JPS63284827A - Manufacture of compound semiconductor crystal - Google Patents
Manufacture of compound semiconductor crystalInfo
- Publication number
- JPS63284827A JPS63284827A JP11975687A JP11975687A JPS63284827A JP S63284827 A JPS63284827 A JP S63284827A JP 11975687 A JP11975687 A JP 11975687A JP 11975687 A JP11975687 A JP 11975687A JP S63284827 A JPS63284827 A JP S63284827A
- Authority
- JP
- Japan
- Prior art keywords
- crystal layer
- crystal
- layer
- substrate
- compound semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 147
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 150000001875 compounds Chemical class 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 29
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 27
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 24
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 24
- 239000011575 calcium Substances 0.000 claims abstract description 12
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001632 barium fluoride Inorganic materials 0.000 claims abstract description 6
- 229910001634 calcium fluoride Inorganic materials 0.000 claims abstract description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 4
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 claims abstract description 3
- 229910001637 strontium fluoride Inorganic materials 0.000 claims abstract description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000011701 zinc Substances 0.000 abstract description 26
- 229910052725 zinc Inorganic materials 0.000 abstract description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 8
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 abstract description 8
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 abstract description 7
- 229910052791 calcium Inorganic materials 0.000 abstract description 5
- 150000002222 fluorine compounds Chemical class 0.000 abstract description 3
- 229910052788 barium Inorganic materials 0.000 abstract description 2
- 229910007709 ZnTe Inorganic materials 0.000 description 12
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 10
- 239000012808 vapor phase Substances 0.000 description 10
- 229910004613 CdTe Inorganic materials 0.000 description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 9
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
ガリウム砒素(GaAs)基板、或いはシリコン(St
)基板のような半導体基板上にミスフィツト転位を生じ
ない状態で、水銀・カドミウム・テルル(HgCdTe
)の異種結晶層を気相エピタキシャル成長する方法であ
って、半導体基板上にカルシウム、ストロンチウム、バ
リウムの弗化物のうちのいずれかの結晶層、或いは前記
弗化物の混晶を下部結晶層に対してミスフィツト転位が
発生しない臨界厚さ以下の厚さで形成後、テルル化亜鉛
層を形成し、該基板上に亜鉛、水銀、カドミウム、テル
ルの元素のうち、少なくとも1つ以上の元素を含む化合
物半導体結晶層を形成後、更に最上層に水銀・カドミウ
ム・テルルよりなる化合物半導体結晶層を形成して半導
体基板上に該基板と異種結晶の化合物半導体結晶をミス
フィツト転位が発生しないようにして気相エピタキシャ
ル成長方法で形成する方法。[Detailed description of the invention] [Summary] Gallium arsenide (GaAs) substrate or silicon (St
) without causing misfit dislocations on a semiconductor substrate such as a mercury, cadmium, tellurium (HgCdTe) substrate.
) is a method of vapor-phase epitaxial growth of a heterogeneous crystal layer, the method comprising: growing a crystal layer of any one of calcium, strontium, and barium fluorides on a semiconductor substrate, or a mixed crystal of said fluorides on a lower crystal layer; A compound semiconductor containing at least one element among zinc, mercury, cadmium, and tellurium on which a zinc telluride layer is formed after formation at a thickness below a critical thickness at which misfit dislocations do not occur; After forming the crystal layer, a compound semiconductor crystal layer made of mercury, cadmium, and tellurium is further formed as the top layer, and the compound semiconductor crystal of a different type from the substrate is grown on the semiconductor substrate by vapor phase epitaxial growth while preventing misfit dislocations from occurring. How to form in a way.
本発明は化合物半導体結晶の製造方法に係り、特にSi
、 GaAsのような半導体基板上に該基板と格子不整
合を生じない状態で異種結晶の水銀・カドミウム・テル
ルの化合物半導体結晶を製造する方法に関する。The present invention relates to a method for manufacturing compound semiconductor crystals, and in particular to a method for manufacturing compound semiconductor crystals, particularly
, relates to a method for manufacturing a compound semiconductor crystal of mercury, cadmium, and tellurium of a different type on a semiconductor substrate such as GaAs without causing lattice mismatch with the substrate.
赤外線検知素子を形成する材料としてエネルギーバンド
ギャップの狭い水銀・カドウミム・テルルの化合物半導
体結晶を薄層状態に形成した結晶が用いられている。A thin layer of compound semiconductor crystals of mercury, cadmium, and tellurium with a narrow energy band gap is used as a material for forming an infrared sensing element.
特に5tSGaAsのような半導体基板上にエネルギー
バンドギャップが狭く、赤外線に対して光電変換効率の
良い水銀・カドウミム・テルルの化合物半導体結晶を薄
層状態に形成し、これを用いて高密度に集積化された赤
外線検知素子を形成し、この検知素子を動作させるため
のFET等の半導体素子を前記した半導体基板に形成し
、赤外線を検知する素子とこの検知素子を動作させる半
導体素子を同一基板に一括形成した高性能な半導体装置
が要望されている。In particular, compound semiconductor crystals of mercury, cadmium, and tellurium, which have a narrow energy band gap and high photoelectric conversion efficiency for infrared rays, are formed in a thin layer on a semiconductor substrate such as 5tSGaAs, and this is used to achieve high-density integration. A semiconductor element such as an FET for operating this detection element is formed on the above-mentioned semiconductor substrate, and an element for detecting infrared rays and a semiconductor element for operating this detection element are packaged on the same substrate. There is a demand for high performance semiconductor devices.
