JPS63284521A - Plane light emitting device - Google Patents

Plane light emitting device

Info

Publication number
JPS63284521A
JPS63284521A JP62119068A JP11906887A JPS63284521A JP S63284521 A JPS63284521 A JP S63284521A JP 62119068 A JP62119068 A JP 62119068A JP 11906887 A JP11906887 A JP 11906887A JP S63284521 A JPS63284521 A JP S63284521A
Authority
JP
Japan
Prior art keywords
light
layer
phosphor layer
shutter
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62119068A
Other languages
Japanese (ja)
Other versions
JP2673348B2 (en
Inventor
Takehiko Yoshida
吉田 嶽彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PORITORONIKUSU KK
Polytronics Inc
Original Assignee
PORITORONIKUSU KK
Polytronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PORITORONIKUSU KK, Polytronics Inc filed Critical PORITORONIKUSU KK
Priority to JP62119068A priority Critical patent/JP2673348B2/en
Publication of JPS63284521A publication Critical patent/JPS63284521A/en
Application granted granted Critical
Publication of JP2673348B2 publication Critical patent/JP2673348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control the intensity of light emission from a phosphor layer by providing a light shutter layer close to the photo excited phosphor layer and driving the shutter layer with an information signal. CONSTITUTION:A plane light emission layer 1 has the light shutter layers corresponding to all the R, B and G layers on the phosphor layer in the ratio of one to one. The individual shutter layers are sequentially switched with a horizontal vertical synchronizing signal S and transmit the quantity of light according to the size of a video signal. Therefore, fluorescence from the tri-color dots of the phosphor layer is selected by the shutter so as to emit light in plane shape from the upper surface of the layer 1. A light radiation part 2 generates ultraviolet light and makes it strike against the phosphor layer in order to generate the fluorescence from the R, B and G dots. The plane light emission layer has a liquid crystal layer in it and executes a shutter function by selecting the gradation state between transparency and opacity prepared according to the voltage impressing state to the liquid crystal layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、文字、画像表示に好適な面状発光装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a planar light emitting device suitable for displaying characters and images.

〔従来の技術〕[Conventional technology]

従来例として薄形の発光装置(ディスプレイ)例として
、液晶ディスプレイ、プラズマディスプレイ、電場発光
ディスプレイ、発光ダイオードディスプレイ等がある。
Examples of conventional thin light emitting devices (displays) include liquid crystal displays, plasma displays, electroluminescent displays, and light emitting diode displays.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

文字、画像ディスプレイは情報化時代を迎えて一段と重
要なマンマシンインターフェイスとなり、高品位化、多
種化が進んでいる。情報処理装置端末用としてディスプ
レイに要求される特性のひとつに高精細化および視認性
の向上があげられる。
Text and image displays have become increasingly important man-machine interfaces as we enter the information age, and their quality and variety are increasing. One of the characteristics required of displays for information processing device terminals is high definition and improved visibility.

前者は高密度情報表示に対応し、後者は人間工学的視点
(容易識別、眼精疲労防止)から重要である。端末装置
として用いられる20インチ以下の小型ディスプレイに
は、これら要求される特性をもっとも確実に満たす装置
として陰極線管ディスプレイがある。陰極線管ディスプ
レイは、従来から動画用表示装置(テレビジョン)とし
て広く一般家庭に普及してきたが、情報処理端末用(静
止画用)として一段と高精細化、フリッカ−防止、高コ
ントラスト化などの改善がはかられている。しかし陰極
線管は高速電子線による蛍光体励起現象を利用するため
、電子線加速に要する高電圧(−10KV) 、奥行き
(数十an)が「使い易さ」のネックになっている。加
えて装置重量も昇圧トランス、偏向ヨークなどを含めて
数聴以上になるため。
The former corresponds to high-density information display, and the latter is important from an ergonomic perspective (easy identification, prevention of eye strain). For small displays of 20 inches or less used as terminal devices, there is a cathode ray tube display as a device that most reliably satisfies these required characteristics. Cathode ray tube displays have long been widely used in general households as video display devices (televisions), but improvements such as higher definition, flicker prevention, and higher contrast are needed for information processing terminals (still images). is being measured. However, since cathode ray tubes utilize the phosphor excitation phenomenon caused by high-speed electron beams, the high voltage (-10 KV) and depth (several tens of ann) required to accelerate the electron beams are bottlenecks in their ease of use. In addition, the weight of the device, including the step-up transformer, deflection yoke, etc., is more than a few pounds.

軽薄短小を特長とする電子デバイス群との整合性が次第
に悪くなりつつある。そこで、この欠点を補うディスプ
レイ装置として、いわゆる平面ディスプレイが各種開発
されており、液晶ディスプレイ、プラズマディスプレイ
、蛍光表示管ディスプレイ、電場発光ディスプレイ、発
光ダイオードディスプレイなどが一部実用化されている
。このうち液晶ディスプレイ以外は自己発光性デバイス
であるが、発光効率(電気→光エネルギー変換効率)が
0.01〜0.1%程度で陰極線管ディスプレイの2〜
3%より1桁以上低いという大きな問題点がある。一方
、液晶ディスプレイは非発光性のため駆動電圧が低く電
力消費量もきわめて少ないとか眼精疲労が少ないという
利点をもつが、暗所では利用できないとか視角依存性が
ありコントラスト比も小さいという視認性に問題をもつ
。そこで近年はバックライト付液晶ディスプレイが開発
され、色フィルターと組合せたカラーテレビが市販され
るに至った。前述の平面ディスプレイは陰極線管ディス
プレイに比べて、薄くて軽いという特徴の他に、情報が
XYマトリクス表示されるため特に静止画像の場合ぶれ
やちらつきがなく見やすいという特長がある。
Compatibility with electronic devices, which are characterized by their lightness, thickness, shortness, and smallness, is gradually becoming worse. Therefore, various so-called flat displays have been developed as display devices to compensate for this drawback, and some of them, such as liquid crystal displays, plasma displays, fluorescent display tube displays, electroluminescent displays, and light emitting diode displays, have been put into practical use. Among these, all devices other than liquid crystal displays are self-luminous devices, but their luminous efficiency (electricity → light energy conversion efficiency) is about 0.01 to 0.1%, which is about 2% to that of cathode ray tube displays.
There is a major problem in that it is more than an order of magnitude lower than 3%. On the other hand, since liquid crystal displays are non-luminescent, they have the advantage of low driving voltage, extremely low power consumption, and less eye strain, but their visibility is such that they cannot be used in dark places, are viewing angle dependent, and have low contrast ratios. have problems with. Therefore, in recent years, backlit liquid crystal displays have been developed, and color televisions combined with color filters have become commercially available. In addition to being thinner and lighter than cathode ray tube displays, the flat display described above also has the advantage of displaying information in an XY matrix, making it easy to see, especially in the case of still images, without blur or flickering.

上述した情報処理端末用ディスプレイに対する特性上の
ニーズと電子ディスプレイデバイスの現状から、陰極線
管ディスプレイ並に高コントラスト、高演色性をもつ高
発光効率の自己発光性デバイスであり、カラー液晶ディ
スプレイ並に薄くて軽くみやすい新規なディスプレイデ
バイスが求められている。
Considering the above-mentioned characteristics needs for displays for information processing terminals and the current state of electronic display devices, it is a self-luminous device with high luminous efficiency that has high contrast and high color rendering properties comparable to cathode ray tube displays, and is as thin as color liquid crystal displays. There is a need for a new display device that is lightweight and easy to see.

