JPS63284525A - Liquid crystal electrooptic device - Google Patents

Liquid crystal electrooptic device

Info

Publication number
JPS63284525A
JPS63284525A JP11859987A JP11859987A JPS63284525A JP S63284525 A JPS63284525 A JP S63284525A JP 11859987 A JP11859987 A JP 11859987A JP 11859987 A JP11859987 A JP 11859987A JP S63284525 A JPS63284525 A JP S63284525A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
electro
optical device
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11859987A
Other languages
Japanese (ja)
Other versions
JP2739147B2 (en
Inventor
Ippei Kobayashi
一平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62118599A priority Critical patent/JP2739147B2/en
Priority to US07/128,583 priority patent/US5029983A/en
Publication of JPS63284525A publication Critical patent/JPS63284525A/en
Priority to US07/278,569 priority patent/US4904057A/en
Application granted granted Critical
Publication of JP2739147B2 publication Critical patent/JP2739147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1365Active matrix addressed cells in which the switching element is a two-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant

Abstract

PURPOSE:To embody a change in transmittance to make display by using a liquid crystal which exhibits a ferroelectric characteristic, unraveling a spiral state by an electric field impressed to a cell and controlling the angle at which liquid crystal molecules incline by the positive and negative of the electric field and the impression time. CONSTITUTION:A spacing between substrates 2 is specified to about 10mum. Uniaxial orientational property to the liquid crystal is imparted to an oriented film 4 on one substrate by subjecting the film to a treatment. The ferroelectric liquid crystal of an ester system is injected into the cell. The liquid crystal has the angle theta of inclination of + or -19 deg. with the spiral axis in a temp. region where the ferroelectric characteristic is exhibited. The spiral pitch is 1.8mum. The polarization of a polarizing plate 1 is set at 19 deg. and a polarizing plate 7 is installed in the direction perpendicular to the plate 1. A diode 12 of in structure is sandwiched by thin Mo films 9 and 10 for light shielding and is isolated by a transparent insulator 8. The polarization direction of the plate 1 and the major axis direction of the liquid crystal molecules coincide with each other and light is not transmitted when a voltage is impressed on the electrodes 3, 9. The molecules are decreased in the voltage with the discharge by leakage and the state of transmitting the light is attained when the electric field is inverted.

Description

【発明の詳細な説明】 「発明の利用分野j この発明は強誘電性液晶を用いた電気光学装置の駆動方
法の新規な駆動方法及び新規な電気光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to a novel driving method for an electro-optical device using a ferroelectric liquid crystal and a novel electro-optical device.

「従来の技術j CRTに代わる固体表示装置は液晶材料を用いたもの、
エレクトロクロミック現象を利用したもの、ガス放電を
用いたもの等多種多様にわたって開発がなされてきた。
``Conventional technology j Solid-state display devices that replace CRT are those that use liquid crystal materials,
A wide variety of devices have been developed, including those that utilize electrochromic phenomena and those that use gas discharge.

取り分け、液晶表示装置は消費電力の小さいことと応答
速度が速いことから、実用向きであり、特に開発が盛ん
になった。
In particular, liquid crystal display devices are suitable for practical use due to their low power consumption and fast response speed, and their development has been particularly active.

しかし、最近、情報量の増加に伴い、一画面中の画素数
は増加の一途を辿っている。少量画素の場合にはTN液
晶材料を用いた表示装置でも表示品質は確保できたが、
例えば640 X400画素程度の多量画素を持つマト
リクス液晶表示装置の場合にはクロストーク等による画
質低下を免れず、液晶材料として強誘電性液晶を用いた
り、TN液晶を用いた場合でもSBEモードを用いたり
、半導体素子を各画素のスイッチとして用いた駆動をす
ることで画質の改善がなされてきた。
However, recently, as the amount of information increases, the number of pixels in one screen continues to increase. In the case of a small number of pixels, display quality could be ensured even with display devices using TN liquid crystal materials, but
For example, in the case of a matrix liquid crystal display device that has a large number of pixels (about 640 x 400 pixels), image quality is inevitably degraded due to crosstalk, etc., and even if ferroelectric liquid crystal is used as the liquid crystal material or TN liquid crystal is used, SBE mode is not used. In addition, image quality has been improved by driving semiconductor elements as switches for each pixel.

半導体素子を用いたTNアクティブ・マトリックス表示
装置では、半導体素子形成のだめの生産コストが高く、
さらにその素子の製造歩留りが低いため表示装置そのも
のの価格を低減することが困難であった。しかし表示画
質そのものは良好であったが生産価格も多量生産等の努
力で低減可能であったが、液晶材料の応答速度が遅く、
高速性を必要とする表示内容には不向きであった。
In TN active matrix display devices using semiconductor elements, the production cost of forming the semiconductor elements is high;
Furthermore, since the manufacturing yield of the device is low, it has been difficult to reduce the price of the display device itself. However, although the display image quality itself was good and the production price could be reduced through efforts such as mass production, the response speed of the liquid crystal material was slow,
It was unsuitable for displaying content that required high speed.

また、このTN型液晶にかわってN、A、C1arkら
により強誘電性液晶をもちいた液晶電気光学装置が提案
された(特開昭56−107216)この液晶電気光学
装置において強誘電性液晶分子が第1図に示すように、
スメクチック層の層の法線方向に対して+θ傾いた第1
の状態(1)と−θ傾いた第2の状態(n)を取る。
In addition, instead of this TN-type liquid crystal, a liquid crystal electro-optical device using ferroelectric liquid crystal was proposed by N. A. C1ark et al. As shown in Figure 1,
The first layer tilted by +θ with respect to the normal direction of the smectic layer.
state (1) and a second state (n) tilted by -θ.

この二つの状態間を外部より電界を加えて、強誘電性液
晶分子をスイッチさせることにより発生する複屈折効果
の違いにより表示を行うものであった。
Display was performed by applying an external electric field to switch between these two states to switch the ferroelectric liquid crystal molecules, thereby making use of the difference in birefringence effect generated.

この時強誘電性液晶分子を第1の状態(I)より第2の
状態(II)へかえる為にはスメクチック層に対して垂
直方向に例えば正の電界を加えることにより成される。
At this time, in order to change the ferroelectric liquid crystal molecules from the first state (I) to the second state (II), for example, a positive electric field is applied in a direction perpendicular to the smectic layer.

また逆に第2の状態(I[)より第1の状態(1)へ反
転させる為には、逆に負の電界を加えることにより成さ
れるものであった。すなわち外部より印加される電界の
向きをかえることにより強誘電性液晶分子の取る2状態
を変化させそれに伴って生じる電気光学効果の違いを利
用するものであった。
Conversely, in order to reverse the second state (I[) to the first state (1), it was accomplished by applying a negative electric field. That is, by changing the direction of an externally applied electric field, the two states of ferroelectric liquid crystal molecules are changed, and the resulting difference in electro-optic effects is utilized.

さらにこの外部より印加する電界を除去しても強誘電性
液晶分子はその状態を安定に保っており第1と第2の双
安定なメモリー性を持っていた。
Furthermore, even when this externally applied electric field was removed, the ferroelectric liquid crystal molecules maintained their state stably and had the first and second bistable memory properties.

その為、この強誘電性液晶を用いた液晶電気光学装置を
駆動する信号波形としては第2図に示すように、両極性
パルス列となっており、パルス極性の切り替わる方向に
より強誘電性液晶分子の取る2状態間をスイッチングし
ていた。
Therefore, the signal waveform that drives a liquid crystal electro-optical device using this ferroelectric liquid crystal is a bipolar pulse train, as shown in Figure 2, and the direction in which the pulse polarity switches changes the direction of the ferroelectric liquid crystal molecules. It was switching between two states.

このスイッチングはTN型液晶に比べて非常に高速にお
こなわれ、なおかつこの信号を取り去っても強誘電性液
晶分子の状態はメモリーされている。
This switching is performed much faster than in TN type liquid crystals, and even if this signal is removed, the state of the ferroelectric liquid crystal molecules is retained in memory.

ところが、このような強誘電性液晶を用いた液晶電気光
学装置において強誘電性液晶分子は双安定性を有してい
る必要があった為、該装置の構造も双安定性を実現する
為にある特定の条件を満たしている必要があった。すな
わち強誘電性液晶をはさんでいる基板間隔を双安定性が
実現される間隔まで狭くする必要があった。
However, in a liquid crystal electro-optical device using such a ferroelectric liquid crystal, the ferroelectric liquid crystal molecules must have bistability, so the structure of the device must also be modified to achieve bistability. Certain conditions had to be met. In other words, it was necessary to narrow the distance between the substrates that sandwich the ferroelectric liquid crystal to a distance that would achieve bistability.

この強誘電性液晶はホモジニアス配向させた液晶基板に
はさんだ場合、その基板間隔が広ければらせんを形成す
る。逆に、その間隔を十分小さくしてゆけば、らせんを
ほどき液晶分子が双安定性を示すものであり、この従来
の強誘電性液晶を用いた液晶電気光学装置においては多
安定性を実現するため、基板間隔を液晶のらせんピッチ
である1〜3μm程度にまで小さくする必要があり、液
晶電気光学装置を量産する際にこの小さい基板間隔が量
産技術上大きな問題となっていた。
When this ferroelectric liquid crystal is sandwiched between homogeneously aligned liquid crystal substrates, it forms a spiral if the distance between the substrates is wide. Conversely, if the spacing is made sufficiently small, the helix will unwind and the liquid crystal molecules will exhibit bistability, and conventional liquid crystal electro-optical devices using ferroelectric liquid crystals will achieve multistability. Therefore, it is necessary to reduce the distance between the substrates to about 1 to 3 μm, which is the helical pitch of the liquid crystal, and this small distance between the substrates has been a major problem in terms of mass production technology when mass producing liquid crystal electro-optical devices.

T発明の構成j 本発明は前述の問題を解決するために強誘電性液晶を用
いた電気光学装置において基板間隔の広いすなわち強誘
電性液晶がらせんを形成している状態を利用して液晶表
示を行わしめるものである。
T Structure of the Invention j In order to solve the above-mentioned problems, the present invention provides a liquid crystal display using the wide spacing between substrates in an electro-optical device using a ferroelectric liquid crystal, that is, the state in which the ferroelectric liquid crystal forms a spiral. This is to ensure that this is carried out.

第3図に示すような通常の液晶電気光学装置のセル中に
強誘電性液晶を入れる、この際セルの基板(2)の間隔
は液晶(5)がらせん状態をとれるように広めにしであ
る。この様な時液晶は第4図(A)に示すように外部よ
り電界を印加しない状態では液晶分子(5)は基板(2
)と平行方向にらせん軸を有するらせん状態を取る。こ
の状態で上下の電極(3)間に電圧を印加し、セル内に
電界を発生させると液晶分子(5)は第4図(B)又は
(C)の状態を取る。次にセル内の電界を反転させると
液晶分子(8)は第4図(C)又は(B)の如く、その
方向を変える。 この液晶分子が傾(角度の違いで起こ
る透過光の変化をセル外側に設けられた偏光手段(11
,(7)により検出することで透過の変化を具体化して
表示を行うことを特徴とするものであります。
A ferroelectric liquid crystal is placed in the cell of an ordinary liquid crystal electro-optical device as shown in Figure 3. At this time, the spacing between the cell substrates (2) is wide enough to allow the liquid crystal (5) to take a spiral state. . In such a case, the liquid crystal molecules (5) will move toward the substrate (2) when no electric field is applied from the outside, as shown in FIG. 4(A).
) takes on a helical state with the helical axis in the parallel direction. In this state, when a voltage is applied between the upper and lower electrodes (3) to generate an electric field within the cell, the liquid crystal molecules (5) assume the state shown in FIG. 4(B) or (C). Next, when the electric field inside the cell is reversed, the liquid crystal molecules (8) change their direction as shown in FIG. 4(C) or (B). This liquid crystal molecule tilts (changes in transmitted light caused by differences in angle) are polarized by a polarizing means (11) installed outside the cell.
, (7), it is characterized in that it embodies and displays changes in transmission.

すなわち、セルに印加する電界により、らせんをほどき
、また該電界の正負、印加時間により該液晶分子の傾く
角度を制御することを特徴としたものである。
That is, the device is characterized in that the helix is unraveled by an electric field applied to the cell, and the angle at which the liquid crystal molecules are tilted is controlled by the sign of the electric field and the application time.

また、第3図に示す様に画素整流性を示す素子(13)
を直列に接続することにより第5図に示す液晶装置の回
路のA−C間に第6図(A)の様な電圧波形を印加した
時、AB間の電圧は第6図(B)の様になる。
In addition, as shown in Figure 3, an element (13) exhibiting pixel rectification properties
When a voltage waveform as shown in Fig. 6(A) is applied between A and C of the liquid crystal device circuit shown in Fig. 5 by connecting them in series, the voltage between AB is as shown in Fig. 6(B). It will be like that.

すなわち、系の第6図(B)のリークによるFLCの容
量部の放電が終わるまで液晶に加わる両端電位は反転し
ない。
That is, the potential across the liquid crystal is not reversed until the discharge of the capacitive part of the FLC due to the leakage of the system shown in FIG. 6(B) is completed.

その為整流素子(13)を接続しない場合に比べて、該
液晶に選択電圧が印加される時間がt3−tzだけ長く
なり液晶のON時間も長くなる為、見かけ上コントラス
トが上がることを特徴とした液晶電気光学装置である。
Therefore, compared to the case where the rectifying element (13) is not connected, the time during which the selection voltage is applied to the liquid crystal is longer by t3-tz, and the ON time of the liquid crystal is also longer, so the apparent contrast is increased. This is a liquid crystal electro-optical device.

なお、1.−12は画素/整流素子の面積比が大きくな
る程長くなり、液晶に電圧が加わるON時間も長くする
ことができる。
In addition, 1. -12 becomes longer as the area ratio of the pixel/rectifying element increases, and the ON time during which voltage is applied to the liquid crystal can also be increased.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

「実施例j 本実施例では第3図に示す液晶電気光学装置セルを用い
基板(2)の間隔は10μmであり、少なくとも一方の
基板上の配向膜(4)は液晶に対し一軸配向性を付与す
るように配向処理が施されている。
Example j In this example, the liquid crystal electro-optical device cell shown in FIG. Orientation treatment is applied to impart this effect.

このセル中にらせんピッチ1.8μmを持つエステル系
の強誘電性液晶を注入した。この液晶は強誘電性を示す
温度領域でらせん軸に対し、約19゜の傾き角を持って
いた。
An ester-based ferroelectric liquid crystal having a helical pitch of 1.8 μm was injected into this cell. This liquid crystal had an inclination angle of approximately 19° with respect to the helical axis in the temperature range where it exhibits ferroelectricity.

この時、基板外側の偏光板(11は、この傾き角と同じ
方向、すなわちらせん軸に対して+19°又は−19°
の角度にその偏光方向を合わせ偏光板(7)はこの(1
)の方向に対し直角となる方向に合わせ設置した。
At this time, the polarizing plate (11) on the outside of the substrate is set in the same direction as this tilt angle, that is, +19° or -19° with respect to the helical axis.
The polarizing plate (7) adjusts its polarization direction to the angle of (1).
) was installed in the direction perpendicular to the direction.

またDiode (12)には、a−5t:Hのリンを
ドープしたN層とノンドープの1層、ボロンドープのP
層を使用したPIN構造のものを用い、遮光用のMo薄
膜(10)及び遮光用電極Mo薄膜(9)により、Di
odeを挟んだ。さらに、画素を形成する透明電極(1
1)と電極(9)のショートを防ぐ為に透明絶縁物(8
)を使用した。
Diode (12) also includes an a-5t:H phosphorus-doped N layer, a non-doped layer, and a boron-doped P layer.
Di
I sandwiched the ode. Furthermore, a transparent electrode (1
Transparent insulator (8) is used to prevent short circuit between 1) and electrode (9).
)It was used.

なお、電極(11)と整流素子(13)の面積比は35
:1とした。
In addition, the area ratio of the electrode (11) and the rectifying element (13) is 35.
:1.

この状態で液晶はセル内でらせん形成状態となっている
In this state, the liquid crystal is in a spiral formation state within the cell.

次にセル中の電極(31,(9)に電圧を印加しセル中
に電界を発生させると液晶分子(8)は第4図(B)の
状態をとる。この時偏光板(1)の偏光方向と分子の長
軸方向とが一致するので、この状態のときは光を透過し
ない状態となっている。
Next, when a voltage is applied to the electrodes (31, (9) in the cell to generate an electric field in the cell, the liquid crystal molecules (8) assume the state shown in Figure 4 (B). At this time, the polarizing plate (1) Since the direction of polarization and the long axis direction of the molecules match, in this state no light is transmitted.

次に電界を反転させると液晶分子(8)はリークによる
放電で液晶に加わる電圧が小さくなった後、第4図(C
)の状態となり光を透過する状態となる。
Next, when the electric field is reversed, the liquid crystal molecules (8) are discharged due to leakage, and after the voltage applied to the liquid crystal becomes small, as shown in Fig. 4 (C
) and becomes a state in which light is transmitted.

このように印加電界の方向により液晶表示の透過、非透
過を具体化するものである。
In this way, the liquid crystal display can be made transparent or non-transparent depending on the direction of the applied electric field.