従来、Si基板上に該結晶に対して異種結晶の水銀・カ
ドミウム・テルルの結晶を形成する場合、Applie
d Physics Letters 49(22)、
19B6.1531、H8Zogg、 S、 Blun
ierで開示されているように、第3図に示すSi基板
1上に予め弗化カルシウム、弗化ストロンチウム、弗化
バリウムの混晶2を成長させた後、カドミウムテルル(
CdTe) 3の結晶を形成し、その上にCdTeと格
子定数が近似した水銀・カドミウム・テルル(Hgl−
、Cdx Te)の結晶4を形成する方法がとられてい
た。Conventionally, when forming mercury, cadmium, and tellurium crystals that are different from the crystal on a Si substrate, Applie
d Physics Letters 49(22),
19B6.1531, H8Zogg, S, Blun
As disclosed in IER, after a mixed crystal 2 of calcium fluoride, strontium fluoride, and barium fluoride is grown on a Si substrate 1 shown in FIG.
A crystal of mercury, cadmium, tellurium (Hgl-
, Cdx Te).
またGaAs基板上に該結晶に対して異種結晶の水銀・
カドミウム・テルルの結晶を形成する場合、本出願人が
既に特願昭62−028424号で出願したように、亜
鉛・セレン・テルルの結晶層を予め形成後、CdTeの
結晶を形成しその上に水銀・カドミウム・テルルの結晶
を形成する方法がとられていた。Also, on the GaAs substrate, mercury/
When forming cadmium/tellurium crystals, as previously filed by the applicant in Japanese Patent Application No. 62-028424, a crystal layer of zinc/selenium/tellurium is formed in advance, and then a CdTe crystal is formed on top of the crystal layer. A method was used to form crystals of mercury, cadmium, and tellurium.
然し、Si基板上に上記した方法で水銀・カドミウム・
テルルの結晶層を形成した場合、Siと弗化カルシウム
(CaF 2)の間では格子不整合が0.6%あり、更
に混晶を構成する弗化バリウム(BaFz)と該混晶上
に形成するCdTeとの間では格子不整合が4.5%あ
り、Si基板と弗化物の混晶の間、および混晶とCdT
eの結晶の間でミスフィツト転位(異種結晶間に於いて
、それぞれの結晶の格子が一致しない、即ち格子不整合
による転位)が発生する不都合があった。However, mercury, cadmium,
When a tellurium crystal layer is formed, there is a lattice mismatch of 0.6% between Si and calcium fluoride (CaF2), and furthermore, there is a lattice mismatch of 0.6% between Si and calcium fluoride (CaF2), and furthermore, there is a lattice mismatch between Si and calcium fluoride (CaF2), which is formed on the mixed crystal with barium fluoride (BaFz). There is a lattice mismatch of 4.5% between the Si substrate and the fluoride mixed crystal, and between the mixed crystal and the CdTe.
There was a problem in that misfit dislocations (dislocations due to lattice mismatch, in which the lattices of different crystals do not match between different types of crystals) occur between the crystals of e.
またGaAs基板上に亜鉛・セレン・テルルの結晶層を
形成し、その上にCdTeの結晶を形成する方法に於い
ても、GaAs基板と亜鉛・セレン・テルルの結晶間、
および亜鉛・セレン・テルルとCdTeの結晶間にミス
フィツト転位が発生する現象を解決することは困難であ
る。In addition, in the method of forming a crystal layer of zinc, selenium, and tellurium on a GaAs substrate and forming a crystal of CdTe on top of the layer, between the GaAs substrate and the crystal of zinc, selenium, and tellurium,
Furthermore, it is difficult to solve the phenomenon of misfit dislocations occurring between zinc/selenium/tellurium and CdTe crystals.
ここで基板上に該基板に対して異種結晶を形成した場合
、その結晶層が基板に対してミスフィツト転位を発生し
ない状態となる結晶層の臨界厚さをhcとすると、この
hcの値は文献(アメリカ合衆国特許、特許番号3.7
88.890号Patented Jan、29.19
74)により第(1)式に示すようになる。Here, when a crystal of a different type is formed on a substrate with respect to the substrate, if the critical thickness of the crystal layer at which the crystal layer does not generate misfit dislocations with respect to the substrate is hc, the value of this hc is (United States Patent, Patent No. 3.7
No. 88.890 Patented Jan, 29.19
74), as shown in equation (1).
hc=b (1−v”)/4 f (1+ν)
cosλ、21.1/f(人) ・・・・1旧
・・(1)ここでhcは臨界厚さ、fはミスフィツト転
位数、νはポアソン比、λは基板上に形成した結晶のス
リップ面の方向と、該スリップ面と元の基板の交線に立
てた法線とのなす角度、bはバーガースベクトルの大き
さを示す。hc=b (1-v”)/4 f (1+ν)
cosλ, 21.1/f (people)...1 old...(1) Here, hc is the critical thickness, f is the number of misfit dislocations, ν is Poisson's ratio, and λ is the slip of the crystal formed on the substrate. The angle b between the direction of the surface and the normal to the line of intersection between the slip surface and the original substrate, b, indicates the size of the Burgers vector.
更にHg1−XCd、 Teの場合のhcO値は文献2
(Phys、5tat、sol、 (a)So、663
(1983)、5ubject C1assifica
tion:1.5 andIO,2;22.4.4 、
by J、)1.Ba5sonand H,Booye
ns: Introduction of Misf
it Disl。Furthermore, the hcO value in the case of Hg1-XCd and Te is given in Reference 2.
(Phys, 5tat, sol, (a) So, 663
(1983), 5object C1assifica
tion:1.5 andIO,2;22.4.4,
by J,)1. Ba5sonand H, Booye
ns: Introduction of Misf
It Disl.
cation in HgCdTe)によって第(2)
式で示されている。cation in HgCdTe)
It is shown in Eq.
hc二1.8/f(人)・・・・・・・・・(2)この
(1)、(2)式を組み合わせて基板上に該基板と異な
る結晶層を形成した場合、ミスフィツト転位を発生しな
い臨界厚さhcは第(2)°式に示すようになる。hc21.8/f (person) (2) When a crystal layer different from the substrate is formed on a substrate by combining equations (1) and (2), misfit dislocations occur. The critical thickness hc at which this does not occur is as shown in equation (2)°.
x、1.# <h c<1.8/r −・−・・・−・
(2) ’尚、基板上に該基板と格子定数の異なる異種
結晶を形成した場合のミスフィツト数fを第〔3)式に
示す。x, 1. #<h c<1.8/r −・−・・・・−・
(2) 'The misfit number f when a heterogeneous crystal having a lattice constant different from that of the substrate is formed on the substrate is shown in equation [3].
f=(異種結晶層の格子定数/基板の格子定数)−1・
・・・・・(3)
ここで従来の方法におけるように、Si基板上に弗化バ
リウム(BaFz)の結晶層を形成し、その上にCdT
eの結晶層を形成した場合、第1表に示すようにミスフ
ィツト数f =4.5 Xl0−”となる。f=(lattice constant of different crystal layer/lattice constant of substrate)-1・
(3) Here, as in the conventional method, a barium fluoride (BaFz) crystal layer is formed on a Si substrate, and CdT is deposited on top of it.
When a crystal layer of e is formed, as shown in Table 1, the misfit number f = 4.5 Xl0-''.
第 1 表
この結果、従来の方法に於けるように、Si基板上にB
aF zの結晶層を形成し、その上にCdTeの結晶層
を形成した場合、このCdTeの結晶層が下部のBan
gの結晶層とミスフィツト転位を発生しない臨界厚さh
cの値は第(3)式を用いて算出すると、24〜40人
の厚さとなる。Table 1 As a result, as in the conventional method, B
When a crystal layer of aF z is formed and a crystal layer of CdTe is formed on top of it, this crystal layer of CdTe forms the lower Ban.
The critical thickness h that does not generate misfit dislocations with the crystal layer g
When the value of c is calculated using equation (3), it becomes a thickness of 24 to 40 people.
この厚さは、CdTeの結晶の格子間隔の寸法が、格子
面が5〜9層重なった程度の厚さに等しく、このような
薄い結晶層を形成するのは製造上困難である。This thickness is equivalent to the thickness of 5 to 9 overlapping lattice planes in the lattice spacing of the CdTe crystal, and it is difficult to form such a thin crystal layer in terms of manufacturing.
従ってBaF 2結晶層上にCdTeの結晶層を形成す
る従来の方法では、ミスフィツト転位が発生しない状態
でCdTeの結晶を形成するのは困難で、そのため、ミ
スフィツト転位が発生したCdTeの結晶層の上に更に
水銀・カドミウム・テルルを形成すれば、水銀・カドミ
ウム・テルルの結晶層の結晶性が悪くなるといった不都
合を生じる。Therefore, in the conventional method of forming a CdTe crystal layer on a BaF2 crystal layer, it is difficult to form a CdTe crystal without generating misfit dislocations. If mercury, cadmium, and tellurium are further formed on top of the mercury, cadmium, and tellurium, the crystallinity of the mercury, cadmium, and tellurium crystal layer deteriorates.
本発明は上記した問題点を解決し、第2表に示すように
、SiやGaAs基板に対して格子間隔が近い、即ちミ
スフィツト数fの値が小さい結晶層を形成後、該結晶層
に対してミスフィツト転位を生じない、即ち格子間隔が
近接した結晶層を多層構造に形成した後、最終層として
StやGaAs基板に対してミスフィツト転位が発生し
ない水銀・カドミウム・テルルの結晶層の製造方法の提
供を目的とする。The present invention solves the above-mentioned problems, and as shown in Table 2, after forming a crystal layer with a lattice spacing close to the Si or GaAs substrate, that is, with a small misfit number f, A method for manufacturing a mercury/cadmium/tellurium crystal layer that does not cause misfit dislocations on an St or GaAs substrate as the final layer after forming a multilayer structure of crystal layers with close lattice spacing that does not cause misfit dislocations. For the purpose of providing.
ここで本発明の方法に用いる結晶の格子定数を第1表に
示す。Table 1 shows the lattice constants of the crystals used in the method of the present invention.
第1表
〔問題点を解決するための手段〕
本発明の化合物半導体結晶の製造方法は、半導体基板上
にカルシウム、ストロンチウム、バリウムの弗化物のう
ちのいずれか1つを含む結晶層、或いは前記弗化物の混
晶を下部結晶層に対してミスフィツト転位が発生しない
臨界厚さ以下の厚さで形成後、テルル化亜鉛層を形成し
、該基板上に亜鉛、水銀、カドミウム、テルルの元素の
うち、少な(とも1つ以上の元素を含む化合物半導体結
晶層を形成後、更に最上層に水銀・カドミウム・テルル
よりなる化合物半導体結晶層を形成するようにする。Table 1 [Means for solving the problems] The method for manufacturing a compound semiconductor crystal of the present invention includes a crystal layer containing any one of calcium, strontium, and barium fluorides on a semiconductor substrate, or a crystal layer containing any one of calcium, strontium, and barium fluorides. After forming a fluoride mixed crystal to a thickness below the critical thickness at which misfit dislocations do not occur with respect to the lower crystal layer, a zinc telluride layer is formed, and zinc, mercury, cadmium, and tellurium elements are deposited on the substrate. After forming a compound semiconductor crystal layer containing one or more elements, a compound semiconductor crystal layer containing mercury, cadmium, and tellurium is further formed as the uppermost layer.
本発明の化合物半導体結晶の製造方法は、SiやGaA
sの半導体基板上に該基板とミスフィツト転位を発生し
ない状態でCaとSrとBaの弗化物の混晶のCa、
Srv Ba1−a−v F!(0≦U≦1.0≦V≦
1)の結晶層を形成する。この結晶層はu、vの値を適
当に選ぶと、ZnTeの結晶層と格子定数を等しくする
ことができるため、基板に対してミスフィツト転位が発
生しない状態でZnTeの結晶が形成できる。更にZn
Teの結晶層に対してミスフィツト転位が発生しない状
態で亜鉛元素と、水銀、カドミウム、テルルの元素の内
の少なくとも一元素とよりなる化金物半導体結晶を多層
構造に積層形成して、その上に水銀・カドミウム・テル
ルよりなる結晶を形成すれば、基板に対してミスフィツ
ト転位が発生しない水銀・カドミウム・テルルの結晶が
形成できる。The method for manufacturing a compound semiconductor crystal of the present invention includes Si, GaA
Ca, a mixed crystal of fluorides of Ca, Sr, and Ba, on a semiconductor substrate of s without generating misfit dislocations with the substrate;
Srv Ba1-av F! (0≦U≦1.0≦V≦
1) Form a crystal layer. If the values of u and v are appropriately selected, this crystal layer can have the same lattice constant as the ZnTe crystal layer, so that a ZnTe crystal can be formed without generating misfit dislocations with respect to the substrate. Furthermore, Zn
A compound semiconductor crystal consisting of zinc element and at least one element selected from mercury, cadmium, and tellurium is laminated in a multilayer structure in a state where no misfit dislocation occurs in the Te crystal layer, and then By forming a crystal of mercury, cadmium, and tellurium, a crystal of mercury, cadmium, and tellurium that does not cause misfit dislocation to the substrate can be formed.
以下、図面を用いて本発明の一実施例につき詳細に説明
する。Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第1図はSi基板1上に水銀・カドミウム・テルルの結
晶層を形成する第1の実施例で、図示するようにSi基
板11上にCaF、の結晶層12を、CaFzをソース
材料として用い、分子線エピタキシャル成長方法により
200人の厚さに形成する。FIG. 1 shows a first embodiment in which a crystal layer of mercury, cadmium, and tellurium is formed on a Si substrate 1. As shown in the figure, a crystal layer 12 of CaF is formed on a Si substrate 11, and CaFz is used as the source material. , formed to a thickness of 200 mm by molecular beam epitaxial growth.
このSi基板11上にCaF2の結晶層12を形成した
場合、第2表よりSiの格子定数は5.431人、Ca
Fzの格子定数は5.46人であるので第(3)式より
f −5,4615,431−1=5.3 Xl0−’
となり、第(1)式よりhc=1.1/f =206人
となってこの厚さは臨界厚さ以下となる。When a crystal layer 12 of CaF2 is formed on this Si substrate 11, the lattice constant of Si is 5.431 and CaF2 is 5.431 as shown in Table 2.
Since the lattice constant of Fz is 5.46, from equation (3), f -5,4615,431-1=5.3 Xl0-'
Therefore, from equation (1), hc = 1.1/f = 206 people, and this thickness is less than the critical thickness.
二の臨界厚さを考慮してCaF、の厚さは50〜200
人の厚さとすると良い。次いでCaF、の結晶層12の
上に、分子線エピタキシャル成長方法を用いてCauS
rv Ba1−u−v pgの結晶層13を形成する。Considering the critical thickness of 2, the thickness of CaF is 50~200
It is good to have the thickness of a person. Next, on the CaF crystal layer 12, a CauS layer is formed using a molecular beam epitaxial growth method.
A crystal layer 13 of rv Ba1-uv pg is formed.
この場合、CaF 2の格子定数は5.46人、Cau
Srv Bat−a−vF2の格子定数は6.20−
0.74u −0,4vであるので、Uを1から0.1
に、■を0から0.06に、各々0.01.0.006
ずつ変化させながら各々の層を100人ずつ成長させる
。In this case, the lattice constant of CaF2 is 5.46, Cau
The lattice constant of Srv Bat-a-vF2 is 6.20-
0.74u -0.4v, so change U from 1 to 0.1
, ■ from 0 to 0.06, respectively 0.01.0.006
Grow each layer by 100 people while making changes.
次いでCa、 Srv Ba1−u−v Fzの結晶層
13上にCau+Srv+ aal−ul−vI Fg
の結晶層14(但し、0.74u、+0.4v1=0.
98.0≦u1≦1.0≦v1≦1)を分子線エピタキ
シャル成長方法を用いてul””0.1 s V+=0
.06の条件で200人の厚さに形成する。Then, on the crystal layer 13 of Ca, Srv Ba1-u-v Fz, Cau+Srv+ aal-ul-vI Fg
crystal layer 14 (however, 0.74u, +0.4v1=0.
98.0≦u1≦1.0≦v1≦1) using the molecular beam epitaxial growth method, ul””0.1 s V+=0
.. It is formed to a thickness of 200 people under the conditions of 06.
この臨界厚さhcは第(4)式より求めることができる
。This critical thickness hc can be determined from equation (4).
h c (Ca u+srv+Ba+−ul−v+Fz
/Cau Srv Bat−u−vFz) −(6,2
00,74ut O,4vI)/(6,200,74
u−0,4v) −1・・・・・・・・・・・・・・
・(4)次いで該結晶層14上にZnTeの結晶層15
を分子線エピタキシャル成長方法、或いは気相エピタキ
シャル成長方法を用いて形成する。このZnTeの結晶
層15は前記したCaul Sr vI Ba 1−u
l−Vlp!の結晶層14と格子定数が同一であるので
ミスフィツト転位を発生しない。h c (Ca u+srv+Ba+-ul-v+Fz
/Cau Srv Bat-u-vFz) -(6,2
00,74ut O,4vI)/(6,200,74
u-0,4v) -1・・・・・・・・・・・・・・・
-(4) Next, a ZnTe crystal layer 15 is formed on the crystal layer 14.
is formed using a molecular beam epitaxial growth method or a vapor phase epitaxial growth method. This ZnTe crystal layer 15 is made of the above-mentioned Caul Sr vI Ba 1-u
l-Vlp! Since the lattice constant is the same as that of the crystal layer 14, no misfit dislocation occurs.
次いでこのZnTeの結晶層15の上にZny cd、
−、Teの結晶層16をその下のZnTeの結晶層15
とミスフィツト転位が発生しない程度の厚さで分子線エ
ピタキシャル成長方法、或いは気相エピタキシャル成長
方法で形成する。Next, on this ZnTe crystal layer 15, Zny cd,
-, Te crystal layer 16 and ZnTe crystal layer 15 below it.
It is formed by molecular beam epitaxial growth or vapor phase epitaxial growth to a thickness that does not cause misfit dislocations.
この厚さは第(2)式より導出した第(5)式を用いて
算出すると、例えばy =0.9のZny Cd、−、
Te層を290人、y =0.5のZn、 cd、−、
Te層で58人となる。When this thickness is calculated using equation (5) derived from equation (2), for example, Zny Cd of y = 0.9, -,
Te layer with 290 people, Zn with y = 0.5, cd, -,
There will be 58 people in the Te layer.
h c =(Zn 、 CdI−、Te/ZnTe)=
29/(1y)(人)・・・・・・・・・・・・(5
)
更にこのZn 、 cd、−、Teの結晶層16上にZ
n、 CdI−5−t Hgt Te結晶層17をその
下のZn 、 Cd、−、Te結晶層16とミスフィツ
ト転位が発生しない程度の厚さに分子線エピタキシャル
成長方法、或いは気相エピタキシャル成長方法を用いて
形成する。h c = (Zn, CdI-, Te/ZnTe) =
29/(1y)(person)・・・・・・・・・・(5
) Further, on this Zn, cd, -, Te crystal layer 16, Z
Using a molecular beam epitaxial growth method or a vapor phase epitaxial growth method, the CdI-5-t Hgt Te crystal layer 17 is grown to a thickness that does not cause misfit dislocations to the underlying Zn, Cd, -, Te crystal layer 16. Form.
この厚さは第(2)式より算出した第(6)式を用いて
算出すると、例えばy =0.5のZn y CdI−
y Teに引き続いてs =0.1 、t =0.3の
Zn @ Cd1−Cd1−5−tHの結晶層を形成す
る場合、その厚さは77人であそ・
h c =(Zn s CdI−5−z Hgz Te
/Zn 、 cd、−、Te)= (583−34z
)/ (19(2−s)−t ) (人)・・・・・
・(6)
更にこのZn、 Cdl−5−c Hgz Te結晶層
17上に、fig、−XCd、 Teの結晶層18を、
その下のZnm CdI−Cdl−5−tH結晶層7と
ミスフィツト転位が発生しない程度の厚さに分子線エピ
タキシャル成長方法、或いは気相エピタキシャル成長方
法を用いて形成する。When this thickness is calculated using equation (6) calculated from equation (2), for example, Zn y CdI- with y = 0.5
When forming a crystal layer of Zn@Cd1-Cd1-5-tH with s = 0.1 and t = 0.3 following yTe, its thickness was determined by 77 people. h c = (Zn s CdI-5-z Hgz Te
/Zn, cd, -, Te) = (583-34z
)/ (19(2-s)-t) (person)...
・(6) Further, on this Zn, Cdl-5-c Hgz Te crystal layer 17, fig, -XCd, Te crystal layer 18,
It is formed using a molecular beam epitaxial growth method or a vapor phase epitaxial growth method to a thickness that does not cause misfit dislocation with the Znm CdI-Cdl-5-tH crystal layer 7 below.
この厚さは第(2)式より導出した第(7)式を用いて
算出すると例えばs =0.1 、t =0.3のZn
、 CCdl−5−tHc Teの結晶層の上に引き
続いてx =0.3のHgI−z Cdg Teの結晶
層を形成する場合は、398人の厚さとなる。This thickness is calculated using equation (7) derived from equation (2). For example, when s = 0.1 and t = 0.3, Zn
, If a crystalline layer of HgI-zCdgTe with x = 0.3 is subsequently formed on a crystalline layer of CCdl-5-tHcTe, the thickness will be 398 people.
h c =(Hg、−XCd X Te/Zn * C
dI−5−t Hg t Te)=(58334s
1.8t)/(19s+t +x −1) (人)・
・・・・・・・・(7)
このようにすれば最上層に形成されているHgt−8C
d、 Teの結晶層18は、Si基板11に対してミス
フィツト転位を発生しないので、良好な半導体結晶が得
られる。h c = (Hg, -XCd X Te/Zn*C
dI-5-t Hg t Te) = (58334s
1.8t)/(19s+t +x -1) (person)・
・・・・・・・・・(7) In this way, Hgt-8C formed in the top layer
d. Since the Te crystal layer 18 does not generate misfit dislocations with respect to the Si substrate 11, a good semiconductor crystal can be obtained.
第2図に本発明の第2実施例を示す。FIG. 2 shows a second embodiment of the invention.
図示するようにGaAs基板21上に、分子線エピタキ
シャル成長方法を用いて、CauzSrvJa+−uz
−vzFz(但し、0.74uz + 0.4vz =
0.547)の結晶層22を形成する。この場合、例え
ばu z =0.3 、v−=0.8125の条件であ
ると、その格子定数はGaAsの格子定数と等しくなり
、ミスフィツト転位を発生しない。As shown in the figure, CauzSrvJa+-uz is grown on a GaAs substrate 21 using a molecular beam epitaxial growth method.
-vzFz (however, 0.74uz + 0.4vz =
0.547) is formed. In this case, for example, under the conditions of u z =0.3 and v-=0.8125, the lattice constant is equal to that of GaAs, and no misfit dislocation occurs.
この場合、厚さは例えば200人成長させる。In this case, the thickness is increased by, for example, 200 people.
次いで結晶層22上にCau3Srv3Bal−us−
wJzの結晶層23をu3を0.3から0.1にv3を
0.8215より0.06に各々、0.01.0.00
6ずつ変化させながら、各層の厚さを100人ずつ成長
させる。Next, Cau3Srv3Bal-us- is deposited on the crystal layer 22.
wJz crystal layer 23, u3 from 0.3 to 0.1, v3 from 0.8215 to 0.06, respectively, 0.01.0.00
While changing the thickness by 6, the thickness of each layer is grown by 100 people.
次いで結晶層23上にCau4SrvJat−an−v
Jz(0,74ua + 0.4V4 =0.98)の
結晶層24をu、=0.1 、V4=0.06の条件で
200人の厚さで形成する。この場合の臨界厚さはhc
は第(8)式より求めることができる。Next, Cau4SrvJat-an-v is placed on the crystal layer 23.
A crystal layer 24 of Jz (0.74ua + 0.4V4 = 0.98) is formed to a thickness of 200 mm under the conditions of u = 0.1 and V4 = 0.06. The critical thickness in this case is hc
can be obtained from equation (8).
h e ”’(Ca u4srvJa+−un−v4F
z/Cau3SrvJa+−u3−v3Fり
=(6,20−0,74u4−0.4V4)/(6,2
0−0,74u+ −0,4v+) 1 ・・・・・
・・・・(8)次いで該結晶層24上にZnTeの結晶
層25を分子線エピタキシャル成長方法、或いは気相エ
ピタキシャル成長方法を用いて形成する。このZnTe
の結晶層25は前記したCaut Sr vl Ba
I−ul−Vlp!の結晶層24と格子定数が同一であ
るのでミスフィツト転位を発生しない。h e ”'(Ca u4srvJa+-un-v4F
z/Cau3SrvJa+-u3-v3Fri=(6,20-0,74u4-0.4V4)/(6,2
0-0,74u+ -0,4v+) 1...
(8) Next, a ZnTe crystal layer 25 is formed on the crystal layer 24 using a molecular beam epitaxial growth method or a vapor phase epitaxial growth method. This ZnTe
The crystal layer 25 of the above-mentioned Caut Sr vl Ba
I-ul-Vlp! Since the lattice constant is the same as that of the crystal layer 24, no misfit dislocation occurs.
次いでこのZnTeの結晶層25の上にZn、 cd、
−、Teの結晶層26をその下のZnTeの結晶層25
とミスフィツト転位が発生しない程度の厚さで分子線エ
ピタキシャル成長方法、或いは気相エピタキシャル成長
方法で形成する。この厚さは第(2)式より導出した第
(5)式を用いて算出すると、例えばy =0.9のZ
ny cd、−、Te層を290人、y =0.5のZ
ny Cd、−。Next, on this ZnTe crystal layer 25, Zn, cd,
-, Te crystal layer 26 and ZnTe crystal layer 25 below it.
It is formed by molecular beam epitaxial growth or vapor phase epitaxial growth to a thickness that does not cause misfit dislocations. When this thickness is calculated using equation (5) derived from equation (2), for example, Z of y = 0.9
ny cd, -, 290 Te layer, Z of y = 0.5
ny Cd, -.
Te層で58人となる。There will be 58 people in the Te layer.
更にこのZn 、 cct、−、Teの結晶層26上に
Zn、 Cdt−5−t Hgt Te結晶層27をそ
の下のZn y Cd1−yTe結晶層26とミスフィ
ツト転位が発生しない程度の厚さに分子線エピタキシャ
ル成長方法、或いは気相エピタキシャル成長方法を用い
て形成する。Further, on this Zn, cct, -, Te crystal layer 26, a Zn, Cdt-5-t Hgt Te crystal layer 27 is formed to a thickness that does not cause misfit dislocation with the Zn y Cd1-y Te crystal layer 26 below. It is formed using a molecular beam epitaxial growth method or a vapor phase epitaxial growth method.
この厚さは第(2)式より算出した第(6)式を用いて
算出すると、例えばy=0.5のzn 、 Cd1−、
Teに引き続いてs =0.1 、t =0.3のZ
n @ Cdt−t−tugsTeの結晶層を形成する
場合、その厚さは77人である。When this thickness is calculated using equation (6) calculated from equation (2), for example, zn of y=0.5, Cd1-,
Te followed by Z with s = 0.1 and t = 0.3
When forming a crystal layer of n@Cdt-t-tugsTe, its thickness is 77 nm.
更にこのZns Cdt−5−t Hgz Te結晶層
27上に、Hgt−x Cd、 Teの結晶層28を、
その下のZn、 CdCdl−5−1HTe結晶層27
とミスフィツト転位が発生しない程度の厚さに分子線エ
ピタキシャル成長方法、或いは気相エピタキシャル成長
方法を用いて形成する。この厚さは第(2)式より導出
した第(7)式を用いて算出すると例えばs =0.1
、t =0.3のZn@ Cd1−s−t Hg L
Teの結晶層の上に引き続いてx =0.3のHgt
−x Cd、 Teの結晶層を形成する場合は398人
の厚さとなる。Further, on this Zns Cdt-5-t Hgz Te crystal layer 27, a Hgt-x Cd, Te crystal layer 28 is formed.
Zn, CdCdl-5-1HTe crystal layer 27 below
It is formed using a molecular beam epitaxial growth method or a vapor phase epitaxial growth method to a thickness that does not cause misfit dislocations. When this thickness is calculated using equation (7) derived from equation (2), for example, s = 0.1
, t = 0.3 Zn@Cd1-s-t Hg L
Hgt with x = 0.3 on top of the crystalline layer of Te
-x When forming a Cd, Te crystal layer, the thickness is 398 layers.
以上述べたように本発明の方法よれば、基板上に形成さ
れる化合物半導体結晶にミスフィツト転位が発生しない
ので、高品位な化合物半導体結晶が得られる効果がある
。As described above, according to the method of the present invention, no misfit dislocation occurs in the compound semiconductor crystal formed on the substrate, so that a high-quality compound semiconductor crystal can be obtained.
第1図は本発明の第1実施例で形成した半導体結晶の構
造を示す断面図、
第2図は本発明の第2実施例で形成した半導体結晶の構
造を示す断面図である。
第3図は従来の方法で形成した半導体結晶の構造を示す
断面図である。
図に於いて、
11はSt基板、12はCaF、結晶層、13はCa、
Srv Ba1−u−v Ft結晶層、14はCau
+Srv+Ba+−ul−v+Fz結晶層(但し0.7
4ut + 0.4V+ =0.98) 、15.2
5はZnTe結晶層、16.26はZny Cdl−、
Te結晶層、17.27はZns Cdl−5−z H
gc Te結晶層、18.28はHgI−x CdxT
e結晶層、21はGaAs基板、22はCautSrw
tBar−uz−w2Fg結晶層(但し0.74L1.
+0.4VZ =0.547)、23はCag3Srv
Ja+−u3−vzFz結晶層、24はCa uaSr
vJal−a4−v4P!結晶層(但し、0.14u
a + 0.4va ”0.98)第2図
外/l尤ゑネfr/Jへ゛いj晶d神図第3図FIG. 1 is a sectional view showing the structure of a semiconductor crystal formed in a first embodiment of the invention, and FIG. 2 is a sectional view showing the structure of a semiconductor crystal formed in a second embodiment of the invention. FIG. 3 is a cross-sectional view showing the structure of a semiconductor crystal formed by a conventional method. In the figure, 11 is an St substrate, 12 is a CaF crystal layer, 13 is a Ca,
Srv Ba1-u-v Ft crystal layer, 14 is Cau
+Srv+Ba+-ul-v+Fz crystal layer (however, 0.7
4ut + 0.4V+ = 0.98), 15.2
5 is a ZnTe crystal layer, 16.26 is Zny Cdl-,
Te crystal layer, 17.27 is Zns Cdl-5-z H
gc Te crystal layer, 18.28 is HgI-x CdxT
e crystal layer, 21 is a GaAs substrate, 22 is CautSrw
tBar-uz-w2Fg crystal layer (however, 0.74L1.
+0.4VZ =0.547), 23 is Cag3Srv
Ja+-u3-vzFz crystal layer, 24 is Ca uaSr
vJal-a4-v4P! Crystal layer (however, 0.14u
a + 0.4va ”0.98) Outside of Figure 2 / l + ne fr / J to J Crystal d Figure 3
Claims (1)
いはストロンチウムの弗化物のうちのいずれか1つを含
む結晶層(12)、或いは前記弗化物の混晶(13、1
4、22、23、24)を下部結晶層に対してミスフィ
ット転位が発生しない臨界厚さ以下の厚さで形成後、テ
ルル化亜鉛層(15、25)を形成し、該基板上に亜鉛
、水銀、カドミウム、テルルの元素のうち、少なくとも
1つ以上の元素を含む化合物半導体結晶層(16、17
、26、27)を形成後、更に最上層に水銀、カドミウ
ム、テルルよりなる化合物半導体結晶層(18、28)
を形成するようにしたことを特徴とする化合物半導体結
晶の製造方法。A crystal layer (12) containing any one of calcium, barium or strontium fluoride, or a mixed crystal of the fluoride (13, 1) on the semiconductor substrate (11, 21).
4, 22, 23, 24) to a thickness below the critical thickness at which misfit dislocations do not occur with respect to the lower crystal layer, a zinc telluride layer (15, 25) is formed, and a zinc telluride layer (15, 25) is formed on the substrate. , mercury, cadmium, tellurium, a compound semiconductor crystal layer (16, 17
, 26, 27), a compound semiconductor crystal layer (18, 28) made of mercury, cadmium, and tellurium is further formed on the top layer.
1. A method for manufacturing a compound semiconductor crystal, characterized in that a compound semiconductor crystal is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11975687A JPS63284827A (en) | 1987-05-15 | 1987-05-15 | Manufacture of compound semiconductor crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11975687A JPS63284827A (en) | 1987-05-15 | 1987-05-15 | Manufacture of compound semiconductor crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63284827A true JPS63284827A (en) | 1988-11-22 |
Family
ID=14769387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11975687A Pending JPS63284827A (en) | 1987-05-15 | 1987-05-15 | Manufacture of compound semiconductor crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63284827A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0398135A2 (en) * | 1989-05-13 | 1990-11-22 | Forschungszentrum Jülich Gmbh | Optoelectronic device |
JPH06177038A (en) * | 1992-12-09 | 1994-06-24 | Nec Corp | Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof |
-
1987
- 1987-05-15 JP JP11975687A patent/JPS63284827A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0398135A2 (en) * | 1989-05-13 | 1990-11-22 | Forschungszentrum Jülich Gmbh | Optoelectronic device |
JPH06177038A (en) * | 1992-12-09 | 1994-06-24 | Nec Corp | Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fitzgerald et al. | Totally relaxed Ge x Si1− x layers with low threading dislocation densities grown on Si substrates | |
US5399206A (en) | Arsenic passivation for epitaxial deposition of ternary chalcogenide semiconductor films onto silicon substrates | |
Zogg et al. | Growth of high quality epitaxial PbSe onto Si using a (Ca, Ba) F2 buffer layer | |
Sinharoy | Fluoride/semiconductor and semiconductor/fluoride/semiconductor heteroepitaxial structure research: A review | |
Mar et al. | CdTe films on (001) GaAs: Cr by molecular beam epitaxy | |
Wegscheider et al. | Fabrication and properties of epitaxially stabilized Ge/α-Sn heterostructures on Ge (001) | |
US7348226B2 (en) | Method of forming lattice-matched structure on silicon and structure formed thereby | |
JP2570646B2 (en) | Si-based semiconductor crystal substrate and method of manufacturing the same | |
JPS63284827A (en) | Manufacture of compound semiconductor crystal | |
Izumi et al. | High-quality CdF2 layer growth on CaF2/Si (111) | |
US5281299A (en) | Method for manufacturing a crystal with a lattice parameter gradient | |
JPH03235371A (en) | Method for manufacturing tandem solar cells | |
He et al. | Synthesis of dislocation free Si y (Sn x C1− x) 1− y alloys by molecular beam deposition and solid phase epitaxy | |
JP3635472B2 (en) | Infrared detector and manufacturing method thereof | |
JP3985288B2 (en) | Semiconductor crystal growth method | |
JP2605608B2 (en) | Method for growing HgCdTe thin film | |
JPH0239441A (en) | Manufacture of compound semiconductor crystal | |
Kambe | Molecular‐beam‐epitaxial growth of III‐VI layered semiconductor GaSe on amorphous SiO2 | |
JPS63194340A (en) | Method for manufacturing compound semiconductor crystal | |
JPH0697401A (en) | Semiconductor device and manufacture thereof | |
JPS59195881A (en) | Manufacturing method of semiconductor device | |
Okamoto et al. | Effect of thin HgTe layers on dislocations in HgCdTe layers on Si substrates | |
Mizukami et al. | A Novel Growth Method for High Quality GaAs/CaF2/Si (111) Structures by Using “Type-A” CaF2 Film | |
Ishiwara et al. | Layered Structures Composed of Si, Ge, GaAs, and Fluorides | |
Gotoh et al. | Epitaxial growth of CaxCd1-xF2 mixed crystal films on Si substrates |