本発明は上記した現行ディスプレイ装置の欠点を解消し
、陰極線管ディスプレイと平面ディスプレイの利点を併
せもつ新規なデバイスを開示するのが目的である。
It is an object of the present invention to overcome the above-mentioned drawbacks of current display devices and to disclose a novel device that combines the advantages of cathode ray tube displays and flat panel displays.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために本発明では、下面側から照射
する一定強度の紫外線で励起する光励起用蛍光体層の上
面又は下面に近接して光シャッタ一層を設け、該光シャ
ッタ一層を所定の情報信号によって駆動して上記光励起
用蛍光体層からの発光の強度を制御し、光像として外部
に表示する面状発光装置を開示する。該面状発光装置を
バックライト付液晶ディスプレイ並びに薄型とするには
、前記光励起用蛍光体層の下面側に厚みの薄い光散乱室
を設は該面状発光装置側面に配置した直管紫外線ランプ
から放出した励起光を一旦上記光散乱室に導いて均一密
度の散乱光とし該散乱光が上方に位置した前記蛍光体層
を励起するような装置構造とすればよい。
In order to achieve this object, the present invention provides an optical shutter layer close to the upper or lower surface of the photoexcitation phosphor layer that is excited by ultraviolet rays of a constant intensity irradiated from the lower surface side, and the optical shutter layer is configured to provide predetermined information. Disclosed is a planar light emitting device that is driven by a signal to control the intensity of light emitted from the photoexcitation phosphor layer and displays it externally as a light image. In order to make the planar light emitting device a liquid crystal display with a backlight and a thin structure, a thin light scattering chamber is provided on the lower surface side of the light excitation phosphor layer, and a straight tube ultraviolet lamp is arranged on the side surface of the planar light emitting device. The device structure may be such that the excitation light emitted from the phosphor layer is once guided to the light scattering chamber to become scattered light of uniform density, and the scattered light excites the phosphor layer located above.

〔作用〕[Effect]

本発明では、光シャッタ層の制御により蛍光体層からの
発光強度の制御がなされる。
In the present invention, the intensity of light emitted from the phosphor layer is controlled by controlling the optical shutter layer.

〔実施例〕〔Example〕

第1図は、本発明の面状発光装置の外観図を示す。面状
発光装置は、面状発光層1と、光照射部2とを積層した
構成をなす。光照射部2は、励起光散乱室11と直管状
紫外線励起光源3,4とより成る。励起光散乱室11の
面状発光層1側にはブラックマトリクスでは仕切られた
R、G、Bの蛍光体層が配置しており、励起光源3,4
からの放射紫外線は、このR,G、Bの蛍光体層に衝突
し、蛍光体層全面を蛍光させる。
FIG. 1 shows an external view of a planar light emitting device of the present invention. The planar light emitting device has a structure in which a planar light emitting layer 1 and a light irradiation section 2 are laminated. The light irradiation section 2 includes an excitation light scattering chamber 11 and straight tube-shaped ultraviolet excitation light sources 3 and 4. On the planar light emitting layer 1 side of the excitation light scattering chamber 11, R, G, and B phosphor layers partitioned by a black matrix are arranged, and excitation light sources 3, 4 are arranged.
The emitted ultraviolet rays collide with the R, G, and B phosphor layers, causing the entire surface of the phosphor layers to fluoresce.

面状発光層1は、上記蛍光体層上のすべてのRoG、B
層に一対一に対応した光シャッタ層を有す。
The planar light emitting layer 1 includes all RoG and B on the phosphor layer.
The optical shutter layer has a one-to-one correspondence with each layer.

例えば、R,G、Bの数がnXmであれば、光シャッタ
層は、nXmの個別光シャッタ層を有する。
For example, if the number of R, G, B is nXm, the light shutter layer has nXm individual light shutter layers.

個別光シャッタ層は、水平、垂直同期信号Sによって次
々に切換えられ、且つビデオ信号(階調信号)の大きさ
に応じた光量を透過させる。従って、蛍光体層のR,G
、Bドツトすべてからの蛍光は、個別シャッタ層で次々
に選択され、面状発光層1の上面からは、面状発光がな
される。
The individual optical shutter layers are switched one after another by the horizontal and vertical synchronizing signals S, and transmit an amount of light corresponding to the magnitude of the video signal (gradation signal). Therefore, R, G of the phosphor layer
, B dots are selected one after another by the individual shutter layers, and planar light is emitted from the upper surface of the planar light emitting layer 1.

ここで、ビデオ信号は、ビデオ画面を構成する画像信号
である。ビデオ画面の一画面の大きさは面状発光層1の
大きさをなす。しかし、面状発光層1よりも小さくても
よい。ビデオ画面の大きさと面状発光層1の大きさとは
、何を表示し、且つどのような表示形態にするかによっ
て定まる。
Here, the video signal is an image signal that constitutes a video screen. The size of one video screen corresponds to the size of the planar light emitting layer 1. However, it may be smaller than the planar light emitting layer 1. The size of the video screen and the size of the planar light-emitting layer 1 are determined depending on what is to be displayed and the display format.

光照射部2のみを図面上取出して描いた外観図を第2図
に示す。励起光散乱室2は、中空をなし、両側に励起光
源3,4を取りつける。励起光源3゜4は、ソケット7
.8からの電圧印加のもとに紫外光源5,6を励起し、
紫外光を発生させる。この紫外光は、集光レンズ9,1
1で集光され、散乱室11内に入射する。散乱室11内
では、紫外光が散乱し、蛍光体層に衝突し、R,G、B
の各ドツトから蛍光を発生させる。この蛍光は、面状発
光層1内のシャッタ機能により、選択され、面状発光源
となる。
FIG. 2 shows an external view of only the light irradiation section 2 taken out from the drawing. The excitation light scattering chamber 2 is hollow, and excitation light sources 3 and 4 are attached to both sides. The excitation light source 3°4 is connected to the socket 7
.. Excite the ultraviolet light sources 5 and 6 under voltage application from 8;
Generates ultraviolet light. This ultraviolet light is transmitted through condensing lenses 9 and 1
1 and enters the scattering chamber 11. In the scattering chamber 11, the ultraviolet light is scattered and collides with the phosphor layer, causing R, G, B
Fluorescence is generated from each dot. This fluorescence is selected by the shutter function in the planar light emitting layer 1 and becomes a planar light emitting source.

面状発光層1は、内部に液晶層を持ち、この液晶層への
電圧の印加状態に応じて透明と不透明とを選択する。透
明と不透明との間にあっては、多数の階調状態を持つ。
The planar light-emitting layer 1 has a liquid crystal layer therein, and is transparent or opaque depending on the voltage applied to the liquid crystal layer. There are many gradation states between transparent and opaque.

かかる選択がシャッタ機能となる。This selection becomes the shutter function.

第3図は、面状発光層1の個別面状発光層の動作原理図
を示す。個別面状発光層IAは、R,G。
FIG. 3 shows a diagram of the operating principle of the individual planar light emitting layers of the planar light emitting layer 1. The individual planar light emitting layers IA are R, G.

Bのいずれかの1ドツト2Aに対応しており、同期信号
Sによってスイッチ12を○Nとし、その時のビデオ信
号Vinを個別面状発光層IAに印加する。ビデオ信号
Vinは1ドツトビデオ信号であり、多階調をなす。
The switch 12 is set to N by the synchronizing signal S, and the video signal Vin at that time is applied to the individual planar light emitting layer IA. The video signal Vin is a one-dot video signal and has multiple gradations.

なお、面状発光層1は、nXm個の個別面状発光層を有
し、これらはマトリックス状に形成され、同期信号Sに
よって次々に走査切換えがなされる。
Incidentally, the planar light emitting layer 1 has nXm individual planar light emitting layers, which are formed in a matrix, and scanning is successively switched by the synchronization signal S.

以下、具体的な実施例を示す。Specific examples will be shown below.

〔実施例1〕 5インチの画像表示用発光ディスプレイ装置を以下のよ
うにして構成した。すなわち、本ディスプレイ装置は第
4図で示すように、励起光散乱室11、カラー蛍光体層
30.液晶光シャッタ一層(面状発光層)1をこの順に
積層した構造の矩形表示面板と、前記励起光散乱室の一
対の相対する平行側面壁に密着して設けられた線状励起
光源3,4とから成る。矩形表示面板は外周がガラスよ
り成り、大きさは3.5(インチ)X4.5(インチ)
 X O,a(インチ厚み)である。このうち表示面積
は3(インチ)×4(インチ)となっている。励起光散
乱室は線状励起光源3,4の密着した壁面が集光レンズ
9,10で、また上面が内側にカラー蛍光体層30を塗
布したガラス基板19で被われており、他の三壁面(二
側面と底面)は内側にアルミニウム反射薄膜16を蒸着
したガラス板15で被われた中空直方体で構成されてお
り、内部は真空状態になっている。一方、カラー蛍光体
層30は、前記透明ガラス基板19上に塗布された島状
蛍光体領域18と各蛍光体層を仕切る非発光性黒色トマ
リクス領域17とから成る。非発光性黒色マトリクスの
幅は縦方向(長さ3インチ)50μm、横方向(長さ4
インチ)40μmであり、カーボンペーストのスクリー
ン印刷によって形成される。該黒色マトリクス形成後マ
スクパターンを用いて島状蛍光体領域18を形成するが
、フルカラー表示のためR(赤色)。
[Example 1] A 5-inch image display light emitting display device was constructed as follows. That is, as shown in FIG. 4, this display device includes an excitation light scattering chamber 11, a color phosphor layer 30. A rectangular display face plate having a structure in which a liquid crystal light shutter layer (planar light emitting layer) 1 is laminated in this order, and linear excitation light sources 3 and 4 provided in close contact with a pair of opposing parallel side walls of the excitation light scattering chamber. It consists of The rectangular display face plate has an outer periphery made of glass and measures 3.5 (inches) x 4.5 (inches).
X O,a (thickness in inches). The display area is 3 (inches) x 4 (inches). In the excitation light scattering chamber, the walls to which the linear excitation light sources 3 and 4 are in close contact are covered with condensing lenses 9 and 10, and the top surface is covered with a glass substrate 19 coated with a color phosphor layer 30 on the inside, and the other three The wall surfaces (two side surfaces and the bottom surface) are constituted by a hollow rectangular parallelepiped covered with a glass plate 15 on which an aluminum reflective thin film 16 is deposited on the inside, and the inside is in a vacuum state. On the other hand, the color phosphor layer 30 is composed of island-like phosphor regions 18 coated on the transparent glass substrate 19 and non-luminous black tomatrix regions 17 that partition each phosphor layer. The width of the non-luminescent black matrix is 50 μm in the vertical direction (3 inches long) and 50 μm in the horizontal direction (4 inches long).
inch) 40 μm and is formed by screen printing of carbon paste. After forming the black matrix, island-shaped phosphor regions 18 are formed using a mask pattern, and are R (red) for full color display.

G(緑色)、B(青色)各色蛍光体を第5図のパターン
で配置する。R,G、B各蛍光体にはそれぞれ周知の蛍
光材料、たとえば赤色にはY2O28:Eu、緑色には
Zn2Si○4:Mn、青色にはBaMgzA Q+a
Oz7: Euが用いられる。各蛍光体層(セグメント
)の面積は200μm(縦方向) x250μm(横方
向)である。ガラス基板19は表示面(3インチ×4イ
ンチ)からはみ出した部分が第4図に示す如く厚さ約5
mmの折れまがり状となっており、折れまがった部分の
内面はサンドブラストによって不透明になっている。こ
の部分は上記した中空励起光散乱室11の天井支持部位
となり、励起光散乱室11の外壁ガラスと溶接される。
G (green) and B (blue) color phosphors are arranged in the pattern shown in FIG. The R, G, and B phosphors each use well-known fluorescent materials, such as Y2O28:Eu for red, Zn2Si○4:Mn for green, and BaMgzA Q+a for blue.
Oz7: Eu is used. The area of each phosphor layer (segment) is 200 μm (vertical direction) x 250 μm (horizontal direction). The portion of the glass substrate 19 protruding from the display surface (3 inches x 4 inches) has a thickness of approximately 5 mm as shown in FIG.
It has a folded shape of mm, and the inner surface of the folded part is made opaque by sandblasting. This portion becomes a ceiling support portion of the hollow excitation light scattering chamber 11 described above, and is welded to the outer wall glass of the excitation light scattering chamber 11.

したがって、島状蛍光体層18は真空中に下垂した状態
にある。
Therefore, the island-shaped phosphor layer 18 is in a state of hanging down in the vacuum.

第5図でR,G、Bは規則正しく配置されており、R,
G、Bの表示のない空白部も同様に、R,G。
In Figure 5, R, G, and B are arranged regularly, and R,
Similarly, blank areas where G and B are not displayed are R and G.

Bのいずれかが配置されている。B is placed.

さて、液晶光シャッタ領域1は上記透明ガラス基板19
の裏面に形成されたITO膜2膜上0の上に形成された
液晶配向膜26.液晶層28.上部液晶配向膜22.ス
ペーサ21.上部液晶配向膜22が密着している上部I
TO膜23.およびTFT (薄膜トランジスタ)駆動
表示電極領域25から成る。この領域が液晶を透明−不
透明に反転させるシャッター機能をもつ。すなわち、シ
ャッターは液晶層28を挟む2枚のITO膜2膜上02
3のうち上部IT○膜(表示電極)23のみを第5図に
示す如く島状にマトリクス配置し、信号にあわせて各島
状電極を駆動し、「開」状態の時間を制御することによ
って下方より蛍光を透過せしめフルカラー表示するので
ある。「開」状態の時間を制御するのであるから勿論中
間調表示は可能である。島状表示電極23の面積は21
0μm(横方向) X 160μm(縦方向)であり、
間隔は横方向40μm、縦方向35μmとなっている。
Now, the liquid crystal light shutter area 1 is the transparent glass substrate 19.
A liquid crystal alignment film 26. is formed on the ITO film 2 film 0 formed on the back surface of the liquid crystal alignment film 26. Liquid crystal layer 28. Upper liquid crystal alignment film 22. Spacer 21. Upper part I to which the upper liquid crystal alignment film 22 is in close contact
TO film 23. and a TFT (thin film transistor) drive display electrode region 25. This area has a shutter function that flips the liquid crystal from transparent to opaque. That is, the shutter is placed on two ITO films 02 with the liquid crystal layer 28 sandwiched therebetween.
By arranging only the upper IT○ film (display electrode) 23 of 3 in an island-like matrix as shown in FIG. Fluorescent light is transmitted from below, providing a full-color display. Since the time in the "open" state is controlled, halftone display is of course possible. The area of the island-shaped display electrode 23 is 21
0 μm (horizontal direction) x 160 μm (vertical direction),
The spacing is 40 μm in the horizontal direction and 35 μm in the vertical direction.

表示電極23に信号に見合った時間だけ電圧を印加する
にはTPTが用いられる。たとえば0N10FF比が大
きく、可視光に対して透明な非晶質水素化シリコン(a
−3i:H)を用いることができる。上部ITO膜(表
示電極)23とTFT34の配置は第6図で示す如くマ
トリックス状であり、更に、縦方向にはられたドレイン
電極線31゜横方向にはられたゲート電極線32を有す
る。TPT34とIT○膜23との詳細を第7図に示す
。各島状表示電極23は左下隅に配置したTFT34と
ソース電極33を介して接続する。島状表示電極23の
間隔部には図示したように縦方向にTFT34のドレイ
ン電極線31 (15μm幅)が、また横方向にTPT
のゲート電極線32 (15μm幅)が走っている。
TPT is used to apply a voltage to the display electrode 23 for a period of time commensurate with the signal. For example, amorphous hydrogenated silicon (a
-3i:H) can be used. The arrangement of the upper ITO film (display electrode) 23 and the TFT 34 is in a matrix as shown in FIG. 6, and further includes a drain electrode line 31 extending vertically and a gate electrode line 32 extending horizontally. Details of the TPT 34 and the IT○ film 23 are shown in FIG. Each island-shaped display electrode 23 is connected via a source electrode 33 to a TFT 34 arranged at the lower left corner. As shown in the figure, in the space between the island-like display electrodes 23, there are drain electrode lines 31 (15 μm width) of the TFT 34 in the vertical direction, and TPT lines 31 (width 15 μm) in the horizontal direction.
A gate electrode line 32 (15 μm width) is running.

このようなTPT駆動表示電極領域25は第8図に示す
如く、ガラス基板24上にまずAu−Crのゲート電極
線32を形成し、この上にマスク法によってSi3N4
絶縁膜35. T F Ta2 (a −Si : H
)を気相形成し、エツチング後AQのドレイン電極線3
1゜ソース電極33を蒸着法により、そして最後に上記
サイズの島状表示電極(上部ITO膜)23をマスク法
で形成すれば完成する。この上に上部液晶配内膜22を
塗布し、下向きにしてスペーサー21を介して下部液晶
配向膜26との間に液晶層28を配置する。島状表示電
極23のパターンは前記島状カラー蛍光体領域18のパ
ターンと同じであるから、両者が上下方向で一致するよ
うに(光シャッターと蛍光体領域が重なるように)調整
すれば矩形表示面板が完成する。この面板(5インチ)
ディスプレイは500 X 666の絵素をもち、開口
率約80%である。
As shown in FIG. 8, such a TPT drive display electrode region 25 is formed by first forming an Au-Cr gate electrode line 32 on a glass substrate 24, and then forming a Si3N4 gate electrode line 32 on top of this using a mask method.
Insulating film 35. T F Ta2 (a-Si: H
) is formed in a vapor phase, and after etching, the drain electrode wire 3 of AQ is formed.
The 1.degree. source electrode 33 is formed by a vapor deposition method, and finally the island-shaped display electrode (upper ITO film) 23 of the above size is formed by a mask method to complete the process. An upper liquid crystal alignment film 22 is applied thereon, and a liquid crystal layer 28 is disposed between it and the lower liquid crystal alignment film 26 with spacers 21 interposed therebetween, facing downward. The pattern of the island-shaped display electrodes 23 is the same as the pattern of the island-shaped color phosphor regions 18, so if they are adjusted so that they match in the vertical direction (so that the optical shutter and the phosphor regions overlap), a rectangular display can be obtained. The face plate is completed. This face plate (5 inches)
The display has 500 x 666 picture elements and an aperture ratio of about 80%.

液晶としては動的散乱モードをもつ例えばEBBA(p
−エトキシベンジリデン−/−n−ブチルアニリン)と
MBBA (p−メトキシベンジリデン−/−n−ブチ
ルアニリン)の2=3混合物を用いることができる。
As a liquid crystal, for example, EBBA (p
A 2=3 mixture of -ethoxybenzylidene-/-n-butylaniline) and MBBA (p-methoxybenzylidene-/-n-butylaniline) can be used.

次に蛍光体層の線状励起光源3,4は集光レンズ9,1
0に密着した金属製光反射外蓋とその内側に配置した紫
外光ランプ、ソケット、リード線。
Next, the linear excitation light sources 3 and 4 for the phosphor layer are connected to condensing lenses 9 and 1.
A metal light-reflecting outer cover that adheres to the 0, and an ultraviolet light lamp, socket, and lead wire placed inside it.

電源、スイッチ(第2図で一部図示)などがら成る。光
反射外蓋の内面ガラス板15は光反射率を高めるため、
AQ蒸着膜16で被覆されている。紫外光ランプは低圧
水銀ランプ(主発光波長254nm)である。ソケット
は紫外光ランプに電圧を印加するためと、固定保持し外
部に紫外光が洩れないようにするために用いる。したが
って紫外光ランプを点灯時、放出紫外光(蛍光体の励起
光)は殆んどすべてが集光レンズ9,10を経由して励
起光散乱室11に導入される。
It consists of a power supply, a switch (partially shown in Figure 2), etc. The inner glass plate 15 of the light-reflecting outer cover increases the light reflectance.
It is covered with an AQ vapor deposited film 16. The ultraviolet lamp is a low-pressure mercury lamp (main emission wavelength 254 nm). The socket is used to apply voltage to the ultraviolet light lamp and to hold it in place to prevent ultraviolet light from leaking to the outside. Therefore, when the ultraviolet lamp is turned on, almost all of the emitted ultraviolet light (excitation light of the phosphor) is introduced into the excitation light scattering chamber 11 via the condenser lenses 9 and 10.

今、この面発光ディスプレイ装置を画像表示用電源装置
(図示せず)に接続し、スイッチを入れると前記矩形表
示面板の液晶光シャッター領域に信号電圧が印加される
。信号電圧は前記TPTのゲート電極線32にテレビの
水平ラインに同期したゲート信号Sを加え、線順次走査
を繰返す。また、ドレイン電極線31には各点に対応し
た反転ビデオ信号電圧Vin(強いビデオ信号が弱いビ
デオ信号に反転したネガティブ信号電圧)を加える。こ
れは動的散乱モード液晶が電圧印加時不透明になる(シ
ャッター作用を示す)ためである。各TFT34はソー
ス/ドレイン電圧が2.8vの時、ゲート電圧をOvか
ら15Vにスイッチするとドレイン電流が1O−12A
から10−’ Aまで6桁変化し、充分な0N10FF
特性を示すためにきわめて鮮やかなテレビ画像(フレー
ム周波数60Hz)が得られる。
Now, when this surface emitting display device is connected to an image display power source (not shown) and turned on, a signal voltage is applied to the liquid crystal light shutter area of the rectangular display panel. As for the signal voltage, a gate signal S synchronized with the horizontal line of the television is applied to the gate electrode line 32 of the TPT, and line-sequential scanning is repeated. Further, an inverted video signal voltage Vin (a negative signal voltage obtained by inverting a strong video signal to a weak video signal) corresponding to each point is applied to the drain electrode line 31. This is because the dynamic scattering mode liquid crystal becomes opaque (shows a shutter effect) when a voltage is applied. When the source/drain voltage of each TFT34 is 2.8V, when the gate voltage is switched from Ov to 15V, the drain current is 1O-12A.
Changes by 6 digits from to 10-' A, with sufficient 0N10FF
An extremely vivid television image (frame frequency 60 Hz) is obtained to demonstrate the characteristics.

この等価回路を第9図に示す。This equivalent circuit is shown in FIG.