例えば第7図(A)に示す電圧波形をセル中の電極(3
)に印加した場合、同図(B)に示すようなセルの透過
光強度が得られた。同図より明らかなように印加電圧の
印加時間を変化させることにより透過光強度を制御する
ことも可能であった。
For example, the voltage waveform shown in FIG.
), the transmitted light intensity of the cell was obtained as shown in (B) of the same figure. As is clear from the figure, it was also possible to control the transmitted light intensity by changing the application time of the applied voltage.

次に第8図(A)に示す電圧波形を同様に印加した場合
、同図(B)に示すようなセルの透過光強度が得られた
。同図より明らかなように印加電圧の電圧値を変化させ
ることによっても透過光強度を制御することができた。
Next, when the voltage waveform shown in FIG. 8(A) was similarly applied, the transmitted light intensity of the cell as shown in FIG. 8(B) was obtained. As is clear from the figure, the transmitted light intensity could also be controlled by changing the voltage value of the applied voltage.

よって、発明により液晶表示において階調表示(ブレー
ス−ケル)を行えるという特徴を持つ。
Therefore, the present invention has the feature that gradation display (bracesquel) can be performed in a liquid crystal display.

「効果」 本発明は強誘電性を示す液晶を用い、該液晶分子の取り
得る状態の違いにより発生する電気光学効果を利用する
液晶電気光学装置において、該液晶分子は液晶電気光学
装置内で双安定性を有しておらず、該液晶に対して外部
より印加する電圧により液晶電気光学装置内で発生する
電界によって液晶分子の状態を変化させ、其に伴って発
生する電気光学効果を利用することを特徴とするもので
ある。すなわち、双安定性を必要としない為、液晶電気
光学装置を作製する際の工業的なマージンを大きくとる
ことが可能となった。
"Effect" The present invention provides a liquid crystal electro-optical device that uses a liquid crystal exhibiting ferroelectricity and utilizes the electro-optic effect generated due to the difference in states that the liquid crystal molecules can take. It does not have stability, and the state of liquid crystal molecules is changed by the electric field generated within the liquid crystal electro-optical device by an external voltage applied to the liquid crystal, and the electro-optic effect generated accordingly is utilized. It is characterized by this. That is, since bistability is not required, it has become possible to obtain a large industrial margin when manufacturing a liquid crystal electro-optical device.

さらに強誘電性液晶がらせんを形成しても電界により、
そのらせんをほどくため、そのセルの基板間隔を狭くす
る必要がないので量産技術において大きな優位性を持た
せることができた。
Furthermore, even if the ferroelectric liquid crystal forms a spiral, due to the electric field,
In order to unwind the spiral, there is no need to narrow the spacing between the cell substrates, giving it a major advantage in mass production technology.

また従来の強誘電性液晶を用いた液晶表示の階調表示が
行えるという特徴を有するものである。
It also has the feature of being able to perform gradation display of a conventional liquid crystal display using ferroelectric liquid crystal.

また、整流素子を接続することによって見かけ上、コン
トラストが上がることを特徴とした液晶電気光学装置。
Furthermore, a liquid crystal electro-optical device is characterized in that the apparent contrast is increased by connecting a rectifying element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は強誘電性液晶分子の様子を示す。 第2図は従来の液晶電気光学装置の駆動信号を示す。 第3図は本発明装置の概略図を示す。 第4図は液晶の分子長軸の取り得る様子を示す。 第5図は本発明装置の回路図を示す。 第6図、第7図及び第8図は本発明装置の駆動信号波形
に対する電気光学効果の様子を示す。
FIG. 1 shows the appearance of ferroelectric liquid crystal molecules. FIG. 2 shows drive signals of a conventional liquid crystal electro-optical device. FIG. 3 shows a schematic diagram of the device of the invention. FIG. 4 shows possible states of the long axis of molecules of liquid crystal. FIG. 5 shows a circuit diagram of the device according to the invention. 6, 7, and 8 show the electro-optic effect on the drive signal waveform of the device of the present invention.

