4 between the inside cylinder and the outside cylinder in such a manner that the top end thereof is positioned below the gas-liquid boundary face 7. A 1st carrier part 11 and 2nd carrier part 12 are respectively formed to the inside and outside of the intermediate cylinder and an air lift 13 which is opened at the bottom end and is connected to a compressor 16 is provided to the carrier part 11. An air diffusion pipe 19 is provided to the carrier part 12 and the upper part of the inside cylinder and the air diffusion pipe are connected via a blower 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微生物を無機′+yJ質に付着させ若しくは有
機物質内に包括させてなる担体を懸濁させた流動床式曝
気槽内に原水を導入循環させて、加圧状態において原水
を生物学的に分解浄化処理する加圧型パイオリアククー
に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention involves supplying raw water to a fluidized bed type aeration tank in which a carrier consisting of microorganisms attached to an inorganic substance or encapsulated in an organic substance is suspended. This invention relates to a pressurized pipe reactor that biologically decomposes and purifies raw water in a pressurized state by introducing and circulating the water.

〔従来の技術〕[Conventional technology]

近年下水処理の分野において、微生物や酵素。 In recent years, microorganisms and enzymes have been used in the field of sewage treatment.

動植物細胞など生体触媒を利用する所謂バイオリアクタ
ーが広く使用されつつあり、下水等の廃水浄化効率も徐
々に向上する傾向にある。上記バイオリアクターとして
は例えば特開昭60−122095号公報に記載のよう
なものがある。すなわち、原水を流動床式の曝気槽に導
入して処理する場合に。
So-called bioreactors that utilize biocatalysts such as animal and plant cells are becoming widely used, and the purification efficiency of wastewater such as sewage is gradually improving. As the above-mentioned bioreactor, there is, for example, one described in JP-A-60-122095. In other words, when raw water is introduced into a fluidized bed type aeration tank for treatment.

槽内には微生物が付着した担体が懸濁しており。In the tank, carriers with attached microorganisms are suspended.

エアリフト管によって前記原水と共に槽内を循環流動さ
せ、この循環流動している間に原水は微生物の付着した
担体と接触して生物学的に分解処理するものである。
The raw water is circulated through the tank along with the raw water through an air lift pipe, and during this circulating flow, the raw water comes into contact with carriers on which microorganisms are attached, and is biologically decomposed.

〔発明が解決しようとする問題点〕 上記従来のバイオリアクターにおいては、一般に曝気槽
が大気圧下にあるため、酸素吸収効率が8〜10%の低
水準に留まり、処理効率が低いという問題点がある。ま
た上記生物学的分解処理を単一の曝気槽で実施した場合
には、原水の短絡が起こって未処理状態の原水がそのま
ま排出される現象を惹起する。また高BOD?a度と低
BOD濃度とでは、微生物の居住環境が異なること等の
理由から、曝気処理を2槽に区分して実施するのが一般
である。従って所要面積の増大2作業の煩雑化を招来す
るという問題点がある。
[Problems to be Solved by the Invention] In the conventional bioreactors described above, the aeration tank is generally under atmospheric pressure, so the oxygen absorption efficiency remains at a low level of 8 to 10%, resulting in a low treatment efficiency. There is. Furthermore, when the above-mentioned biological decomposition treatment is carried out in a single aeration tank, a short circuit occurs in the raw water, causing a phenomenon in which the untreated raw water is discharged as is. High BOD again? Because the living environments of microorganisms are different between a degree and low BOD concentration, aeration treatment is generally carried out in two tanks. Therefore, there are problems in that the required area increases, and the work becomes complicated.

本発明は、上記従来技術に存在する問題点を解消し、構
造が簡単かつコンパクトであると共に。
The present invention solves the problems existing in the above-mentioned prior art, and has a simple and compact structure.

処理効率の高い加圧型バイオリアクターを提供すること
を目的とする。
The purpose is to provide a pressurized bioreactor with high processing efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来技術の問題点解決のため2本発明では。 In order to solve the above-mentioned problems of the prior art, the present invention has two aspects.

A、垂直軸および蓋を有する中空間状体の下端に中空倒
立錐状体を固着してタンク本体を形成する。
A. A hollow inverted conical body is fixed to the lower end of a hollow hollow body having a vertical shaft and a lid to form a tank body.

B、前記タンク本体内には上方の気体部と下方の液体部
とを区分する気液界面を形成する。
B. A gas-liquid interface is formed in the tank body to separate an upper gas portion and a lower liquid portion.

C0前記タンク本体を形成する蓋にはタンク本体底部と
間隙を介して各々内筒および外筒を同軸的に懸吊して設
ける。
C0 An inner tube and an outer tube are each coaxially suspended from the lid forming the tank body with a gap between them and the bottom of the tank body.

D、タンク本体底部を形成する錐状体には前記内筒と外
筒との間に中間筒を、その上端部が前記気液界面の下方
に位置するよう同軸的に立設する。
D. In the conical body forming the bottom of the tank body, an intermediate cylinder is installed coaxially between the inner cylinder and the outer cylinder so that its upper end is located below the gas-liquid interface.

E、前記中間筒の内外部に各々第1の担体部および第2
の担体部を形成する。
E, a first carrier part and a second carrier part are provided inside and outside the intermediate cylinder, respectively.
form a carrier part.

F、第1の担体部には各々上下端を前記気体部および液
体部に開口させ、かつコンプレッサーと接続したエアリ
フトを設ける。
F. The first carrier section is provided with an air lift whose upper and lower ends are open to the gas section and the liquid section, respectively, and which are connected to a compressor.

G、前記第2の担体部下部には噴気管を設↓プる。G. A fumarole pipe is installed at the bottom of the second carrier section.

14、前記内筒上部と噴気管とをブロワ−を介して接続
する。
14. Connect the upper part of the inner cylinder and the blow pipe via a blower.

■、前記内筒上部に原水供給管を、前記タンク本体外壁
に処理水排出管を各々設ける。
(2) A raw water supply pipe is provided on the upper part of the inner cylinder, and a treated water discharge pipe is provided on the outer wall of the tank body.

という技術的手段を採用したのである。This technical method was adopted.

〔作用〕[Effect]

上記の構成により、タンク本体内に原水を圧送注入し、
タンク本体内の圧力を1kg/cm”を越えた加圧状態
、好ましくは2〜3kg/am”に保持して1図の矢印
にて示すように流動させる。まず原水は第1の担体部に
おいて1例えばBOD>農度が1.000 p、p、m
、から200〜300 p、p、m、に低下し。
With the above configuration, raw water is pumped and injected into the tank body,
The pressure inside the tank body is maintained at a pressure exceeding 1 kg/cm'', preferably 2 to 3 kg/am'', and the flow is caused as shown by the arrow in FIG. First, the raw water is in the first carrier part such that 1, for example, BOD>Agricultural degree is 1.000 p, p, m
, to 200-300 p, p, m.

次に第2の担体部において、噴気管からの空気によって
曝気され、BOD?M度が例えば50p、p、m。
Next, in the second carrier section, it is aerated with air from the fumarole pipe, and the BOD? For example, the M degree is 50p, p, m.

に低下して処理水として排出されるのである。なお担体
はタンク本体中心部のエアリフト内を原水と共に上昇す
る間に、有機、無機担体相互の接触・摺擦により1表面
の付着物を剥離させて担体自身の活性を維持する。
It is discharged as treated water. Note that while the carrier rises together with the raw water in the airlift at the center of the tank body, the organic and inorganic carriers come into contact with each other and rub against each other, thereby peeling off deposits on one surface and maintaining the activity of the carrier itself.

〔実施例〕〔Example〕

図は本発明の実施例を模式的に示す縦断面図である。図
において1はタンク本体であり、M2を有する中空円筒
体3と、中空倒立円錐体4とを固着して形成し、軸を垂
直状態として設置する。タンク本体1内の上方には気体
部5を、下方には液体部6を各々設ける。7は気液界面
である。次に蓋2には内筒8および外筒9を各々タンク
本体1と同軸的に懸吊して設けると共に、タンク本体1
の底部を形成する中空倒立円錐体4と間隙を設ける。次
に中空倒立円錐体4には、前記内筒8および外筒9との
間に延びる中間筒10を、その上端部が前記気液界面7
より下方に位置するように。
The figure is a vertical sectional view schematically showing an embodiment of the present invention. In the figure, 1 is a tank body, which is formed by fixing a hollow cylindrical body 3 having M2 and a hollow inverted conical body 4, and is installed with the shaft in a vertical position. A gas part 5 is provided in the upper part of the tank body 1, and a liquid part 6 is provided in the lower part. 7 is an air-liquid interface. Next, an inner tube 8 and an outer tube 9 are each provided on the lid 2 so as to be suspended coaxially with the tank body 1.
A gap is provided with the hollow inverted cone 4 forming the bottom of the cone. Next, the hollow inverted cone 4 is provided with an intermediate cylinder 10 extending between the inner cylinder 8 and the outer cylinder 9, the upper end of which is connected to the gas-liquid interface.
To be located further down.

前記タンク本体1と同軸的に設ける。上記の構成により
、内筒8の下方および中間筒10の内方下部に第1の担
体部11.ならびに中間筒10と外筒9との中間下部に
第2の担体部12を各々形成する。次に第1の担体部1
1の中央部には、上下端を前記気体部5および液体部6
の下方に開口させたエアリフト13を設ける。エアリフ
ト13の下端部近傍にはエア室14を設けると共に、配
管15を介してコンプレッサー16と接続し、エアリフ
ト13内に圧縮空気を注入可能に形成する。
It is provided coaxially with the tank body 1. With the above configuration, the first carrier portion 11. In addition, a second carrier portion 12 is formed at an intermediate lower portion between the intermediate cylinder 10 and the outer cylinder 9. Next, the first carrier part 1
1, the upper and lower ends are connected to the gas section 5 and the liquid section 6.
An air lift 13 is provided which opens downward. An air chamber 14 is provided near the lower end of the air lift 13 and connected to a compressor 16 via a pipe 15 so that compressed air can be injected into the air lift 13.

なおエアリフト13の上端部には下端部を気液界面7に
臨ませた円筒体17を設けると共に、!!2頭円錐状に
形成した担体移動車18を気液界面7近傍に固着する。
Note that a cylindrical body 17 is provided at the upper end of the air lift 13, and the lower end faces the gas-liquid interface 7. ! A carrier moving vehicle 18 formed in the shape of a two-headed cone is fixed near the gas-liquid interface 7.

次に19は噴気管であり、第2の担体部12の下部に設
けると共に、ブロワー20を介装した配管21を介して
、内筒8の上部と噴気管19とを接続する。また内筒8
の上部には圧送用のポンプ22を介装した原水供給管2
3を接続する。24は逆止弁、25はバイパス管路であ
り、弁26を介装するど共に、タンク本体1と前記原水
供給管23とを接続する。27は処理水排出管であり、
タンク本体1の外壁に設けると共に3弁2日を介装する
。次に29は液面計であり、タンク本体1のM2に設け
ると共に、前記弁26と連動制御可能に接続する。内筒
8の上方の蓋2には、圧力スイッチ30および弁31を
設けると共に2両者を連動制御可能に接続する。
Next, reference numeral 19 denotes a fumarole pipe, which is provided at the lower part of the second carrier portion 12 and connects the upper part of the inner cylinder 8 and the fume pipe 19 via a pipe 21 in which a blower 20 is interposed. Also, the inner cylinder 8
A raw water supply pipe 2 with a pressure pump 22 interposed in the upper part of the
Connect 3. Reference numeral 24 designates a check valve, and 25 designates a bypass pipe line, which connects the tank body 1 and the raw water supply pipe 23 with a valve 26 interposed therebetween. 27 is a treated water discharge pipe;
It is installed on the outer wall of the tank body 1, and three valves are installed. Next, 29 is a liquid level gauge, which is provided at M2 of the tank body 1 and is connected to the valve 26 so that it can be controlled in conjunction with the valve 26. A pressure switch 30 and a valve 31 are provided on the lid 2 above the inner cylinder 8, and the two are connected so that they can be controlled in conjunction with each other.

上記の構成により2次に作用について記述する。The quadratic effect will be described with the above configuration.

まず原水圧送用のポンプ22を作動させて原水供給管2
3からタンク本体1内に原水を注入し、気体部5および
液体部6を形成する。なお第1の担体部11と第2の担
体部12には、担体を予め懸濁させておく。担体は有機
担体と無機担体との混合によって形成すると共に、充填
量は例えば各々有効容積の15容量%および10容量%
とする。
First, the raw water supply pipe 2 is operated by operating the pump 22 for pressure feeding the raw water.
3, raw water is injected into the tank body 1 to form a gas portion 5 and a liquid portion 6. Note that a carrier is suspended in the first carrier part 11 and the second carrier part 12 in advance. The carrier is formed by mixing an organic carrier and an inorganic carrier, and the filling amount is, for example, 15% by volume and 10% by volume of the effective volume, respectively.
shall be.

なお有機担体はアルギン酸若しくはポリアクリルアミド
等の高分子物質によって内部に微生物を収容した構成と
し、無機担体は細粒の砂等の無機粒子の外表面に微生物
を付着させた構成としたものを使用し2粒子の大きさは
1〜3mmの分布を持つものとする。上記のようにして
タンク本体1内の圧力を2〜3kg/cm”に保持して
、原水を矢印に示すように流動させる。すなわちエアリ
フト13内においては原水と担体とは圧縮空気の注入に
よって上方に移動し5円筒体17内に至り下方に落下す
る。この場合、担体はエアリフト13の上端部の気液界
面7近傍に設けた担体移動車18に沿って内筒8の液体
部6に至り、原水中を緩慢に沈降、懸濁して第1の担体
部11を形成する。従って原水はまずこの第1の担体部
11において分解処理され1例えばBOD濃度が1,0
00 p、plm、がら200〜300 p、p、m、
に低下する。次に原水は内筒8と中間筒10との間を矢
印のように上昇して、第2の担体部12に至る。第2の
組体部12の下部には噴気管19を設けて、ブロワー2
0を介して内筒8上方の余剰空気を噴出しているから、
原水は担体との接触および曝気により更に分解処理され
1例えばBOD濃度が200〜300 p、p、m、が
ら50 p、p、m、程度に低下する。次に処理水は外
筒9と中空倒立円錐体4との隙間からタンク本体1の内
側に至り、処理水排出管27および弁28を経て排出さ
れるのである。
The organic carrier is made of a polymer material such as alginic acid or polyacrylamide that contains microorganisms, and the inorganic carrier is made of microorganisms attached to the outer surface of inorganic particles such as fine sand. 2. The size of the particles shall have a distribution of 1 to 3 mm. As described above, the pressure inside the tank body 1 is maintained at 2 to 3 kg/cm", and the raw water is made to flow as shown by the arrow. In other words, in the air lift 13, the raw water and the carrier are moved upward by the injection of compressed air. In this case, the carrier moves to the liquid part 6 of the inner cylinder 8 along the carrier moving vehicle 18 provided near the gas-liquid interface 7 at the upper end of the air lift 13. , slowly settles and suspends in the raw water to form the first carrier part 11. Therefore, the raw water is first decomposed in this first carrier part 11 so that the BOD concentration is 1.0, for example.
00 p, plm, 200-300 p, p, m,
decreases to Next, the raw water rises between the inner cylinder 8 and the intermediate cylinder 10 as shown by the arrow, and reaches the second carrier part 12. A blower pipe 19 is provided at the lower part of the second assembly part 12, and the blower 2
Since surplus air above the inner cylinder 8 is blown out through 0,
The raw water is further decomposed by contact with the carrier and aeration, and the BOD concentration is reduced, for example, from 200 to 300 p, p, m to about 50 p, p, m. Next, the treated water reaches the inside of the tank body 1 through the gap between the outer cylinder 9 and the hollow inverted cone 4, and is discharged through the treated water discharge pipe 27 and the valve 28.

タンク本体1内の圧力は1kg/cm2を越えた状態、
好ましくは2〜3kg/cm2に保持するのであるが、
圧力調整は連動制御可能に接続した圧力スイ・ノチ30
および弁31によって行う。すなわち圧力が上昇しすぎ
た場合には、弁31を開いて空気を放出して調整する。
The pressure inside the tank body 1 exceeds 1 kg/cm2,
It is preferably maintained at 2 to 3 kg/cm2,
Pressure adjustment is possible by interlocking controllable pressure switch 30.
and by valve 31. That is, if the pressure rises too much, the valve 31 is opened to release air and adjust the pressure.

なおタンク本体1内の異常圧力上昇による事故防止のた
めに、安全弁(図示せず)を当然に設置しておく。また
上記圧力調整と当然関係するが、気液界面7は、液面計
29によって監視する。すなわち気液界面7が上昇した
場合乙こは、液面計29と連動制御可能に接続した弁2
6が作動して、タンク本体1内の処理水の一部をバイパ
ス管路25に引き抜き循環させることにより、原水の供
給を停止させる。一方処理水の排出継続により、気液界
面7が所定の範囲の下限を越えた場合には、液面計29
と連動する弁26が閉止し、再び原水供給管23から原
水の供給が行われる。なお原水中に懸濁する担体は、原
水との接触によって活性が低下するが、担体同志の接触
・摺擦により表面の付着物を剥離する作用があるが、第
1の担体部11においては高BOD濃度の原水と接触す
るため付着物の量も第2の担体部12より当然多い。こ
のため第1の担体部11の下部に開口するエアリフト1
3内に矢印のように誘導し、エアリフト13内を急速に
上昇させることによって、1旦体表面の付着物を剥離さ
せるのである。この場合無機坦体が存在することにより
Note that a safety valve (not shown) is naturally installed to prevent accidents due to abnormal pressure rise within the tank body 1. Although naturally related to the above pressure adjustment, the gas-liquid interface 7 is monitored by a liquid level gauge 29. In other words, when the gas-liquid interface 7 rises, the valve 2 connected to the liquid level gauge 29 so as to be controllable in conjunction with the liquid level gauge 29
6 is activated to draw out and circulate a portion of the treated water in the tank body 1 to the bypass pipe line 25, thereby stopping the supply of raw water. On the other hand, if the gas-liquid interface 7 exceeds the lower limit of the predetermined range due to continued discharge of treated water, the liquid level gauge 29
The valve 26 interlocked with is closed, and raw water is supplied from the raw water supply pipe 23 again. Note that the activity of the carrier suspended in raw water decreases when it comes into contact with the raw water, but it has the effect of peeling off deposits on the surface due to contact and rubbing between the carriers. Since it comes into contact with raw water having a BOD concentration, the amount of deposits is naturally larger than that of the second carrier part 12. For this purpose, the air lift 1 opens at the bottom of the first carrier part 11.
By guiding the body into the air lift 13 as shown by the arrow and rapidly raising it inside the air lift 13, the deposits on the surface of the body are once removed. In this case due to the presence of an inorganic carrier.

表面が柔軟性に冨む有機担体の付着物の剥離を罹めて効
率良く行うことができる。
It is possible to efficiently remove deposits from an organic carrier having a flexible surface.

本実施例においては、タンク本体横断面を円形に形成し
た例を示したが、多角形横断面としても作用は同一であ
る。またタンク本体内の圧力は。
In this embodiment, an example was shown in which the cross section of the tank main body was formed into a circular shape, but the effect is the same even if the cross section is a polygon. Also, the pressure inside the tank body.

1kg/cm”若しくは大気圧を越えて加圧することが
酸素吸収効率を高めるために必要であるが、あまりに高
い圧力にすると装置構成部材を頭強にする必要があると
共に、操作および保守の点で煩雑となるため10kg/
cm2とし、好ましくは2〜3kg/cm”とするのが
よい。更に有機担体および無機担体の充填量、形状2粒
子の大きさ1分布等は処理すべき原水の性状に対応させ
て適宜選定すべきであり、上記実施例記載のものに限定
されない。
It is necessary to pressurize to 1 kg/cm" or above atmospheric pressure to increase oxygen absorption efficiency, but if the pressure is too high, it will be necessary to strengthen the equipment components and there will be problems in terms of operation and maintenance. 10kg/ because it becomes complicated.
cm2, preferably 2 to 3 kg/cm".Furthermore, the filling amount of organic carrier and inorganic carrier, shape 2 particle size 1 distribution, etc. should be appropriately selected in accordance with the properties of the raw water to be treated. and is not limited to those described in the above examples.

なお本発明におけるような担体を使用して処理した処理
水においては、曝気後沈澱処理をさせる場合、従来の標
準活性汚泥法によるものと比較して汚泥分離がしにくい
のが通例であり、繊維物質を網状若しくは糸瓜状に編成
した媒体を使用したり、凝集剤を添加する方法を採用し
ている。しかしながら本発明においては、原水を加圧状
態において生物学的処理を行うものであり、処理水を加
圧浮上装置に直接装入して処理することができる。
In addition, when treated water treated using a carrier as in the present invention is subjected to post-aeration sedimentation treatment, it is usually difficult to separate the sludge compared to the conventional standard activated sludge method. Methods include using a medium in which substances are organized into a net or gourd shape, or adding a flocculant. However, in the present invention, raw water is subjected to biological treatment under pressure, and the treated water can be directly charged into a pressure flotation device for treatment.

すなわち公知の加圧浮上装置を直結するのみによって、
上記のような煩雑な処理を省略できるのである。この場
合の圧力は1.5 kg/cm2程度が好ましい。
In other words, by simply connecting a known pressurized levitation device,
Complicated processes such as those described above can be omitted. In this case, the pressure is preferably about 1.5 kg/cm2.

(発明の効果〕 本発明は以上記述のような構成および作用であるから、
下記の効果を有する。
(Effect of the invention) Since the present invention has the structure and operation as described above,
It has the following effects.

(11従来の標準活性汚泥法においては、BOD−槽容
積j!、荷が0.6kg  BOD/m3・日程度であ
っため(、これを10kg  BOD/m3−日若しく
はそれ以上まで対応させることができる。
(11 In the conventional standard activated sludge method, the BOD-tank volume j! and load were approximately 0.6 kg BOD/m3-day (but it is not possible to increase this to 10 kg BOD/m3-day or more). can.

(2)酸素吸収効率において従来8〜10%程度であっ
たものを30%以上に大幅に向上させ得る。
(2) Oxygen absorption efficiency, which was conventionally about 8 to 10%, can be significantly improved to 30% or more.

(3)  処理槽を別個にすることなく、同一タンク内
に区分して設けたことにより、装置がコンパクト化され
ると共に、高負荷処理および低負荷処理両者共最適処理
が可能である。
(3) By arranging separate treatment tanks within the same tank instead of separate treatment tanks, the apparatus can be made more compact and optimal processing can be performed for both high-load processing and low-load processing.

(4)第2の担体部すなわち低負荷処理部における曝気
用の空気は、エアリフト上部の残存余剰空気を利用でき
るため、動力が少なくてすむ。
(4) The air for aeration in the second carrier section, that is, the low-load processing section, can utilize the surplus air remaining in the upper part of the air lift, so less power is required.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を模式的に示す縦断面図である。 1:タンク本体、8:内筒、9:外筒、1o:中間筒、
13:エアリフ)、23:原水供給管。 27:処理水排出管。
The figure is a vertical sectional view schematically showing an embodiment of the present invention. 1: Tank body, 8: Inner cylinder, 9: Outer cylinder, 1o: Intermediate cylinder,
13: Airlift), 23: Raw water supply pipe. 27: Treated water discharge pipe.

Claims (5)

【特許請求の範囲】[Claims] (1)垂直軸および蓋を有する中空筒状体の下端に中空
倒立錐状体を固着してタンク本体を形成し、タンク本体
内には上方の気体部と下方の液体部とを区分する気液界
面を形成し、前記タンク本体を形成する蓋にはタンク本
体底部と間隙を介して各々内筒および外筒を同軸的に懸
吊して設け、前記タンク本体底部を形成する錐状体には
前記内筒と外筒との間に中間筒を、その上端部が前記気
液界面の下方に位置するよう同軸的に立設し、前記中間
筒の内外部に各々第1の担体部および第2の担体部を形
成し、第1の担体部には各々上下端を前記気体部および
液体部に開口させ、かつコンプレッサーと接続したエア
リフトを設け、前記第2の担体部下部には噴気管を設け
ると共に、前記内筒上部と噴気管とをブロワーを介して
接続し、前記内筒上部に原水供給管を、前記タンク本体
外壁に処理水排出管を各々設けたことを特徴とする加圧
型バイオリアクター。
(1) A hollow inverted conical body is fixed to the lower end of a hollow cylindrical body having a vertical shaft and a lid to form a tank body. An inner cylinder and an outer cylinder are each coaxially suspended from the lid which forms the liquid surface and forms the tank body through a gap with the bottom of the tank body, and the cone-shaped body which forms the bottom of the tank body An intermediate cylinder is coaxially arranged between the inner cylinder and the outer cylinder so that its upper end is located below the gas-liquid interface, and a first carrier part and a first carrier part are disposed inside and outside the intermediate cylinder, respectively. A second carrier part is formed, the first carrier part is provided with an air lift whose upper and lower ends are opened to the gas part and the liquid part, and connected to a compressor, and a fumarole pipe is provided in the lower part of the second carrier part. The pressurized type is characterized in that the upper part of the inner cylinder and the fumarole pipe are connected via a blower, the upper part of the inner cylinder is provided with a raw water supply pipe, and the outer wall of the tank body is provided with a treated water discharge pipe. bioreactor.
(2)タンク本体内の圧力が1kg/cm^2を越え1
0kg/cm^2以下、好ましくは2〜3kg/cm^
2である特許請求の範囲第1項記載の加圧型バイオリア
クター。
(2) If the pressure inside the tank body exceeds 1 kg/cm^2
0 kg/cm^2 or less, preferably 2 to 3 kg/cm^
2. The pressurized bioreactor according to claim 1, which is
(3)第1の担体部および第2の担体部に存在する担体
が有機担体および無機担体からなる特許請求の範囲第1
項若しくは第2項記載の加圧型バイオリアクター。
(3) Claim 1 in which the carriers present in the first carrier part and the second carrier part are an organic carrier and an inorganic carrier.
The pressurized bioreactor according to item 1 or 2.
(4)有機担体および無機担体の容量が各々有効容積の
15容量%および10容量%である特許請求の範囲第3
項記載の加圧型バイオリアクター。
(4) Claim 3, wherein the capacities of the organic carrier and the inorganic carrier are 15% by volume and 10% by volume of the effective volume, respectively.
The pressurized bioreactor described in Section 1.
(5)タンク本体が中空円筒体と中空倒立円錐体とから
なる特許請求の範囲第1項ないし第4項のいずれかに記
載の加圧型バイオリアクター。
(5) The pressurized bioreactor according to any one of claims 1 to 4, wherein the tank body comprises a hollow cylinder and a hollow inverted cone.
JP61172392A 1986-07-22 1986-07-22 Pressurization type bioreactor Pending JPS6328494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61172392A JPS6328494A (en) 1986-07-22 1986-07-22 Pressurization type bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172392A JPS6328494A (en) 1986-07-22 1986-07-22 Pressurization type bioreactor

Publications (1)

Publication Number Publication Date
JPS6328494A true JPS6328494A (en) 1988-02-06

Family

ID=15941079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172392A Pending JPS6328494A (en) 1986-07-22 1986-07-22 Pressurization type bioreactor

Country Status (1)

Country Link
JP (1) JPS6328494A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380998A (en) * 1989-08-25 1991-04-05 Ngk Insulators Ltd Fluidized bed type waste water treatment method and apparatus
JPH0389997A (en) * 1989-09-01 1991-04-15 Ngk Insulators Ltd Fluidized bed type waste water treatment method and apparatus
KR100420928B1 (en) * 2001-08-02 2004-03-02 한국과학기술연구원 Anti-fouling photobioreactor
KR20210080487A (en) * 2018-11-21 2021-06-30 토와 가부시기가이샤 Transfer drive mechanism, resin molding apparatus, and manufacturing method of a resin molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380998A (en) * 1989-08-25 1991-04-05 Ngk Insulators Ltd Fluidized bed type waste water treatment method and apparatus
JPH0389997A (en) * 1989-09-01 1991-04-15 Ngk Insulators Ltd Fluidized bed type waste water treatment method and apparatus
KR100420928B1 (en) * 2001-08-02 2004-03-02 한국과학기술연구원 Anti-fouling photobioreactor
KR20210080487A (en) * 2018-11-21 2021-06-30 토와 가부시기가이샤 Transfer drive mechanism, resin molding apparatus, and manufacturing method of a resin molded article

Similar Documents

Publication Publication Date Title
US4954257A (en) Biological purification loop device and method having deflector plate within guide pipe
US3574331A (en) Aeration tank for waste treatment
US20090050560A1 (en) Novel anaerobic reactor for the removal of long chain fatty acids from fat containing wastewater
KR20120005857A (en) Plant for treatment waste water
KR102063317B1 (en) Air dispersion apparatus using water jet
CN208022785U (en) A kind of integrated sewage disposal bioreactor
JPS6012636Y2 (en) Reactor device for treating liquids consisting of biologically degradable waste products
CA2542918C (en) Apparatus and method for controlling biomass growth in suspended carrier bioreactor
JPS6328494A (en) Pressurization type bioreactor
CN205740486U (en) Strongly mixing agitator and water purification system
CN209276218U (en) Recycle current flow fixed bed aerobic biofilter
CN102795750A (en) Deep-well aerobic digestive treatment device and treating method for organic sludge
CN109368772A (en) Recycle current flow fixed bed aerobic biofilter
CN214383722U (en) High-efficiency hydrolysis bioreactor
US3058908A (en) Method of dispersing gases
JP2004089759A (en) Biochemical reactor
CN207158890U (en) Circulation pressure-fired fixed-bed bioreactor in a kind of
KR101134037B1 (en) Apparatus for processing polluted water containing organic material
JPS6328495A (en) Pressurization type bioreactor
JPH09248591A (en) Anaerobic fluidized bed waste water treatment and device therefor
CN216946398U (en) Environment-friendly efficient high-concentration wastewater treatment device
JP2002346582A (en) Pressure fluidized bed type wastewater treatment apparatus
JPS58297A (en) Flowing bed type contact oxidation device
KR102545064B1 (en) Multi-stage sewage treatment system
CN212954508U (en) Activated sludge aeration treatment device