この面発光ディスプレイ装置の発光効率(電気→光エネ
ルギー変換効率)は全面を光らせた場合(像表示なし)
12〜20%に達しく像表示の場合0.1〜0.3%)
、カラー陰極線管の2〜3%、カラー液晶テレビ(像表
示なしの場合)の0.5〜1.5%(像表示の場合0.
01%程度)を大きく凌ぐ特性を示す。また、画像の美
しさ、鮮やかさはカラー陰極線数であり、重さ・薄さ・
見やすさはカラー液晶テレビ並であることが示された。
The luminous efficiency (electricity → light energy conversion efficiency) of this surface emitting display device is when the entire surface is illuminated (no image display)
0.1-0.3% for image display reaching 12-20%)
, 2-3% for color cathode ray tubes, 0.5-1.5% for color LCD TVs (without image display) (0.
(approximately 0.01%). In addition, the beauty and vividness of an image are determined by the number of color cathode rays, weight, thinness,
The ease of viewing was shown to be on par with that of a color LCD TV.

〔実施例2〕 表示部面積224X98nyn″の単色文字表示パネル
(80文字X25行)を時分割駆動液晶マトリクス光シ
ャッターの採用によって構成した。すなわち本装置は、
第10図の如く矩形基板の長辺形端面に沿って一対の直
管状紫外線励起光源3,4を配した真空領域(励起光散
乱室)11の上部ガラス基板19上に時分割駆動液晶マ
トリクス光シャッターIAを配し、更にその上部に単色
蛍光体層43と上部保護ガラス基板24を積層した構造
となっている。前実施例同様励起光散乱室11は直管状
紫外線励起光源3,4に密着した集光レンズ9,10.
上部ガラス基板19以外の部分は、内面にAQ光反射膜
16を蒸着したガラス板15から構成されており、紫外
線の吸収をさけるために内部は真空になっている。
[Example 2] A monochrome character display panel (80 characters x 25 lines) with a display area of 224 x 98 ny'' was constructed by employing a time-division drive liquid crystal matrix optical shutter. In other words, this device
As shown in FIG. 10, a pair of straight tube-shaped ultraviolet excitation light sources 3 and 4 are arranged along the long side edges of a rectangular substrate, and time-divisionally driven liquid crystal matrix light is applied onto the upper glass substrate 19 of a vacuum region (excitation light scattering chamber) 11. It has a structure in which a shutter IA is arranged, and a monochromatic phosphor layer 43 and an upper protective glass substrate 24 are further laminated on top of the shutter IA. As in the previous embodiment, the excitation light scattering chamber 11 includes condensing lenses 9, 10, .
The portion other than the upper glass substrate 19 is composed of a glass plate 15 with an AQ light reflection film 16 deposited on its inner surface, and the inside is kept in a vacuum to avoid absorption of ultraviolet rays.

上部ガラス基板19の下面には、光偏向板45が密着さ
れている。一方、上部ガラス基板19の上面にはストラ
イプ状IT○膜50.同配向膜51が被着しており、ス
ペーサ52を介して厚さ約10μmの正の誘電異方性を
もつツィステッドネマチック液晶53が封入されている
。上部液晶電極54はストライプ状ITO膜50と直交
するストライプ状工To膜から成る。該ITO膜54に
は液晶配向膜55が塗布されている。ストライプ状IT
O膜54は透明ガラス板40真面に形成されているが、
該透明ガラス板40表面とその上部の透明ガラス板42
の間には、下部光偏向板45と偏光面が同じ方向の上部
光偏向板41が密着配置されている。透明ガラス板42
の上面には単色蛍光体層43として厚さ約20μmのY
2SiO5:Ce、Tbが塗布されている。単色蛍光体
層43の上面には、上部保護ガラス層48が配置されて
いるが、蛍光体層43を長期に亘って安定に保つために
は、該層が真空状態で密封されることが望ましい。
A light deflection plate 45 is closely attached to the lower surface of the upper glass substrate 19. On the other hand, on the upper surface of the upper glass substrate 19, a striped IT○ film 50. A oriented film 51 is adhered thereto, and a twisted nematic liquid crystal 53 having a thickness of approximately 10 μm and having positive dielectric anisotropy is sealed through a spacer 52 . The upper liquid crystal electrode 54 is made of a striped TO film orthogonal to the striped ITO film 50 . A liquid crystal alignment film 55 is applied to the ITO film 54 . striped IT
Although the O film 54 is formed directly on the transparent glass plate 40,
The surface of the transparent glass plate 40 and the transparent glass plate 42 above it
An upper light deflection plate 41 whose polarization plane is in the same direction as the lower light deflection plate 45 is disposed in close contact therebetween. Transparent glass plate 42
On the upper surface, a monochromatic phosphor layer 43 with a thickness of approximately 20 μm is formed.
2SiO5:Ce and Tb are coated. An upper protective glass layer 48 is arranged on the upper surface of the monochromatic phosphor layer 43, but in order to keep the phosphor layer 43 stable for a long period of time, it is desirable that this layer be sealed in a vacuum state. .

液晶層53を挟み込んだ上下のストライプ状IT○膜5
0.54は互いに直交するXYマトリクスを構成し、X
軸方向ストライプ電極54に走査信号電圧を、Y軸方向
ストライプ電極50に表示信号電圧をそれぞれ交流パル
ス状に印加することによって、各表示点に光シャッター
機能をもたせるものである。すなわち、励起光散乱室1
1から基板ガラス19を経て偏光板45を通過した直線
偏向励起光は液晶53に侵入するが、XYストライプ電
極交点にしきい値電圧が印加されていない場合は進行す
るにしたがって偏波面が液晶分子のねじれにしたがって
回転し、上部配向膜55に至って90°回転するので、
ガラス板40を通過した光は上部偏光板41に妨げられ
て蛍光体層43に侵入することは出来ない。したがって
この場合、発光は観測されない。しかるに、l6− XYストライプ電極交点にしきい値以上の電圧が印加さ
れると液晶が電極面に対して垂直方向に配向するので、
偏光板45を通過した励起光は液晶53→配向膜55→
IT○膜54→ガラス板40→上部偏光板41を透過し
てその上部に配置された蛍光体層43の該当個所を点状
に励起する。したがってこの場合、緑色体が外部に表示
される。本実施例ではX軸ストライプ電極数を100本
(0,5+nm幅)、すなわちデユーティ比1/100
で時分割し、コントラスト比20:1という良好な結果
を得た。同一サイズの文字表示パネルを、本実施例の如
き蛍光体層を用いず、液晶光シャッターのみ(非発光表
示)で構成した場合(デユーティ比1/100) 、コ
ントラスト比は8:1であり、明らかに本実施例の装置
が「みやすさ」の点ですぐれていることが示された。
Upper and lower striped IT○ films 5 sandwiching the liquid crystal layer 53
0.54 constitutes an XY matrix that is orthogonal to each other, and
By applying a scanning signal voltage to the axial stripe electrode 54 and a display signal voltage to the Y-axis stripe electrode 50 in the form of alternating current pulses, each display point is provided with an optical shutter function. That is, the excitation light scattering chamber 1
The linearly polarized excitation light that has passed through the polarizing plate 45 via the substrate glass 19 from 1 enters the liquid crystal 53, but if no threshold voltage is applied to the intersection of the XY stripe electrodes, the plane of polarization changes as it advances. It rotates according to the twist, reaches the upper alignment film 55, and rotates 90 degrees, so that
The light passing through the glass plate 40 is blocked by the upper polarizing plate 41 and cannot enter the phosphor layer 43. Therefore, no light emission is observed in this case. However, when a voltage higher than the threshold is applied to the intersection of the l6-XY stripe electrodes, the liquid crystal aligns perpendicularly to the electrode plane, so
The excitation light that has passed through the polarizing plate 45 is directed to the liquid crystal 53 → alignment film 55 →
The light passes through the IT◯ film 54 → the glass plate 40 → the upper polarizing plate 41, and excites the corresponding part of the phosphor layer 43 disposed above it in a dotted manner. Therefore, in this case, a green body is displayed externally. In this example, the number of X-axis stripe electrodes is 100 (0.5+nm width), that is, the duty ratio is 1/100.
A good result was obtained with a contrast ratio of 20:1. When a character display panel of the same size is configured with only a liquid crystal optical shutter (non-luminous display) without using a phosphor layer as in this example (duty ratio 1/100), the contrast ratio is 8:1, It was clearly shown that the device of this example was superior in terms of "ease of viewing."

一方、電気→光エネルギー変換効率の点で比較するため
に1、前記同一サイズの非発光文字表示パネルの裏面か
ら白色光を照射した。すなわち、第10図において単色
蛍光体層43.上部保護ガラス層48を除き、紫外線励
起光源3,4の位置に演色性にすぐれた白色蛍光ランプ
を配した表示デバイス(いわゆるバックライト付液晶デ
バイス)を構成した。第10図の表示デバイスと同じ表
示パターンをディスプレイして電気→光エネルギー変換
効率を比較すると、本発明の第10図表示デバイスは上
記バックライト付液晶デバイスより約40%高いことが
わかった。これは主に、両デバイス蛍光体の紫外線励起
効率の差(高演色白色蛍光体励起効率と緑色蛍光体励起
効率の差)に原因するものと考えられる。
On the other hand, in order to compare the electrical to light energy conversion efficiency, 1. white light was irradiated from the back side of the non-luminescent character display panel of the same size. That is, in FIG. 10, the monochromatic phosphor layer 43. The upper protective glass layer 48 was removed, and a display device (so-called backlit liquid crystal device) was constructed in which white fluorescent lamps with excellent color rendering properties were arranged at the positions of the ultraviolet excitation light sources 3 and 4. When the same display pattern as that of the display device of FIG. 10 was displayed and the electrical to light energy conversion efficiency was compared, it was found that the display device of FIG. 10 of the present invention was about 40% higher than the above-mentioned backlit liquid crystal device. This is thought to be mainly due to the difference in ultraviolet excitation efficiency between the two device phosphors (the difference between the excitation efficiency of the high color rendering white phosphor and the excitation efficiency of the green phosphor).

しかし、本実施例の単色表示デバイスを前実施例の本発
明カラー表示デバイスと効率の点で比較すると、前実施
例の場合が約1桁高いことがわかった。これは本実施例
の場合、液晶光シャッターの前後に偏光板を設けて直線
偏波光のみを通過せしめるようにしたためである。すな
わち高効率駆動のためには非偏光光シャッターの採用が
重要である。
However, when the monochrome display device of this example was compared with the color display device of the present invention of the previous example in terms of efficiency, it was found that the efficiency of the previous example was about one order of magnitude higher. This is because, in the case of this embodiment, polarizing plates are provided before and after the liquid crystal light shutter to allow only linearly polarized light to pass through. In other words, it is important to employ a non-polarized light shutter for highly efficient driving.

〔実施例3〕 5X7セグメントマトリクス表示で表示面積50×10
0!In2の数字・文字表示装置を作った。この場合光
シャッターはペプチルビオロゲン系エレクトロクロミン
クディスプレイ(ECD)である。ECD材料として用
いたペプチルビオロゲン水溶液は有機物であるが、電圧
印加により還元反応を起すと紫色に着色する。書込み時
間は対向電極(陽極)との間隔約1皿として1v印加で
約20m5ec。
[Example 3] Display area 50 x 10 in 5 x 7 segment matrix display
0! I made a number/character display device for In2. In this case, the optical shutter is a peptylviologen-based electrochromic display (ECD). Although the peptyl viologen aqueous solution used as the ECD material is an organic substance, it becomes colored purple when a reduction reaction occurs due to voltage application. The writing time is approximately 20 m5 ec with 1 V applied and the distance from the counter electrode (anode) to approximately 1 plate.

消去は逆電圧を1v印加して約25m5ecである。ま
た、着色時254nm紫外線に対する吸光率は約90%
となる。第11図に示した如く表示装置の長手方向に三
本の紫外線ランプ(直管10W)60を並べて蛍   
 ゛光体層励起光源とした、その背面には反射金属膜1
6が、ガラス基板15に蒸着配置されている。該励起光
源上方の透明ガラス基板19の上面にはドツトパターン
化されたNESA膜61膜形1され、該NESA膜61
上には表示点対応ドツト(直径2+nmφ。
Erasing is performed by applying a reverse voltage of 1 V for about 25 m5ec. Also, when colored, the absorbance for 254 nm ultraviolet rays is approximately 90%.
becomes. As shown in Figure 11, three ultraviolet lamps (straight tube 10W) 60 are lined up in the longitudinal direction of the display device to fluoresce.
゛The light body layer is an excitation light source, with a reflective metal film 1 on the back side.
6 is deposited on the glass substrate 15. A dot-patterned NESA film 61 is formed on the upper surface of the transparent glass substrate 19 above the excitation light source.
On the top is a dot corresponding to the display point (diameter 2+nmφ).

ピッチ0 、5 mm )を貫通孔としてもつ不透明絶
縁膜62がスクリーン印刷で形成される。この貫通孔(
深さ約1nwn)にペプチルビオロゲン水溶液63を充
填する。次に透明ガラス板64の下面に対向電極として
透明なIrO2膜65を蒸着して該IrO2膜がペプチ
ルビオロゲン水溶液に接触するようにして固定すれば、
該水溶液63はガラス板19と64.およびスペーサー
52によって密封される。透明ガラス板64の上面には
蛍光体層70としてY2O3:’Euを約30μmの厚
さに塗布し、その上面を保護ガラス板48で封止した。
An opaque insulating film 62 having through holes with a pitch of 0.5 mm is formed by screen printing. This through hole (
A peptyl viologen aqueous solution 63 is filled to a depth of approximately 1 nwn. Next, a transparent IrO2 film 65 is deposited as a counter electrode on the lower surface of the transparent glass plate 64, and the IrO2 film is fixed in contact with the peptyl viologen aqueous solution.
The aqueous solution 63 is applied to the glass plates 19 and 64. and is sealed by a spacer 52. On the upper surface of the transparent glass plate 64, Y2O3:'Eu was applied as a phosphor layer 70 to a thickness of about 30 μm, and the upper surface was sealed with a protective glass plate 48.

該数字、文字表示装置の駆動は次のようにして行なう。The number and character display device is driven as follows.

まずIrO2膜65をプラス、NESA膜61膜形1ナ
スとして約1.2vの直流電圧をペプチルビオロゲン水
溶液に印加すると、還元反応によって該水溶液が紫色に
着色する。この着色はそのまま放置すると約1ケ月゛′
記憶″させることが可能である。この状態で蛍光体層励
起光源(紫外線ランプ)60を点灯しても、紫外光は高
々数%しかECD層を通過しないので、Y2O3: E
u層70の励起発光強度はきわめて弱く、ECD光シャ
ッター−は「○FFJの状態にある。次に、数字・文字
として表示すべきNESA膜ドツト電極61のみをプラ
スとし、Ir○2膜65全65全イナスとして約1.1
vの直流電圧を印加すると、該ドツト電極61に対応し
たペプチルビオロゲン水溶液領域のみで酸化反応が生じ
約25m5ecで該水溶液領域は透明になる。この結果
、励起光源60から放射された254nm紫外線は該透
明領域を通過して効率よ<Y2O3:Eu蛍光体層70
の該当領域を励起することができ、表示ドツトに対応し
た赤色光(λ=611nm)が外部に放出される。すな
わち、この状態はECD光シャッターのrONJ状態で
ある。これらペプチルビオロゲン水溶液の「○NJ  
rOFFJ対応電圧印加は30m5ec程度の単発矩形
波パルスで行なうことが出来るので、表示内容を必要に
応じて次々かえることが出来る。本表示装置による数字
・文字表示は、黒紫色背景に赤色発光パターンとなるた
めコントラストが高く(コントラスト比30:1)、表
示効果はきわめて大きい、原理的にはこのECD光シャ
ッターのrONJ電圧値又はパルス幅を制御することに
よって中間調表示も可能であるが、前実施例の液晶光シ
ャッターはど明確な階調表示は難しい。しかし、上述の
如くペプチルビオロゲン水溶液の着色記憶が1ケ月にも
及ぶことから、固定型の数字・文字ディスプレイとして
も利用可能である。
First, when a DC voltage of about 1.2 V is applied to an aqueous peptyl viologen solution with the IrO2 film 65 plus the NESA membrane 61 and the NESA membrane 61 in the form of 1 minus, the aqueous solution is colored purple by a reduction reaction. If you leave this coloring as it is, it will last about a month.
Even if the phosphor layer excitation light source (ultraviolet lamp) 60 is turned on in this state, only a few percent of the ultraviolet light will pass through the ECD layer, so Y2O3:E
The excitation emission intensity of the U layer 70 is extremely weak, and the ECD optical shutter is in the state of "○FFJ."Next, only the NESA film dot electrode 61 to be displayed as numbers and letters is made positive, and the entire Ir○2 film 65 is turned on. Approximately 1.1 as 65 total minus
When a DC voltage of v is applied, an oxidation reaction occurs only in the peptyl viologen aqueous solution region corresponding to the dot electrode 61, and the aqueous solution region becomes transparent in about 25 m5 ec. As a result, the 254 nm ultraviolet rays emitted from the excitation light source 60 pass through the transparent region and efficiently <Y2O3:Eu phosphor layer 70.
The corresponding region of the dot can be excited, and red light (λ=611 nm) corresponding to the display dot is emitted to the outside. That is, this state is the rONJ state of the ECD optical shutter. “○NJ” of these peptyl viologen aqueous solutions
Since the voltage application corresponding to rOFFJ can be performed with a single rectangular wave pulse of about 30 m5ec, the display contents can be changed one after another as necessary. The numbers and characters displayed by this display device have a high contrast (contrast ratio 30:1) because they are a red light emitting pattern on a black-purple background, and the display effect is extremely large.In principle, the rONJ voltage value of this ECD optical shutter or Although it is possible to display halftones by controlling the pulse width, it is difficult to display clear gradations with the liquid crystal optical shutter of the previous embodiment. However, as mentioned above, the coloring memory of the aqueous peptyl viologen solution lasts for up to one month, so it can also be used as a fixed number/character display.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明では光励起蛍光(ホ
トルミネッセンス)と電子式光シャッターの組合せによ
り、表示点のアクセス及び階調調節を光シャッターに行
なわしめ、高コントラスト。
As described in detail above, the present invention uses a combination of optically excited fluorescence (photoluminescence) and an electronic optical shutter to access the display point and adjust the gradation using the optical shutter, resulting in high contrast.

高演色性を柱とする視認性の高さを光励起用蛍光体に分
担させた高効率面状表示装置を開示した。
A highly efficient planar display device in which a photoexcitable phosphor is used to provide high visibility based on high color rendering properties has been disclosed.

本発明の面状発光装置の特長をまとめると、(1)薄型
軽量の高精細表示デバイスであり、(2)コントラスト
比が高く視認性にすぐれ、(3)発光効率が高くしたが
って低消費電力であり、(4)低電圧駆動が可能なため
ポータプル化可能であり、(5)コスト的にみても他の
発光性平面ディスプレイ(発光ダイオード、電場発光デ
バイス、プラズマ表示デバイス、蛍光表示管デバイスな
ど)より安く製造できる(大容量表示デバイスの場合)
という点にあり、ブラウン管並の高性能表示と液晶表示
デバイス並の軽量性を備えた情報処理端末用表示装置で
あることがわかる。
To summarize the features of the planar light emitting device of the present invention, (1) it is a thin and lightweight high-definition display device, (2) it has a high contrast ratio and excellent visibility, and (3) it has high luminous efficiency and therefore low power consumption. (4) It can be made into a portable device because it can be driven at low voltage, and (5) It is cost-effective as well as other luminescent flat displays (light-emitting diodes, electroluminescent devices, plasma display devices, fluorescent display tube devices, etc.). Can be manufactured more cheaply (for large capacity display devices)
This shows that this is a display device for information processing terminals that has high performance display comparable to that of a cathode ray tube and light weight comparable to a liquid crystal display device.

本実施例では、光シャッターとして液晶およびECDを
用いた場合を述べたが、これ以外に例えば電気泳動効果
や誘電体の電気光学効果を利用することも原理的に可能
なことは自明である。
In this embodiment, a case has been described in which a liquid crystal and an ECD are used as the optical shutter, but it is obvious that it is also possible in principle to use, for example, an electrophoretic effect or an electro-optical effect of a dielectric material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の面発光装置の外観図、第2図は光照射
部の外観図、第3図は個別光シャッターの動作説明図、
第4図は本発明の一実施例におけるデバイス構造図、第
5図は蛍光体層の配置列図、第6図、第7図、第8図は
第4図に示したデバイスにおける液晶駆動部位の主要構
造を示す図、第9図は等価回路図、第10図は本発明の
別の一実施例におけるデバイス構造主要部位図、第11
図は本発明の更に別の一実施例におけるデバイス構造主
要部位図である。 図において15は励起光散乱室の下面側ガラス板。 16は金属反射膜、9.10は励起光集光用レンズ。 19は励起光散乱室の上面側ガラス板、18は島状蛍光
体領域、 20は下部ITO膜(下部透明電極)。 26は下部液晶配向膜、28は液晶、22は上部液晶配
向膜、21はスペーサ、23は上部ITO膜(上部透明
電極)、25はTPT駆動表示電極領域、3,4は直管
状紫外線励起光源、43は単色蛍光体層、24゜48は
表示デバイスの上部保護ガラス板、45は下部光偏向板
、41は上部光偏向先板、42は透明ガラス板、62は
不透明絶縁膜、63はペプチルビオロゲン水溶液、65
はIrO2対向電極、17は非発光黒色マトリクス領域
を示す。 特許出願人 株式会社ポリトロニクス 代理人弁理士 秋   本   正  実(外1名) 第7図 第8図 Mr+ 第10図 第11図
FIG. 1 is an external view of the surface emitting device of the present invention, FIG. 2 is an external view of the light irradiation part, and FIG. 3 is an explanatory diagram of the operation of the individual optical shutter.
FIG. 4 is a device structure diagram in one embodiment of the present invention, FIG. 5 is a layout diagram of phosphor layers, and FIGS. 6, 7, and 8 are liquid crystal drive parts in the device shown in FIG. 4. 9 is an equivalent circuit diagram, FIG. 10 is a diagram showing the main parts of a device structure in another embodiment of the present invention, and FIG. 11 is a diagram showing the main structure of the device.
The figure is a diagram of the main parts of a device structure in yet another embodiment of the present invention. In the figure, 15 is a glass plate on the lower side of the excitation light scattering chamber. 16 is a metal reflective film, and 9.10 is a lens for condensing excitation light. 19 is a glass plate on the upper side of the excitation light scattering chamber, 18 is an island-like phosphor region, and 20 is a lower ITO film (lower transparent electrode). 26 is a lower liquid crystal alignment film, 28 is a liquid crystal, 22 is an upper liquid crystal alignment film, 21 is a spacer, 23 is an upper ITO film (upper transparent electrode), 25 is a TPT drive display electrode area, 3 and 4 are straight tube ultraviolet excitation light sources , 43 is a monochromatic phosphor layer, 24° 48 is an upper protective glass plate of the display device, 45 is a lower light deflection plate, 41 is an upper light deflection destination plate, 42 is a transparent glass plate, 62 is an opaque insulating film, 63 is a peptide Rubiologen aqueous solution, 65
indicates an IrO2 counter electrode, and 17 indicates a non-luminous black matrix region. Patent applicant: Polytronics Co., Ltd. Patent attorney Masami Akimoto (1 other person) Figure 7 Figure 8 Mr+ Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1、下面側から照射した一定強度の紫外線によって励起
する光励起用蛍光体層の上面又は下面に近接して光シャ
ッター層を設け、該光シャッタ一層を所定の情報信号に
よって駆動することにより前記光励起用蛍光体層からの
発光強度を制御し、光像として外部に表示する面状発光
装置。 2、特許請求の範囲第1項記載の面状発光装置において
、光シャッター層がX−Yマトリクス状液晶シャッター
である面状発光装置。 3、特許請求の範囲第1項に記載の面状発光装置におい
て、一定強度の紫外線を上記光励起用蛍光体層に照射す
る手段として、矩形ディスプレイ面板の相対する一組の
平行二側面に直管紫外ランプ光源を密着配置して、まず
放射紫外線を上記光励起用蛍光体層下面側に設けた直方
体状光散乱室に導入し、次に該散乱光で上記光励起用蛍
光体層を照射・励起するように紫外線散乱領域を設けた
ことを特徴とする面状発光装置。
[Claims] 1. An optical shutter layer is provided in close proximity to the upper or lower surface of a photoexcitation phosphor layer that is excited by ultraviolet rays of a constant intensity irradiated from the lower surface side, and the optical shutter layer is driven by a predetermined information signal. A planar light-emitting device that controls the intensity of light emitted from the photoexcitation phosphor layer and displays it externally as a light image. 2. A planar light emitting device according to claim 1, wherein the optical shutter layer is an XY matrix liquid crystal shutter. 3. In the planar light emitting device according to claim 1, as a means for irradiating the photoexcitation phosphor layer with ultraviolet rays of a constant intensity, straight tubes are provided on a pair of parallel two opposing sides of the rectangular display face plate. Ultraviolet lamp light sources are arranged in close contact with each other, and emitted ultraviolet light is first introduced into a rectangular parallelepiped light scattering chamber provided on the lower surface side of the light excitation phosphor layer, and then the light excitation phosphor layer is irradiated and excited with the scattered light. A planar light emitting device characterized by having an ultraviolet scattering region.
JP62119068A 1987-05-18 1987-05-18 Planar light emitting device Expired - Lifetime JP2673348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119068A JP2673348B2 (en) 1987-05-18 1987-05-18 Planar light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119068A JP2673348B2 (en) 1987-05-18 1987-05-18 Planar light emitting device

Publications (2)

Publication Number Publication Date
JPS63284521A true JPS63284521A (en) 1988-11-21
JP2673348B2 JP2673348B2 (en) 1997-11-05

Family

ID=14752098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119068A Expired - Lifetime JP2673348B2 (en) 1987-05-18 1987-05-18 Planar light emitting device

Country Status (1)

Country Link
JP (1) JP2673348B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307790A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Lighting device for transmission type color image display device
JP2005134650A (en) * 2003-10-30 2005-05-26 Casio Comput Co Ltd Ultraviolet optical shutter element
WO2007053445A1 (en) * 2005-10-31 2007-05-10 Hewlett-Packard Development Company, L.P. Ultra-violet radiation absorbing grid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735148B1 (en) * 2004-11-22 2007-07-03 (주)케이디티 Backlight unit by phosphorescent diffusion sheet
JP2007047274A (en) * 2005-08-08 2007-02-22 Displaytech 21:Kk Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109796A (en) * 1975-03-20 1976-09-28 Matsushita Electric Ind Co Ltd EKISHOHYOJISOCHI
JPS57204078A (en) * 1981-06-09 1982-12-14 Sanyo Electric Co Fluorescent display unit
JPS59171928A (en) * 1983-03-18 1984-09-28 Mitsubishi Electric Corp Liquid crystal display device
JPS60149028A (en) * 1984-01-13 1985-08-06 Ricoh Co Ltd Liquid crystal color display device
JPS61219980A (en) * 1985-03-26 1986-09-30 セイコーエプソン株式会社 Back light for transmission type display panel
JPS62186112U (en) * 1986-05-20 1987-11-26

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109796A (en) * 1975-03-20 1976-09-28 Matsushita Electric Ind Co Ltd EKISHOHYOJISOCHI
JPS57204078A (en) * 1981-06-09 1982-12-14 Sanyo Electric Co Fluorescent display unit
JPS59171928A (en) * 1983-03-18 1984-09-28 Mitsubishi Electric Corp Liquid crystal display device
JPS60149028A (en) * 1984-01-13 1985-08-06 Ricoh Co Ltd Liquid crystal color display device
JPS61219980A (en) * 1985-03-26 1986-09-30 セイコーエプソン株式会社 Back light for transmission type display panel
JPS62186112U (en) * 1986-05-20 1987-11-26

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307790A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Lighting device for transmission type color image display device
JP2005134650A (en) * 2003-10-30 2005-05-26 Casio Comput Co Ltd Ultraviolet optical shutter element
WO2007053445A1 (en) * 2005-10-31 2007-05-10 Hewlett-Packard Development Company, L.P. Ultra-violet radiation absorbing grid
US7612859B2 (en) 2005-10-31 2009-11-03 Hewlett-Packard Development Company, L.P. Ultra-violet radiation absorbing grid

Also Published As

Publication number Publication date
JP2673348B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US8723785B2 (en) Liquid crystal display and driving method of liquid crystal display
KR100212866B1 (en) Field-sequential display system utilizing a backlit lcd pixel array and method
JP2582644B2 (en) Flat panel image display
US20070058107A1 (en) Photoluminescent liquid crystal display
KR101044472B1 (en) Backlight unit for driving multi-lamp and liquid crystal display device using thereof
KR20010077981A (en) Liquid crystal display screen comprising a fluorescent front plate
JP2003315732A (en) Image display device
JP2001242459A (en) Liquid crystal color display screen
JP2002148619A (en) Liquid crystal display screen with black light lighting
US7283186B2 (en) Liquid crystal display
KR20100064862A (en) Liquid crystal display device
TWI241435B (en) Liquid crystal display device
JP2673348B2 (en) Planar light emitting device
JPS62194227A (en) Light emission type display device
US7659950B2 (en) Liquid crystal display module having electrode pairs in partitioned light emitting spaces, respectively
CN101663703A (en) Lighting system and display device equipped with the same
KR20090013913A (en) Light emitting device and display using the light emitting device, the driving method of the light emitting device, and the method of the display
KR100291912B1 (en) Color liquid crystal display
KR20000014574A (en) Color lcd
CN100437272C (en) Method for driving device of generating plane light source, and structure
JPH01126625A (en) Color display device
KR101198238B1 (en) Flat fluorescent lamp
JPS6037591A (en) Color display and driving thereof
WO2009131410A2 (en) Display device driven by electric field
JP3734375B2 (en) Plasma addressed liquid crystal display

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term