Claims (1)

【特許請求の範囲】 1、強誘電性を示す液晶を用い、該液晶に対して外部よ
り印加する電気信号により、電気光学装置内で前記電界
が発生する以前はらせんを形成していた液晶分子が単一
方向にそろい、かつ発生する電界の方向により液晶分子
のそろう方向を変化させ、其に伴って発生する電気光学
効果の変化を利用する液晶電気光学装置において該液晶
に対し、直列に整流素子を接続することにより該液晶に
加わる両端電圧を選択電圧に所定の時間維持できる様に
し、コントラストを見かけ上、上げることができること
を特徴とする液晶電気光学装置。 2、特許請求の範囲第1項において、基板間隔は液晶が
らせんを形成する程広いことを特徴とする液晶電気光学
装置。 3、特許請求の範囲第1項において外部から印加する電
界の強度、印加時間を変化させることにより透過光強度
を制御することができることを特徴とする液晶電気光学
装置。
[Claims] 1. Using a liquid crystal exhibiting ferroelectricity, an electric signal applied to the liquid crystal from the outside causes liquid crystal molecules that had formed a helix before the electric field was generated within the electro-optical device. In a liquid crystal electro-optical device, the liquid crystal molecules are aligned in a single direction, and the alignment direction of the liquid crystal molecules is changed depending on the direction of the generated electric field, and the resulting electro-optic effect is utilized. A liquid crystal electro-optical device characterized in that by connecting elements, the voltage applied across the liquid crystal can be maintained at a selected voltage for a predetermined period of time, and the contrast can be increased in appearance. 2. The liquid crystal electro-optical device according to claim 1, wherein the distance between the substrates is so wide that the liquid crystal forms a spiral. 3. A liquid crystal electro-optical device according to claim 1, characterized in that the intensity of transmitted light can be controlled by changing the intensity and application time of an externally applied electric field.
JP62118599A 1986-12-06 1987-05-15 Liquid crystal electro-optical device Expired - Fee Related JP2739147B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62118599A JP2739147B2 (en) 1987-05-15 1987-05-15 Liquid crystal electro-optical device
US07/128,583 US5029983A (en) 1986-12-06 1987-12-04 Liquid crystal device with a smectic chiral liquid crystal
US07/278,569 US4904057A (en) 1986-12-06 1988-12-01 Liquid crystal device with a smectic chiral liquid crystal and with a rectifier in series with each pixel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62118599A JP2739147B2 (en) 1987-05-15 1987-05-15 Liquid crystal electro-optical device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP33958493A Division JPH075433A (en) 1993-12-03 1993-12-03 Method for driving liquid crystal electrooptic device
JP5339585A Division JP2843861B2 (en) 1993-12-03 1993-12-03 Driving method of liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPS63284525A true JPS63284525A (en) 1988-11-21
JP2739147B2 JP2739147B2 (en) 1998-04-08

Family

ID=14740559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62118599A Expired - Fee Related JP2739147B2 (en) 1986-12-06 1987-05-15 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP2739147B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627024A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Driving method for optical switch element
JPS628130A (en) * 1985-07-04 1987-01-16 Seiko Epson Corp Driving method for liquid crystal electrooptic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627024A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Driving method for optical switch element
JPS628130A (en) * 1985-07-04 1987-01-16 Seiko Epson Corp Driving method for liquid crystal electrooptic device

Also Published As

Publication number Publication date
JP2739147B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JP3342341B2 (en) Liquid crystal device and driving method of liquid crystal device
JPS6261931B2 (en)
JP2001209063A (en) Liquid crystal display device and its displaying method
EP0542518B1 (en) Liquid crystal element and driving method thereof
US5555110A (en) Method of driving a ferroelectric liquid crystal display
JPS63311235A (en) Manufacture of liquid crystal electrooptical device
JPS63198024A (en) Liquid crystal electrooptic device
JP3530767B2 (en) Driving method of liquid crystal element
JP3166726B2 (en) Antiferroelectric liquid crystal optical element and driving method thereof
JPH028814A (en) Liquid crystal device
JPS63284525A (en) Liquid crystal electrooptic device
JPH08248450A (en) Ferroelectric liquid crystal display element
JP2843861B2 (en) Driving method of liquid crystal electro-optical device
JPS63192023A (en) Liquid crystal electrooptic device
KR19990037504A (en) Driving method of liquid crystal device, spatial light modulating device and driving method thereof
JPH075433A (en) Method for driving liquid crystal electrooptic device
JP2984788B2 (en) Display element device and display element driving method
JPH08328046A (en) Antiferroelectric liquid crystal display element
JP3005936B2 (en) Liquid crystal display device
JPS62134691A (en) Liquid crystal unit
JPS62133426A (en) Liquid crystal device
JPS60262135A (en) Driving method of liquid-crystal element
JPS60262134A (en) Driving method of liquid-crystal element
JPH08328011A (en) Liquid crystal display element formed by using liquid crystals having ferroelectric phase
JPH04215617A (en) Liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees