JPS63284135A - Production of organic fluorine compound - Google Patents

Production of organic fluorine compound

Info

Publication number
JPS63284135A
JPS63284135A JP11704387A JP11704387A JPS63284135A JP S63284135 A JPS63284135 A JP S63284135A JP 11704387 A JP11704387 A JP 11704387A JP 11704387 A JP11704387 A JP 11704387A JP S63284135 A JPS63284135 A JP S63284135A
Authority
JP
Japan
Prior art keywords
organic
zinc fluoride
compound
reaction
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11704387A
Other languages
Japanese (ja)
Other versions
JPH0780791B2 (en
Inventor
Hiroyuki Momotake
宏之 百武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP11704387A priority Critical patent/JPH0780791B2/en
Publication of JPS63284135A publication Critical patent/JPS63284135A/en
Publication of JPH0780791B2 publication Critical patent/JPH0780791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To easily obtain an organic fluorine compound useful as a raw material for pharmaceuticals and agricultural chemicals, in high yield at a low cost, by reacting an organic compound having active chlorine group or bromine group with zinc fluoride in an aprotic nonpolar organic solvent. CONSTITUTION:An organic fluorine compound (e.g. 2-fluoronitrobenzene) is produced by reacting an organic compound having active chlorine group and/or bromine group (e.g. 2-chloronitrobenzene) with zinc fluoride in an aprotic nonpolar organic solvent (e.g. anisole or toluene) at room temperature - 300 deg.C for 0.5-100hr. The amount of the zinc fluoride is 2-10 equivalent based on 1 equivalent of the organic compound used as a raw material. The reaction is carried out either by suspending zinc fluoride in a mixture of the raw material compound and the organic solvent or by suspending zinc fluoride in the organic solvent and adding the raw material compound to the suspension The concentration of zinc fluoride in the slurry is preferably 5-50wt.%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機フッ素化合物の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing an organic fluorine compound.

さらに詳しくは、活性なクロル基及び/またはブロム基
を有する有機化合物中のクロル基及び/またはブロム基
をフルオロ基で置換する、いわゆるハロゲン交換法によ
る有機フッ素化合物の製造方法に関する。
More specifically, the present invention relates to a method for producing an organic fluorine compound by a so-called halogen exchange method, in which a chloro group and/or a bromine group in an organic compound having an active chloro group and/or a bromine group is substituted with a fluoro group.

有機フッ素化合物は農薬や医薬の原料物質として広く利
用されている。
Organic fluorine compounds are widely used as raw materials for agricultural chemicals and medicines.

(従来の技術及び発明が解決しようとする問題点)有機
フッ素化合物を製造する従来の方法は、活性なクロル基
またはブロム基を有する有機化合物を有機溶媒中でフッ
素化剤と反応させる、いわゆるハロゲン交換法が操作が
簡単であるので広く利用されている。
(Prior art and problems to be solved by the invention) The conventional method for producing organic fluorine compounds involves reacting an organic compound having an active chloro group or bromine group with a fluorinating agent in an organic solvent. The exchange method is widely used because it is easy to operate.

しかして、上記ハロゲン交換法においては、フッ素化剤
は反応収率を高める必要から専らフッ化アルカリ、特に
フッ化カリウム(KF)が用いられている。しかし、フ
ッ化アルカリ、特にフッ化カリウムは、潮解性が非常に
強いので、通常空気中の水分を吸湿している。従って、
この様なフッ化カリウムをフッ素化剤として用いたので
は収率が極端に低くなるので、これを防止するため使用
前に粉砕、焙焼する必要があるという問題がある。また
、上記反応は他の一般の有機反応に比べて反応収率が低
い例が多い。
In the above-mentioned halogen exchange method, however, alkali fluoride, particularly potassium fluoride (KF), is exclusively used as the fluorinating agent in order to increase the reaction yield. However, alkali fluoride, especially potassium fluoride, has very strong deliquescent properties and therefore normally absorbs moisture from the air. Therefore,
If such potassium fluoride is used as a fluorinating agent, the yield will be extremely low, and to prevent this, there is a problem in that it is necessary to crush and roast the product before use. Furthermore, the reaction yield of the above reaction is often lower than that of other general organic reactions.

上記問題を改良する手段として、スプレー乾燥法により
合成したフッ化カリウム(KF)を使用する方法(特開
昭58−65226号)も知られているが、この方法を
用いても、対象有機化合物によっては必ずしも高反応収
率が得られない。
As a means to improve the above problem, a method of using potassium fluoride (KF) synthesized by a spray drying method (Japanese Patent Application Laid-Open No. 1983-65226) is known, but even with this method, the target organic compound Depending on the reaction, high reaction yields may not always be obtained.

また、反応収率(反応活性)を向上させる目的で、有機
溶媒を選択する工夫が種々なされている(特開昭47−
34236号、特開昭49−14430号、特開昭51
−39633号、特開昭61−7217号など)、シか
し、本発2明者の検討によれば、これらの方法は何れも
反応収率向上の点で不充分であり、しかも有機溶媒はジ
メチルスルホキシド、ジメチルスルホン、ジメチルホル
ムアミド、ジメチルアセトアミド、テトラメチレンスル
ホンなどの高価な非プロトン性極性溶媒を用いる必要が
あり、従って、製造コストが高くなるという欠点を併せ
持っている。
In addition, various efforts have been made to select organic solvents for the purpose of improving reaction yield (reaction activity) (Japanese Unexamined Patent Application Publication No. 47-1998).
No. 34236, JP-A-49-14430, JP-A-51
39633, JP-A No. 61-7217, etc.) However, according to the studies of the present inventors, all of these methods are insufficient in terms of improving the reaction yield, and moreover, the organic solvent However, it is necessary to use an expensive aprotic polar solvent such as dimethyl sulfoxide, dimethyl sulfone, dimethyl formamide, dimethyl acetamide, tetramethylene sulfone, etc., and therefore has the disadvantage of increasing production costs.

本発明の目的は1.操作が容易で収率が高くかつ安価な
有機フッ素化合物の製造方法を提供することにある。
The purpose of the present invention is 1. The object of the present invention is to provide a method for producing an organic fluorine compound that is easy to operate, has a high yield, and is inexpensive.

(問題点を解決するための手段及び作用)本発明者は、
上記問題点に鑑み、操作が容易で収率が高くかつ安価な
有機フッ素化合物の製造方法について鋭意検討した結果
、その活性が弱いため、特に有機化合物のハロゲン交換
反応のフッ素化剤としては不都合であると考えられてい
た、フッ化亜鉛(ZnFz)が非プロトン性非極性溶媒
と組合せることで意外にも良好な結果を示すことを見出
し、本発明を完成するに至ったものである。
(Means and effects for solving the problem) The present inventor:
In view of the above-mentioned problems, we conducted extensive research on a method for producing organic fluorine compounds that is easy to operate, has a high yield, and is inexpensive.We found that due to its weak activity, it is particularly inconvenient as a fluorinating agent for halogen exchange reactions of organic compounds. The present invention was completed based on the discovery that zinc fluoride (ZnFz), which had been thought to exist in some cases, showed unexpectedly good results when combined with an aprotic nonpolar solvent.

すなわち、本発明は、活性なクロル基及び/またはブロ
ム基を有する有機化合物を、非プロトン性非極性有機溶
媒中でフッ化亜鉛と反応させることを特徴とする有機フ
ッ素化合物の製造方法である。
That is, the present invention is a method for producing an organic fluorine compound, which is characterized by reacting an organic compound having an active chloro group and/or bromine group with zinc fluoride in an aprotic nonpolar organic solvent.

本発明の詳細な説明する。The present invention will be described in detail.

本発明が対象とする、有機フッ素化合物の原料として用
いる有機化合物(以下原料有機化合物と略記する)とし
ては、活性なクロル基及び/またはブロム基を有するも
のであれば、その炭素骨、格は芳香族、脂肪族のいずれ
の化合物でもよく、また、分子内に窒素、酸素などのへ
テロ原子を含有するものでもかまわない、上記原料有機
化合物中の活性なクロル基及び/またはブロム基は、分
子内に1個または2個以上のいずれでも良く、また、ク
ロル基とブロム基を併せ持つものでも差し支えない。
The organic compound (hereinafter abbreviated as raw material organic compound) used as a raw material for the organic fluorine compound targeted by the present invention may have an active chloro group and/or bromine group; The active chloro group and/or bromine group in the raw material organic compound may be either an aromatic or aliphatic compound, or may contain a heteroatom such as nitrogen or oxygen in the molecule, There may be one or two or more in the molecule, and it may also have both a chloro group and a bromine group.

本発明においてフッ素化剤として使用するフッ化亜鉛は
、その製造履歴を特に限定するものではないが、ハロゲ
ン交換反応の際における副反応を抑制し反応収率を向上
させるためには、含有水分の極力少ないものが望ましい
、従って、例えば、酸化亜鉛とフッ化水素酸の反応によ
って得られたフッ化亜鉛無水物を乾燥したものや、通常
重版のフッ化亜鉛4水和物を脱水して無水物としたもの
などが、好適に使用される。かくして得られたフッ化亜
鉛無水物は、フッ化カリウムなどと異なり、殆んど吸湿
性を示さないので、保存に特別の対策を取る必要がなく
好都合であり、また取り扱いが容易でもある。尚、上記
の如くして得られたフッ化亜鉛は、ハロゲン交換反応に
先立ち表面に付着した微量の水分を完全に除去するため
、例えば、200℃で4時間程度加熱処理すればさらに
好ましい。
Zinc fluoride used as a fluorinating agent in the present invention is not particularly limited in its manufacturing history, but in order to suppress side reactions and improve reaction yield during halogen exchange reaction, it is necessary to reduce the water content. It is desirable to have as little as possible. Therefore, for example, zinc fluoride anhydride obtained by the reaction of zinc oxide and hydrofluoric acid is dried, or zinc fluoride tetrahydrate, which is usually reprinted, is dehydrated to form an anhydride. and the like are preferably used. The thus obtained anhydrous zinc fluoride exhibits almost no hygroscopicity, unlike potassium fluoride, so it is convenient and easy to handle without requiring any special measures for preservation. It is further preferable that the zinc fluoride obtained as described above be heat-treated, for example, at 200° C. for about 4 hours in order to completely remove trace amounts of moisture adhering to the surface prior to the halogen exchange reaction.

また、本発明ではフッ化亜鉛は高比表面積のものが高反
応収率を得る上で好ましく、このようなフッ化亜鉛は、
例えば、酸化亜鉛と高濃度のフ。
In addition, in the present invention, zinc fluoride with a high specific surface area is preferable in order to obtain a high reaction yield, and such zinc fluoride is
For example, zinc oxide and high concentrations of fu.

化水素酸の反応による方法によって得ることができる。It can be obtained by a method based on the reaction of hydrohydric acid.

本発明では、原料有機化合物や非プロトン性非極性有機
溶媒も、水分含有量の極力少ないものが好ましい、この
ような、極力水分の少ない原料有機化合物や有機溶媒は
、蒸留やシリカゲル等の脱水剤で処理することにより容
易に得ることができる。
In the present invention, it is preferable that the raw material organic compound and the aprotic nonpolar organic solvent have as little water content as possible. It can be easily obtained by processing with

本発明では先ずハロゲン交換反応を行なうが、このハロ
ゲン交換反応は、原料有機化合物と有機溶媒との混合液
に、撹拌などの手段でフッ化亜鉛を懸濁させる方法、ま
たは、有機溶媒にフッ化亜鉛を懸濁させた後、これに原
料有機化合物を添加する方法により実施される。
In the present invention, a halogen exchange reaction is first carried out, and this halogen exchange reaction can be carried out by suspending zinc fluoride in a mixture of a raw material organic compound and an organic solvent by stirring, or by suspending zinc fluoride in an organic solvent. This is carried out by suspending zinc and then adding the starting organic compound thereto.

かくして得られた反応生成物は、次いで上記反応により
生成した塩化亜鉛及び/または臭化亜鉛並びに未反応の
フッ化亜鉛を濾別した後、有機溶媒と生成した有機フッ
素化合物の混合液を蒸留等の操作によりこの両者を分離
すれば、製品である有機フッ素化合物を得ることが出来
る。尚、この蒸留等により分離された有機溶媒は、勿論
繰り返し再使用することができる。
The thus obtained reaction product is then filtered to remove zinc chloride and/or zinc bromide produced by the above reaction and unreacted zinc fluoride, and then the mixture of the organic solvent and the produced organic fluorine compound is distilled, etc. By separating the two by the following operation, the organic fluorine compound as a product can be obtained. Incidentally, the organic solvent separated by this distillation or the like can of course be repeatedly reused.

本発明においては、原料有機化合物に対するフッ化亜鉛
の量は、ハロゲン交換反応に必要な当量以上、特には2
〜10倍当量が好ましい、フッ化亜鉛の量が該当量より
少ないと反応収率が悪くなるので好ましくなく、逆に多
すぎるとそれだけフッ化亜鉛の損失になるばかりでなく
、育i溶媒の使用量増加につながるのでこれまた好まし
くない。
In the present invention, the amount of zinc fluoride relative to the raw material organic compound is at least the equivalent amount required for the halogen exchange reaction, particularly 2
~10 times equivalent is preferable. If the amount of zinc fluoride is less than the corresponding amount, the reaction yield will be poor, which is not preferable. On the other hand, if it is too large, not only will there be a loss of zinc fluoride, but also the use of the growth solvent. This is also undesirable as it leads to an increase in the amount.

本発明に使用する有機溶剤は、前記の如く非プロトン性
非極性溶媒でなければならない、かかる溶媒を具体的に
例示すると、ベンゼン、トルエン、キシレン、エチルベ
ンゼン、ナフタレン、メチルナフタレン等の芳香族炭化
水素、ヘキサン、ヘプタン、オクタン、ノナン、デカン
、ウンデカン、ドデカン、トリデカン等の脂肪族炭化水
素、シクロヘキサン、シクロヘプタン、シクロオクタン
等の脂環式炭化水素、ニトロベンゼン等の芳香族ニトロ
化合物、アニソール、フエネトール、メトキシナフタレ
ン、ジフェニルエーテル、ジプチルエーテル、ジフェニ
ルエーテル、ジフェニルエーテル、テトラヒドロフラン
、ジオキサン等のニーテア1z[、塩化n−プロピル、
塩化イソプロピル、塩化n−ブチル、塩化イソブチル、
塩化ドブチル、塩化t−ブチル、塩化n−ペンチル、塩
化ローヘキシル等のアルキル塩化物、クロロベンゼン等
の芳香族塩化物等が挙げられる。
The organic solvent used in the present invention must be an aprotic nonpolar solvent as described above. Specific examples of such solvents include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, naphthalene, and methylnaphthalene. , aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, undecane, dodecane, and tridecane, alicyclic hydrocarbons such as cyclohexane, cycloheptane, and cyclooctane, aromatic nitro compounds such as nitrobenzene, anisole, phenetol, Nithea 1z [, n-propyl chloride,
Isopropyl chloride, n-butyl chloride, isobutyl chloride,
Examples include alkyl chlorides such as dobutyl chloride, t-butyl chloride, n-pentyl chloride, rhohexyl chloride, and aromatic chlorides such as chlorobenzene.

本発明の有機フッ素化合物の製造方法は、原料有機化合
物を非プロトン性非極性溶媒中で、フッ素化剤としてフ
ッ化亜鉛を使用してハロゲン交換反応させる方法である
が、フッ化亜鉛と非プロトン性非極性溶媒を使用すると
、何故高収率で有機フッ素化合物が得られるかその理由
については定かではないが、おそらく次の理由によるも
のと考えられる。すなわち、フッ化亜鉛によるハロゲン
交換反応(フッ素化反応)は固液反応であるが、上記溶
媒が、反応によって生成した塩化亜鉛や臭化亜鉛をすみ
やかにフッ化亜鉛の表面から排除し固体として存在して
いるフッ化亜鉛の表面を、常に活性な状態に保っている
ためと考えられる。
The method for producing an organic fluorine compound of the present invention is a method of subjecting a raw material organic compound to a halogen exchange reaction in an aprotic nonpolar solvent using zinc fluoride as a fluorinating agent. Although it is not clear why organic fluorine compounds can be obtained in high yield when a polar nonpolar solvent is used, it is probably due to the following reason. In other words, the halogen exchange reaction (fluorination reaction) with zinc fluoride is a solid-liquid reaction, but the above solvent quickly removes the zinc chloride and zinc bromide produced by the reaction from the surface of the zinc fluoride and exists as a solid. This is thought to be because the surface of zinc fluoride is always kept active.

有機溶媒中に懸濁させるフッ化亜鉛のスラリー濃度は、
5重量%(以下単に%と記す)以上、5’C%以下程度
が好ましい、スラリー濃度が高すぎると攪拌が困難にな
るため副反応が起こり易く、また、反応収率も低下する
。逆に、スラリー濃度が低すぎると、それだけ有機溶媒
の使用量が増加するので、何れも好ましくない。
The slurry concentration of zinc fluoride suspended in an organic solvent is
The slurry concentration is preferably about 5% by weight or more (hereinafter simply referred to as %) and 5'C% or less. If the slurry concentration is too high, stirring becomes difficult, side reactions are likely to occur, and the reaction yield also decreases. On the other hand, if the slurry concentration is too low, the amount of organic solvent used increases accordingly, which is not preferable.

上記ハロゲン交換反応における反応温度及び反応時間は
、原料有機化合物及び有機溶媒の種類によって決定され
る0反応温度は低い方が、また反応時間は短い方が、副
反応生成物を抑制する点では好ましいが、反応収率の点
では逆の方が好ましい。これらを勘案し実際上は、反応
温度は室温〜300℃、反応時間は9.5〜100時間
で実施される。
The reaction temperature and reaction time in the above halogen exchange reaction are determined by the types of raw material organic compounds and organic solvents. A lower reaction temperature and a shorter reaction time are preferable in terms of suppressing side reaction products. However, in terms of reaction yield, the opposite is preferable. Taking these into consideration, in practice, the reaction temperature is room temperature to 300°C and the reaction time is 9.5 to 100 hours.

(実施例) 以下、実施例及び比較例によって本発明を更に具体的に
説明する。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 還流コンデンサーを取りつけた容積21の攪拌機付きガ
ラス製フラスコに、有8g溶媒としてアニソールを10
00g入れ、これにフッ化亜鉛517g(10,0当量
)を加えて懸濁させた。さらに、これに2−クロロニト
ロベンゼン473g(3,0当量)を添加したのち、フ
ラスコを加熱しアニソールの還流温度下(約154℃)
で8時間反応させた0反応終了後、フラスコ内容物を濾
過して、生成した塩化亜鉛及び未反応のフッ化亜鉛から
なる固形物を除去したのち、濾液を蒸留分離して製品で
ある2−フルオロニトロベンゼンを208g得た(収率
49%)。
Example 1 In a stirred glass flask with a capacity of 21 and equipped with a reflux condenser, 8 g of anisole was added as a solvent.
00 g, and 517 g (10.0 equivalent) of zinc fluoride was added and suspended. Furthermore, after adding 473 g (3.0 equivalents) of 2-chloronitrobenzene, the flask was heated to the reflux temperature of anisole (approximately 154°C).
After the reaction was completed for 8 hours, the contents of the flask were filtered to remove solids consisting of zinc chloride and unreacted zinc fluoride, and the filtrate was separated by distillation to obtain the product 2- 208g of fluoronitrobenzene was obtained (yield 49%).

実施例2 実施例1で用いた装置に有機溶媒としてトルエンを80
0g入れ、これにフッ化亜鉛310g(6,0当量)を
加えて懸濁させた。これに塩化ベンゾイル281g(2
,0当量)を添加して室温で12時間反応させた。
Example 2 Toluene was added as an organic solvent to the equipment used in Example 1.
0g of zinc fluoride was added thereto, and 310g (6.0 equivalents) of zinc fluoride was added and suspended. Add to this 281 g of benzoyl chloride (2
, 0 equivalents) was added and reacted at room temperature for 12 hours.

反応終了後、実施例1と同様フラスコ内容物を濾過して
固形物を除去したのち、濾液を蒸留分離して製品である
フッ化ベンゾイル175gを得た(収率71%)。
After the reaction was completed, the contents of the flask were filtered to remove solid matter in the same manner as in Example 1, and the filtrate was separated by distillation to obtain 175 g of benzoyl fluoride (yield: 71%).

比較例1 実施例1で用いた装置に、有機溶媒として極性溶媒であ
るテトラメチルスルホンを1000g入れ、これにフッ
素化荊としてスプレードライKF(森田化学製)290
g(10,0当量)を加えて懸濁させた。さらに2−ク
ロロニトロベンゼン473g(3,0当量)を添加した
のち、フラスコを加熱し200℃で8時間反応させた0
反応終了後実施例1と同様フラスコ内容物を濾過して固
形物を除去したのち、濾液を蒸留分離したところ、製品
である2−フルオロニトロベンゼンはわずか30gシか
得られなかつた(収率7%)。
Comparative Example 1 Into the apparatus used in Example 1, 1000 g of tetramethylsulfone, which is a polar solvent, was added as an organic solvent, and spray-dried KF (Morita Chemical Co., Ltd.) 290 was added as a fluorinated herb.
g (10.0 eq.) was added and suspended. After further adding 473 g (3.0 equivalents) of 2-chloronitrobenzene, the flask was heated and reacted at 200°C for 8 hours.
After the completion of the reaction, the contents of the flask were filtered to remove solid matter in the same manner as in Example 1, and the filtrate was separated by distillation. Only 30 g of the product 2-fluoronitrobenzene was obtained (yield 7%). ).

比較例2 実施例1で用いた装置に、有機溶媒としてアセトニトリ
ル800gを入れ、これにスフブレードライ11F (
森田化学製)174g (6,0当量)を加えて懸濁さ
せた。さらに塩化ベンゾイル281g(2,0当量)を
添加して室温で12時間反応させた0反応終了後、実施
例1と同様フラスコ内容物を濾過して固形物を除去した
のち、濾液を蒸留分離したところ、製品であるフッ化ベ
ンゾイルの収得量は134g (収率36%)と実施例
に比べ低い収率であった。
Comparative Example 2 800 g of acetonitrile was added as an organic solvent to the apparatus used in Example 1, and Sufblaid Dry 11F (
174 g (6.0 equivalents) (manufactured by Morita Chemical) were added and suspended. Further, 281 g (2.0 equivalents) of benzoyl chloride was added and reacted at room temperature for 12 hours. After the reaction was completed, the contents of the flask were filtered to remove solids in the same manner as in Example 1, and the filtrate was separated by distillation. However, the amount of benzoyl fluoride product obtained was 134 g (yield 36%), which was lower than in the example.

(発明の効果) 以上詳細に説明した通り、有機溶媒として非プロトン性
非極性溶媒を使用して、活性なクロル基及び/またはブ
ロム基を有する有機化合物をフッ化亜鉛と反応させ、有
機フッ素化合物を製造する本発明によれば、実施例及び
比較例が示す通り、従来公知の方法によりはるかに高収
率で目的生成物である有機フッ素化合物が得られるので
ある。
(Effects of the Invention) As explained in detail above, an organic compound having an active chloro group and/or bromine group is reacted with zinc fluoride using an aprotic nonpolar solvent as an organic solvent to form an organic fluorine compound. According to the present invention, the desired product, an organic fluorine compound, can be obtained in a much higher yield than conventionally known methods, as shown in the Examples and Comparative Examples.

また、従来公知の方法では極性溶媒を使用せざるを得な
かったが、本発明の方法では、上記の通り安価な非極性
溶媒を使用するので、この点と併せその産業上の意味は
大なるものがある。
In addition, while conventionally known methods had to use polar solvents, the method of the present invention uses inexpensive non-polar solvents as described above, and in addition to this point, it has great industrial significance. There is something.

Claims (1)

【特許請求の範囲】[Claims] (1)活性なクロル基及び/またはブロム基を有する有
機化合物を、非プロトン性非極性有機溶媒中でフッ化亜
鉛と反応させることを特徴とする有機フッ素化合物の製
造方法。
(1) A method for producing an organic fluorine compound, which comprises reacting an organic compound having an active chloro group and/or bromine group with zinc fluoride in an aprotic nonpolar organic solvent.
JP11704387A 1987-05-15 1987-05-15 Method for producing organic fluorine compound Expired - Fee Related JPH0780791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11704387A JPH0780791B2 (en) 1987-05-15 1987-05-15 Method for producing organic fluorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11704387A JPH0780791B2 (en) 1987-05-15 1987-05-15 Method for producing organic fluorine compound

Publications (2)

Publication Number Publication Date
JPS63284135A true JPS63284135A (en) 1988-11-21
JPH0780791B2 JPH0780791B2 (en) 1995-08-30

Family

ID=14702021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11704387A Expired - Fee Related JPH0780791B2 (en) 1987-05-15 1987-05-15 Method for producing organic fluorine compound

Country Status (1)

Country Link
JP (1) JPH0780791B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300711A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5300710A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5321170A (en) * 1991-03-20 1994-06-14 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,1,1,2-tetrafluoroethane
US6040486A (en) * 1991-03-20 2000-03-21 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1-trifluoroethane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300711A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5300710A (en) * 1991-03-20 1994-04-05 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5321170A (en) * 1991-03-20 1994-06-14 E. I. Du Pont De Nemours And Company Process for the manufacture of 1,1,1,2-tetrafluoroethane
US6040486A (en) * 1991-03-20 2000-03-21 E. I. Du Pont De Nemours And Company Process for the manufacture of 2-chloro-1,1,1-trifluoroethane

Also Published As

Publication number Publication date
JPH0780791B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
JP3023343B2 (en) Method for producing lithium hexafluorophosphate
EP0140482B1 (en) fluorination process for the production of nuclear fluorinated phthaloyl- and terephthaloyl fluorides
JPS63284135A (en) Production of organic fluorine compound
JP2006518734A (en) Method for producing oxydiphthalic anhydride using bicarbonate as catalyst
CA1298315C (en) Process for the preparation of fluorobenzaldehydes
US4849552A (en) Preparation of fluoroaromatic compounds in dispersion of potassium fluoride
JPH024580B2 (en)
JPS61257938A (en) Production of m-phenoxybenzyl alcohol
JP2512478B2 (en) Method for producing 2,3,5,6-tetrafluorobenzoic acid
JPS60237051A (en) Preparation of 2-fluoronitrobenzene derivative
US4868347A (en) Process for obtaining substituted fluorobenzenes
JP2652563B2 (en) Method for producing aromatic nitriles
US4952719A (en) Process for the preparation of halo aromatic compounds
JPS60228436A (en) Fluorination of aromatic compound
JPH03145449A (en) Production of 3,4-difluorobenzonitrile
JPH0153260B2 (en)
JPS62101660A (en) Production of polyhalogenated copper phthalocyanine
JPH0739551B2 (en) Method for producing copper phthalocyanine compound
JP3637924B2 (en) Process for producing N-chloroaromatic carboxylic acid amide
JPH09309870A (en) Production of aromatic nitrile and polyfluorobenzene
JPS6147475A (en) Fluorinated phthalic anhydride
JPS62441A (en) Naphthoic acid derivative
JPH0723330B2 (en) Method for producing dichlorobenzene
JPH0135838B2 (en)
JPS5927341B2 (en) Purification/separation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees