JPS63283215A - Piezoelectric component - Google Patents

Piezoelectric component

Info

Publication number
JPS63283215A
JPS63283215A JP11867687A JP11867687A JPS63283215A JP S63283215 A JPS63283215 A JP S63283215A JP 11867687 A JP11867687 A JP 11867687A JP 11867687 A JP11867687 A JP 11867687A JP S63283215 A JPS63283215 A JP S63283215A
Authority
JP
Japan
Prior art keywords
capacitor
piezoelectric element
temperature coefficient
piezoelectric
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11867687A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11867687A priority Critical patent/JPS63283215A/en
Publication of JPS63283215A publication Critical patent/JPS63283215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To evade the deviation of a frequency, by connecting in series a capacitor to a piezoelectric element, and setting the temperature coefficient of the inter-terminal capacitance of the piezoelectric element and that of the inter-terminal capacitance of the capacitor so as to show a specific relational equation. CONSTITUTION:The temperature coefficient (alpha) of the inter-terminal capacitance Cd of the piezoelectric element 2 and the temperature coefficient (beta) of the inter-terminal capacitance Cx of the capacitors 3 and 4 are set at relation as beta=-alpha/{N-alpha(1+N)} (where, N=Cx/Cd>>1 in equation). And as the capacitor Cx to be connected in series to a piezo-resonator, the capacitor having the temperature coefficient (beta) to satisfy the equation is selected. And the superposing planes of the piezoelectric element 2 and first and second capacitor units 3 and 4 are bonded with a bonding agent 14 keeping a prescribed interval to permit the vibration of vibration electrodes 6a and 7a. Thus, since the capacitors 3 and 4 are connected in series to the piezoelectric element 2 and the capacitor which satisfies the above stated equation is selected, it is possible to evade the characteristic change of the piezoelectric element due to temperature change.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エネルギ閉じ込め型の厚み振動を利用した圧
電部品に関し、特に温度変化による周波数−インピーダ
ンス特性の変動を回避できるようにした圧電部品に関す
る0本発明は、例えばF’M復調回路に採用される圧電
共振子に好適であるので、以下これを例にとって説明す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a piezoelectric component that utilizes energy-trapped thickness vibration, and particularly relates to a piezoelectric component that can avoid fluctuations in frequency-impedance characteristics due to temperature changes. The present invention is suitable for a piezoelectric resonator employed in, for example, an F'M demodulation circuit, and will be described below using this as an example.

〔従来の技術〕[Conventional technology]

一般に、FM復調回路は、FM信号増幅器の最終段のリ
ミッタ増幅器から出力されるFM信号と、該FM信号を
移相回路を通して移相した信号とをそれぞれマルチプラ
イヤに入力し、これら2つの信号の位相差を上記マルチ
プライヤで検出してその出力をローパスフィルタに通し
てFM復調信号を得るようにしたものである。このよう
なFM復調回路に採用される上記移相回路として、従来
、第5図に示すものがあった。これはエネルギ閉じ込め
型厚み振動モードを利用した2端子型の圧電共振子20
と定抵抗rとによりブリッジ回路を構成してなっている
。なお、21は電源、22は出力端子である。
Generally, an FM demodulation circuit inputs an FM signal output from a limiter amplifier at the final stage of an FM signal amplifier and a signal obtained by shifting the phase of the FM signal through a phase shift circuit to a multiplier, and converts these two signals. The phase difference is detected by the multiplier and its output is passed through a low-pass filter to obtain an FM demodulated signal. Conventionally, as the above-mentioned phase shift circuit employed in such an FM demodulation circuit, there has been one shown in FIG. This is a two-terminal piezoelectric resonator 20 that uses an energy-trapped thickness vibration mode.
and a constant resistor r constitute a bridge circuit. Note that 21 is a power supply, and 22 is an output terminal.

上記移相回路においては、圧電共振子20の2端子間容
量をCdとすると、 r−1/ωs’cd ω・m(ωr+ωa)/2 ωo :rに相当する角周波数、ωr:共振角周波数、
ωa二反共振角周波数 の関係式で回路構成がなされている。
In the above phase shift circuit, if the capacitance between the two terminals of the piezoelectric resonator 20 is Cd, then r-1/ωs'cd ω・m(ωr+ωa)/2 ωo: angular frequency corresponding to r, ωr: resonance angular frequency ,
The circuit configuration is based on the relational expression of ωa two anti-resonant angular frequencies.

上記圧電共振子20を採用してなる移相回路は、筒車な
構成であり、しかもFM復調性能にも優れていることか
ら、近年では多用されつつある。
A phase shift circuit employing the piezoelectric resonator 20 has an hour wheel configuration and has excellent FM demodulation performance, so it has been widely used in recent years.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の圧電共振子20では、温度が
変化した場合に圧電共振子20の2端子間容11cdが
変動し、周波数−インピーダンス特性が変化するという
問題点がある。
However, the conventional piezoelectric resonator 20 described above has a problem in that when the temperature changes, the capacitance 11cd between the two terminals of the piezoelectric resonator 20 changes, and the frequency-impedance characteristic changes.

第6図は上記圧電共振子20の角周波数ωとインピーダ
ンス2との関係を示す特性図であり、曲線Aは本来のイ
ンピーダンス特性、曲fiBは温度変化によって変化し
たインピーダンス特性を示す。
FIG. 6 is a characteristic diagram showing the relationship between the angular frequency ω of the piezoelectric resonator 20 and the impedance 2, where the curve A shows the original impedance characteristic and the curve fiB shows the impedance characteristic changed due to temperature change.

同図からも明らかなように、温度変化により上記端子間
容量Cdが変動すると定抵抗rに相当する角周波数がω
。からω。″に変動していることがわかる。一般に上記
圧電共振子20の端子間容量Cdは通常0.2〜0.5
%/℃にも達することから、上記圧電共振子20を用い
たFM復調回路の唯一の欠点となっていた。
As is clear from the figure, when the inter-terminal capacitance Cd changes due to temperature change, the angular frequency corresponding to the constant resistance r changes to ω
. From ω. It can be seen that the capacitance Cd between the terminals of the piezoelectric resonator 20 is generally 0.2 to 0.5.
%/°C, which is the only drawback of the FM demodulation circuit using the piezoelectric resonator 20.

本発明の目的は、温度変化による角周波数ω。The object of the invention is to reduce the angular frequency ω due to temperature changes.

のずれを回避できる圧電部品を提供することにある。An object of the present invention is to provide a piezoelectric component that can avoid misalignment.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は、圧電基板の相対向する主面に該基板を
挟んで対向する第1.第2振動電極膜を形成してなる圧
電素子に、コンデンサを直列接続してなる圧電部品にお
いて、上記圧電素子の端子間容量Cdの温度係数αと、
コンデンサの端子間容量Cxの温度係数βとが下記式、 β−−α/(N−α(1+N)) の関係にあり、ここで N尊Cχ/Cd>>1 の関係にあることを特徴としている。
In view of this, the present invention provides a piezoelectric substrate having two opposing main surfaces with the substrate sandwiched therebetween. In a piezoelectric component formed by connecting a capacitor in series to a piezoelectric element formed with a second vibrating electrode film, a temperature coefficient α of the inter-terminal capacitance Cd of the piezoelectric element,
The temperature coefficient β of the terminal capacitance Cx of a capacitor has the following formula: β--α/(N-α(1+N)), where N-value Cχ/Cd>>1. It is said that

ここで、本発明の上記関係式に至った理由を、第1図に
もとづいて詳細に説明する。
Here, the reason for arriving at the above relational expression of the present invention will be explained in detail based on FIG.

第1図(blは上記圧電共振子20の電気的等価回路を
示し、これは共振子20の機械的振動を電気回路に置き
換えた場合の等価賞量L1、等価コンプライアンスC7
及び等価抵抗r、を直列接続した回路に、上記圧電共振
子20の静電容量C0を並列接続して構成されている。
FIG. 1 (bl shows the electrical equivalent circuit of the piezoelectric resonator 20, which shows the equivalent award amount L1 and equivalent compliance C7 when the mechanical vibration of the resonator 20 is replaced with an electric circuit.
and equivalent resistance r are connected in series, and the capacitance C0 of the piezoelectric resonator 20 is connected in parallel.

第1図falは上記圧電共振子20にコンデンサCxを
直列接続した回路図である。
FIG. 1 fal is a circuit diagram in which a capacitor Cx is connected in series to the piezoelectric resonator 20.

まず、圧電共振子20のみの場合は、第1図(blの等
価回路において、 ωr−1/−匡Tτ瓦−・・・ (llωa−cr  
1+C+/C,−=  (2)CI +C@ −Cd 
         ・・・ (3)という関係式が成り
立ち、この式ill、 +21. +31から、CI 
= (1−(ωr/ωa) ” )Cd  ・・(41
Ll m (a+a/ωr)” / (aha” −c
r” )Cd                  ・
・・ (5)となる。
First, in the case of only the piezoelectric resonator 20, in the equivalent circuit of FIG.
1+C+/C,-= (2) CI +C@-Cd
... The relational expression (3) holds true, and this expression ill, +21. From +31, CI
= (1-(ωr/ωa)”)Cd...(41
Ll m (a+a/ωr)" / (aha" -c
r”)Cd・
...(5).

ここで、上記等価回路にコンデンサCxを直列接続する
と、反共振角周波数ωaは変化せず共振角周波数ωrの
みωr−ωrnに変化する。このωrrlは下記式によ
り表される。
Here, when a capacitor Cx is connected in series to the above equivalent circuit, the anti-resonant angular frequency ωa does not change, and only the resonant angular frequency ωr changes to ωr-ωrn. This ωrrl is expressed by the following formula.

(ωrn/ωr)’−1+  (1−(ωr/ωa)”
)Cd/Cx                   
・ ・ ・  (6)この弐山)において、Cd、 C
xは有限値であるから右辺は1以上となり、従ってωr
nはcrよりも必ず大きくなる。一方、FM復調するた
めに必要とする角周波数範囲は、ωrnとω3との間に
限定されるからこのωrnがcrより橿端に大きくなら
ない方がよい、この点を満足するには、上記式(6)に
おいて、Cx/Cd −N > > 1であればよい。
(ωrn/ωr)'-1+ (1-(ωr/ωa)"
)Cd/Cx
・ ・ ・ (6) At this Niyama), Cd, C
Since x is a finite value, the right side is greater than or equal to 1, so ωr
n is always larger than cr. On the other hand, since the angular frequency range required for FM demodulation is limited between ωrn and ω3, it is better that ωrn not become larger than cr at the end of the spectrum. To satisfy this point, the above equation In (6), it is sufficient if Cx/Cd −N>>1.

また、Cxを接続したときの該接続体の2端子間容量を
Cdnとすると、 Cdn =Cd−Cx/ (Cd+CX)−N −Cd
” / (Cd+N −Cd)−N−Cd/(1+N)
      ・・・ (刀  。
Also, if the capacitance between the two terminals of the connected body when Cx is connected is Cdn, then Cdn = Cd - Cx/ (Cd + CX) - N - Cd
” / (Cd+N -Cd)-N-Cd/(1+N)
··· (sword .

となる。becomes.

今、温度変化によって各々の端子間容量がCd−α・C
d、 Cx→β・CIに変化したとすると、上記式(方
は下記式に展開される。
Now, due to temperature change, the capacitance between each terminal becomes Cd-α・C
d, Cx→β・CI, the above equation (the latter is expanded into the following equation).

Cdnma−β・Cd1x/ (cr ・Cd+β・C
I)−N・α・β・Cd” / (α・Cd+NβCd
)−N・α・β・Cd/  (α+Nβ) ・ ・  
(8)ここで、本発明においては上記式(7)と式(8
)との値が同じになればよいので、 Cd−Cx/ (Cd+Cx) = N ・a−β・C
d/(α十N・β)              ・・
・ (9)となり、該式(9)においてβをα、Nで表
すと、β−−α/(N−α(1+N)l   ・・・ 
顛となる。つまり、上記圧電共振子に直列接続されるコ
ンデンサCxは、上記式α0を満足する温度係数βΦも
のを選定してやればよいこととなる。
Cdnma-β・Cd1x/ (cr ・Cd+β・C
I)-N・α・β・Cd” / (α・Cd+NβCd
)−N・α・β・Cd/ (α+Nβ) ・ ・
(8) Here, in the present invention, the above formula (7) and formula (8
) should be the same, so Cd-Cx/ (Cd+Cx) = N ・a-β・C
d/(α1N・β)...
・(9), and if β is represented by α and N in the formula (9), β--α/(N-α(1+N)l...
It will become a theme. In other words, the capacitor Cx connected in series with the piezoelectric resonator should have a temperature coefficient βΦ that satisfies the above formula α0.

〔作用〕[Effect]

本発明に係る圧電部品によれば、圧電素子にコンデンサ
を直列接続し、該圧電素子の端子間容量の温度係数と、
コンデンサの端子間容量の温度係数とが所定の関係式に
あるようにしたので、即ち、圧電素子の温度変化による
周波数−インピーダンス特性の変化を打ち消すことがで
きる温度係数のコンデンサを直列接続するようにしたの
で、周波数のずれを回避することができる。
According to the piezoelectric component according to the present invention, a capacitor is connected in series to the piezoelectric element, and the temperature coefficient of the capacitance between terminals of the piezoelectric element is
Since the temperature coefficient of the capacitance between the terminals of the capacitor and the temperature coefficient are set to meet a predetermined relational expression, in other words, capacitors with a temperature coefficient that can cancel out changes in the frequency-impedance characteristics due to temperature changes of the piezoelectric element are connected in series. Therefore, frequency deviation can be avoided.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

本実施例では、本発明の関係式β−−α/(NC1(1
+N) ) 、 Cx/Cd−N>>1に、具体的な数
値をあてはめて圧電共振子を設計する。
In this example, the relational expression β−−α/(NC1(1
+N)), Cx/Cd-N>>1, and design a piezoelectric resonator by applying specific values.

今、ωr −10,35KH2,(IJ a−11,0
5MHz、ω。=10.70KH2,Cd=18PF、
 Cx−18X17−3061F(N−17とする)を
選ぶとすると、上記式(6)からコンデンサを直列接続
した後の共振角周波数は、(ωrn)”−10,387
MH2テア4゜ この値は、上記接続前の共振角周波数ωr =10゜3
5M)12と比べて、わずか37KH2(0,36%)
しかずれが生じないこととなる。
Now, ωr −10,35KH2, (IJ a−11,0
5MHz, ω. =10.70KH2, Cd=18PF,
If we choose Cx-18X17-3061F (N-17), the resonance angular frequency after connecting the capacitors in series is (ωrn)''-10,387 from the above equation (6).
MH2 tare 4° This value is the resonance angular frequency ωr = 10°3 before the above connection
5M) only 37KH2 (0,36%) compared to 12
This means that no deviation occurs.

一方、圧電共振子の温度係数αを0.5%/℃とすると
、上記式OIから β−−0,005/ (17−0,005(1+17)
 1−−0.0296%/℃ となる。
On the other hand, if the temperature coefficient α of the piezoelectric resonator is 0.5%/℃, then from the above formula OI, β--0,005/(17-0,005(1+17)
1--0.0296%/°C.

その結果、コンデンサの温度係数βは−0,0296%
/’c s −30PpM /℃のものを選べばよいこ
ととなる。
As a result, the temperature coefficient β of the capacitor is -0,0296%
/'cs -30PpM/°C.

第2図ないし第4図は本実施例による圧電共振子の構造
を示す0図において、1はエネルギ閉じ込め型厚み振動
を利用したチップ型圧電共振子である。これは上部から
第1コンデンサユニツト3゜圧電素子2.第2コンデン
サユニツト4を順に重ね合わせて構成されている。
2 to 4 show the structure of the piezoelectric resonator according to this embodiment. In FIG. 0, reference numeral 1 indicates a chip-type piezoelectric resonator that utilizes energy-confined thickness vibration. This includes, from the top, the first capacitor unit 3°, the piezoelectric element 2. It is constructed by sequentially stacking second capacitor units 4.

上記圧電素子2は、第4図(blに示すように、セラミ
ックス製圧電基板5の上、下面の略中央部に該基板5を
挟んで対向する第1.第2振動電極6a、7aを形成し
、上面の第1振動電極6aを引出量i6bにより上記圧
電基板5の図示右側長辺の中央縁部5aに導出するとと
もに、下面の第2振動電極7aを引出電極7bにより上
記基板5の左側長辺の中央縁部5bに導出して構成され
ている。
As shown in FIG. 4 (bl), the piezoelectric element 2 has first and second vibrating electrodes 6a and 7a formed approximately at the center of the upper and lower surfaces of a ceramic piezoelectric substrate 5 and facing each other with the substrate 5 in between. Then, the first vibrating electrode 6a on the upper surface is led out to the center edge 5a of the right long side of the piezoelectric substrate 5 in the drawing by an extraction amount i6b, and the second vibrating electrode 7a on the lower surface is led out to the left side of the substrate 5 by an extraction electrode 7b. It is configured to be led out to the central edge 5b of the long side.

また、上記第1コンデンサユニツト3は、上述した温度
係数βを有するもので、第4図talに示すように、セ
ラミックス製基板8の上、下面に該基板8を挟んで対向
するコンデンサ電極9a、10aを形成し、上面のコン
デンサ電極9aを引出電極9bにより上記基板8の図示
上側の短辺の中央縁部8aに導出するとともに、下面の
コンデンサ電極10aを引出量110bにより上記基板
8の右側長辺の中央縁部8bに導出して構成されている
The first capacitor unit 3 has the above-mentioned temperature coefficient β, and as shown in FIG. 10a, and the capacitor electrode 9a on the upper surface is led out to the central edge 8a of the short side on the upper side of the substrate 8 in the drawing by an extraction electrode 9b, and the capacitor electrode 10a on the lower surface is led out to the right side of the substrate 8 by an extraction amount 110b. It is configured to be led out to the central edge 8b of the side.

さらに、上記第2コンデンサユニツト4は、これも上述
の温度係数βを有するもので、第4図fclに示すよう
に、上記第1コンデンサユニツト3と同様のコンデンサ
電fi12a、13aが形成されている。そして上面の
コンデンサ電極12aの引出電極12bは該コンデンサ
ユニット40基板11の図示左側長辺の中央縁部11a
に導出されるとともに、下面のコンデンサ電極13aの
引出電極13bは上記基板11の下側短辺の中央縁部1
1bに導出されている。
Furthermore, the second capacitor unit 4 also has the above-mentioned temperature coefficient β, and as shown in FIG. . The extraction electrode 12b of the capacitor electrode 12a on the upper surface is located at the center edge 11a of the left long side of the capacitor unit 40 substrate 11 in the drawing.
At the same time, the extraction electrode 13b of the capacitor electrode 13a on the lower surface is connected to the center edge 1 of the lower short side of the substrate 11.
1b.

そして、上記圧電素子2及び第1.第2コンデンサユニ
ット3.4の重なり面は、振動電極6a。
Then, the piezoelectric element 2 and the first . The overlapping surface of the second capacitor unit 3.4 is the vibrating electrode 6a.

7a及びコンデンサ電極10a、12a部分を除いて、
つまり上記振動電極6a、7aの振動を許容する所定の
隙間をあけて接着材14により貼り合わされている。
7a and capacitor electrodes 10a and 12a,
In other words, the vibrating electrodes 6a, 7a are bonded together with an adhesive 14 with a predetermined gap that allows vibration of the vibrating electrodes 6a, 7a.

これにより、コンデンサ電極10aの引出電極10bと
振動電極6aの引出電極6bとが、また振動電極7aの
引出電i7bとコンデンサ電極12aの引出電極12b
とがそれぞれ同じ側の長辺部に位置し、さらにコンデン
サ電極9a、13aの引出電極9b、13bはそれぞれ
反対側の短辺部に引き出されており、また、上記圧電共
振子1の両短辺の側面には、導電性の外部電極15が被
着され、さらに両長辺の中央部分には、中継電橋16が
被着されている。その結果、上記第1コンデンサユニツ
ト3の引出電極10bと圧電素子2の引出電極6bとが
接続され、また該圧電素子2の引出電極7bと第2コン
デンサユニツト4の引出電極12bとが接続されており
、このようにして圧電素子2に第1.第2コンデンサユ
ニツト3゜4を直列に接続してなる圧電共振子1が実現
されている。
As a result, the extraction electrode 10b of the capacitor electrode 10a and the extraction electrode 6b of the vibrating electrode 6a, and the extraction electrode i7b of the vibrating electrode 7a and the extraction electrode 12b of the capacitor electrode 12a are connected.
are located on the same long side, respectively, and the extraction electrodes 9b and 13b of the capacitor electrodes 9a and 13a are respectively drawn out on the opposite short side, and both short sides of the piezoelectric resonator 1 A conductive external electrode 15 is attached to the side surface of the connector, and a relay bridge 16 is attached to the central portion of both long sides. As a result, the lead electrode 10b of the first capacitor unit 3 and the lead electrode 6b of the piezoelectric element 2 are connected, and the lead electrode 7b of the piezoelectric element 2 and the lead electrode 12b of the second capacitor unit 4 are connected. In this way, the piezoelectric element 2 receives the first. A piezoelectric resonator 1 is realized in which second capacitor units 3 and 4 are connected in series.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る圧電部品によれば、圧電素
子にコンデンサを直列接続し、該コンデンサとしてこれ
の端子間容量Cxの温度係数βと、上記圧電素子の端子
間容量Cdの温度係数αとがβ−−1α/(N−α(1
+N)) の関係を満足するコンデンサを選択したので、圧電素子
の温度変化による特性変化を回避できる効果がある。
As described above, according to the piezoelectric component according to the present invention, a capacitor is connected in series to a piezoelectric element, and the temperature coefficient β of the capacitance Cx between the terminals of the capacitor and the temperature coefficient β of the capacitance Cd between the terminals of the piezoelectric element are determined as follows. α and β−−1α/(N−α(1
Since we selected a capacitor that satisfies the relationship: +N)), it is possible to avoid changes in the characteristics of the piezoelectric element due to temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al及び第1図m)は本発明をなした経過を説
明するための圧電共振子の等価回路図、第2図ないし第
4図は本発明を実現するための圧電共振子を示し、第2
図はその斜視図、第3図は第2図m−m1a断面図、第
4図(alないし第4図(C1はそれぞれ圧電共振子を
構成する第1コンデンサユニツト、圧電素子、第2コン
デンサユニツトを示す斜視図、第5図は圧電共振子と定
抵抗とにより構成されたブリッジ回路図、第6図はイン
ピーダンスと角周波数との関係を示す特性図である。 図において、lは圧電共振子(圧電部品)、2は圧電素
子、3.4はコンデンサユニット(コンデンサ)、5は
圧電基板、5a、7aは第1.第2振動電極である。 特許出願人     株式会社 村田製作所代理人 弁
理士   下布  努 第1図 第3図 第4図
FIG. 1 (al and FIG. 1 m) is an equivalent circuit diagram of a piezoelectric resonator for explaining the process of making the present invention, and FIGS. 2 to 4 are diagrams of piezoelectric resonators for realizing the present invention. show, second
The figure is a perspective view, FIG. 3 is a sectional view taken along the line m-m1a in FIG. 2, and FIGS. 5 is a bridge circuit diagram composed of a piezoelectric resonator and a constant resistor, and FIG. 6 is a characteristic diagram showing the relationship between impedance and angular frequency. In the figure, l indicates the piezoelectric resonator. (piezoelectric component), 2 is a piezoelectric element, 3.4 is a capacitor unit (capacitor), 5 is a piezoelectric substrate, 5a and 7a are first and second vibrating electrodes. Patent applicant Murata Manufacturing Co., Ltd. Agent Patent attorney Tsutomu ShimobuFigure 1Figure 3Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)圧電基板の相対向する主面に該基板を挟んで対向
する第1、第2振動電極膜を形成してなる圧電素子に、
コンデンサを直列接続してなる圧電部品において、上記
圧電素子の端子間容量Cdの温度係数αと、上記コンデ
ンサの端子間容量Cxの温度係数βとが下記式、 β=−α/{N−α(1+N)} の関係にあり、ここで N=Cx/Cd>>1 であることを特徴とする圧電部品。
(1) In a piezoelectric element, first and second vibrating electrode films are formed on opposing main surfaces of a piezoelectric substrate with the substrate interposed therebetween,
In a piezoelectric component formed by connecting capacitors in series, the temperature coefficient α of the capacitance Cd between the terminals of the piezoelectric element and the temperature coefficient β of the capacitance Cx between the terminals of the capacitor are expressed by the following formula, β=-α/{N-α (1+N)}, where N=Cx/Cd>>1.
JP11867687A 1987-05-14 1987-05-14 Piezoelectric component Pending JPS63283215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11867687A JPS63283215A (en) 1987-05-14 1987-05-14 Piezoelectric component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11867687A JPS63283215A (en) 1987-05-14 1987-05-14 Piezoelectric component

Publications (1)

Publication Number Publication Date
JPS63283215A true JPS63283215A (en) 1988-11-21

Family

ID=14742447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11867687A Pending JPS63283215A (en) 1987-05-14 1987-05-14 Piezoelectric component

Country Status (1)

Country Link
JP (1) JPS63283215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334313U (en) * 1989-08-10 1991-04-04
JPH05284600A (en) * 1992-04-03 1993-10-29 Kunihiro Nagata Piezoelectric-ceramics element
US6717328B2 (en) 2001-03-27 2004-04-06 Murata Manufacturing Co., Ltd. Piezoelectric resonator and FM detection circuit incorporating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334313U (en) * 1989-08-10 1991-04-04
JP2501521Y2 (en) * 1989-08-10 1996-06-19 株式会社村田製作所 FM demodulation circuit
JPH05284600A (en) * 1992-04-03 1993-10-29 Kunihiro Nagata Piezoelectric-ceramics element
US6717328B2 (en) 2001-03-27 2004-04-06 Murata Manufacturing Co., Ltd. Piezoelectric resonator and FM detection circuit incorporating the same

Similar Documents

Publication Publication Date Title
US10826460B2 (en) Multiplexer
US2081405A (en) Wave filter
JP3155639B2 (en) Surface acoustic wave resonator and method of manufacturing the same
JPS63283215A (en) Piezoelectric component
Sheahan et al. Crystal and mechanical filters
KR100500356B1 (en) Piezoelectric resonator and fm detection circuit incorporating the same
JPH0426214A (en) Ladder type piezoelectric filter for high frequency
US5661443A (en) Apparatus and method for an asymmetrical multi-pole monolithic crystal filter having improved phase response
US6842087B2 (en) Three-terminal filter using area flexural vibration mode
JPH0526822Y2 (en)
JPS63283222A (en) Piezoelectric component
JPH01252016A (en) Surface acoustic wave device
JPH08204496A (en) Piezoelectric vibration component
JPH1093380A (en) Piezoelectric resonator and electronic component using it
JPS63283219A (en) Manufacture of piezoelectric component
JPS6189706A (en) Structure of resonator
JPH0314822Y2 (en)
JPH0441622Y2 (en)
JPH03165613A (en) Piezoelectric component
JPH0389708A (en) Piezoelectric resonator
JPH04354412A (en) Surface acoustic wave filter
JPS62227208A (en) Group delay equalizer
JPS59160309A (en) Mechanical filter
JPH07273596A (en) Piezoelectric filter
JPS63151105A (en) Ladder type piezoelectric filter