JPS632831Y2 - - Google Patents

Info

Publication number
JPS632831Y2
JPS632831Y2 JP15272783U JP15272783U JPS632831Y2 JP S632831 Y2 JPS632831 Y2 JP S632831Y2 JP 15272783 U JP15272783 U JP 15272783U JP 15272783 U JP15272783 U JP 15272783U JP S632831 Y2 JPS632831 Y2 JP S632831Y2
Authority
JP
Japan
Prior art keywords
air
cooler
air volume
condenser
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15272783U
Other languages
Japanese (ja)
Other versions
JPS6060625U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15272783U priority Critical patent/JPS6060625U/en
Publication of JPS6060625U publication Critical patent/JPS6060625U/en
Application granted granted Critical
Publication of JPS632831Y2 publication Critical patent/JPS632831Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 この考案は、冷凍サイクルを利用した除湿装置
の改良に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to an improvement of a dehumidification device using a refrigeration cycle.

〔従来技術〕[Prior art]

通常、この種の装置は、年間使用のため除湿装
置の吸込空気温度及び相対湿度(例えば25℃,50
%)を基準として冷却器、及び凝縮器の容量が選
定され、また、第1図に示す風量と除湿能力との
関係から冷却器への最適風量(例えばG1)が選
定されている。また、一方では実際の使用に際
し、低室温から高室温にわたつて装置が正常に運
転できなければならないが、とくに高室温のとき
は、第2図に示す風量との関係から最適風量G1
では凝縮圧力がCP1となつて高圧上昇保護用圧力
開閉器の設定圧力CPよりも高くなり、除湿装置
が異常停止を起こすことがあつた。従つて、高室
温のときにおいても除湿装置を正常に運転される
ためには第2図に示すように高圧上昇保護用圧力
開閉器の設定圧力CPよりも凝縮圧力が低くなる
風量G2(この時の凝縮圧力はCP2)を選定しなけ
ればならない。また、このように選定すると、通
常の温度においては風量は多すぎるため低圧々力
が上昇して顕熱変化が大半を占め、潜熱変化が少
なくなるので第1図に示すように除湿能力がQ2
に減少することになる。
Usually, this type of equipment is designed for annual use, depending on the dehumidifier's intake air temperature and relative humidity (e.g. 25℃, 50℃).
The capacities of the cooler and condenser are selected based on the dehumidification capacity (%), and the optimum air volume (for example, G 1 ) to the cooler is selected from the relationship between the air volume and dehumidification capacity shown in FIG. On the other hand, during actual use, the equipment must be able to operate normally from low to high room temperatures, but especially at high room temperatures, the optimum air volume G 1 must be determined from the relationship with the air volume shown in Figure 2.
In this case, the condensation pressure reached CP 1 , which was higher than the set pressure CP of the pressure switch for high pressure rise protection, and the dehumidification equipment stopped abnormally. Therefore, in order to operate the dehumidifier normally even at high room temperatures, the air volume G 2 (this The condensing pressure at the time must be selected as CP 2 ). In addition, when selecting in this way, the air volume is too large at normal temperatures, so the low-pressure force increases, and sensible heat changes account for most of the change, while latent heat changes decrease, so the dehumidification capacity decreases to Q as shown in Figure 1. 2
This will result in a decrease to

また、相対湿度が減少すると(例えば25℃,30
%)第1図に示すように最も除湿能力を得られる
風量はG3となり、G2での風量における除湿能力
はQ4に大巾に減少することになる。
Also, when the relative humidity decreases (e.g. 25℃, 30℃)
%) As shown in Figure 1, the air volume that provides the highest dehumidification capacity is G 3 , and the dehumidification capacity at the air volume G 2 is significantly reduced to Q 4 .

従来、凝縮圧力を低下させる対策として送風機
の回転数を変化させて風量を増加し、凝縮圧力の
上昇を押える方法がある。この場合、凝縮器を通
過する風量が増し凝縮圧力が低下するが、一方、
冷却器を通過する風量も同じく増加するため第1
図に示すように除湿能力が減少し、また、冷却器
内での冷媒ガスの蒸発温度の上昇に伴ない蒸発圧
力が上昇するため凝縮圧力の低下を鈍らせること
になり、その効果としては余り期待できず、また
第1図に示すように相対湿度の低下した時は大巾
に低下する。
Conventionally, as a measure to reduce the condensing pressure, there is a method of increasing the air volume by changing the rotation speed of the blower to suppress the increase in the condensing pressure. In this case, the amount of air passing through the condenser increases and the condensing pressure decreases, but on the other hand,
The amount of air passing through the cooler also increases, so
As shown in the figure, the dehumidification capacity decreases, and as the evaporation temperature of the refrigerant gas increases in the cooler, the evaporation pressure increases, which slows down the drop in condensation pressure, so the effect is not significant. It cannot be expected, and as shown in Figure 1, when the relative humidity decreases, it decreases drastically.

〔考案の概要〕[Summary of the idea]

この考案は、被除湿室の空気を冷却器へ導く第
1の通風ダクト及び被除湿室の空気を冷却器をバ
イパスして凝縮器へ導く第2の通風ダクトを備
え、第1及び第2の通風ダクトにはそれぞれ単独
で開閉する第1及び第2のダンパを設け、上記欠
点を除去しようとするものである。
This device includes a first ventilation duct that guides the air in the room to be dehumidified to the cooler and a second ventilation duct that leads the air in the room to be dehumidified to the condenser bypassing the cooler. The ventilation duct is provided with first and second dampers that open and close independently, respectively, in an attempt to eliminate the above-mentioned drawbacks.

〔考案の実施例〕[Example of idea]

第3図は、この考案の一実施例を示す除湿装置
の構成図であり、同図において、1は吸込口2,
2′及び吹出口3を有する本体、4は吸込口2の
下方において本体1内を機械室5と熱交換室6と
に区画するドレンパン、7は機械室5内に設置さ
れた圧縮機、8,9は熱交換室6に吸込口2から
吹出口3に向つて順次配設された冷却器及び凝縮
器で、圧縮機1及び絞り装置(図示しない)と接
続され、周知の冷凍サイクルを形成している。1
0は吹出口3の近辺に設けられ、冷却器8および
凝縮器9へ通風する送風機、11は被除湿室(図
示しない)の空気を冷却器8へ通風する第1の通
風ダクト、12は被除湿室(図示しない)の空気
を、冷却器8をバイパスして凝縮器9へ通風する
第2の通風ダクト、13は第1の通風ダクト11
内に設けられ、通風面積を調節する第1のダン
パ、14は第2の通風ダクト12内に設けられ、
通風面積を調節する第2のダンパで、第1のダン
パ13及び第2のダンパ14は減速機(図示しな
い)によつてそれぞれ単独に駆動される。15は
第1のダンパ13を駆動する減速機(図示しな
い)を運転制御するための湿度検出器で、その感
湿部17は第1の通風ダクト11の入口近辺に設
けられ、吸込空気湿度が所定値(例えば50%)よ
り低いときに作動し、通風面積を湿度に応じて段
階的に小とする。16は第2のダンパ14を駆動
する減速機(図示しない)を運転制御するための
温度検出器で、その感湿部18は第2の通風ダク
ト12の入口付近に設けられ、吸込空気温度が所
定値(例えば30℃)より高いときに作動し、通風
面積を大とする。
FIG. 3 is a block diagram of a dehumidifying device showing an embodiment of this invention. In the figure, 1 indicates an inlet 2,
2' and a main body having an air outlet 3; 4, a drain pan that divides the inside of the main body 1 below the suction port 2 into a machine room 5 and a heat exchange room 6; 7, a compressor installed in the machine room 5; 8; , 9 are coolers and condensers that are sequentially arranged in the heat exchange chamber 6 from the suction port 2 to the blowout port 3, and are connected to the compressor 1 and a throttle device (not shown) to form a well-known refrigeration cycle. are doing. 1
0 is a blower installed near the outlet 3 to ventilate the cooler 8 and condenser 9; 11 is a first ventilation duct that ventilates air from a dehumidifying room (not shown) to the cooler 8; A second ventilation duct that bypasses the cooler 8 and ventilates the air in the dehumidification room (not shown) to the condenser 9; 13 is the first ventilation duct 11;
A first damper 14 is provided within the second ventilation duct 12 and adjusts the ventilation area;
The first damper 13 and the second damper 14, which are second dampers that adjust the ventilation area, are each independently driven by a speed reducer (not shown). Reference numeral 15 denotes a humidity detector for controlling the operation of a speed reducer (not shown) that drives the first damper 13, and its humidity sensing section 17 is provided near the entrance of the first ventilation duct 11 to detect the humidity of the intake air. It is activated when the humidity is lower than a predetermined value (for example, 50%), and the ventilation area is gradually reduced depending on the humidity. Reference numeral 16 denotes a temperature detector for controlling the operation of a speed reducer (not shown) that drives the second damper 14, and its moisture sensing section 18 is provided near the entrance of the second ventilation duct 12 to detect the temperature of the intake air. It operates when the temperature is higher than a predetermined value (for example, 30°C) and increases the ventilation area.

このような構成において、冷凍サイクル及び送
風機10が運転され、吸込口2からの吸込空気は
冷却器8で冷却除湿され、更に凝縮器9で採熱し
て吹出口3から機外の被除湿室(図示しない)へ
吹出されるが、吸込空気温度が所定値よりも低い
運転時には第1のダンパ14は第3図に示す実線
のように位置し、第2の通風ダクト12を閉路し
ている。従つて、冷却器8及び凝縮器9を通過す
る風量は等しくなり、また、この時第1図に示す
G1の風量になるように送風機10の風量が選定
されているため最高除湿能力Q1のところで運転
できる。
In such a configuration, the refrigeration cycle and the blower 10 are operated, the air taken in from the suction port 2 is cooled and dehumidified by the cooler 8, and the heat is collected by the condenser 9 and sent from the air outlet 3 to the room to be dehumidified outside the machine ( During operation when the intake air temperature is lower than a predetermined value, the first damper 14 is positioned as shown by the solid line in FIG. 3, closing the second ventilation duct 12. Therefore, the air volume passing through the cooler 8 and the condenser 9 becomes equal, and at this time, as shown in FIG.
Since the air volume of the blower 10 is selected so that the air volume is G1 , it can be operated at the maximum dehumidifying capacity Q1 .

しかして、吸込空気温度が所定値よりも高くな
ると第5図に示すように凝縮圧力が温度と共に上
昇するが、同時に温度検出器16がその温度を検
出して第2のダンパ14が開放し、第2の通風ダ
クト12を空気が流通し、冷却器8を通過しない
バイパス空気が凝縮器9に流通する。この時、通
常運転時の第2のダンパ14が閉じている状態よ
りも吸込空気の通風抵抗が小さくなり、送風機1
0の静圧がP1からP2に減少するため第4図に示
す静圧と風量との関係から送風機10の特性とし
て風量G1からG2に増加し、その増加した風量分
G2−G1が凝縮器9への通風量の増加分となるの
で凝縮圧力は第2図に示すようにCPに低下する。
When the intake air temperature becomes higher than a predetermined value, the condensing pressure increases with the temperature as shown in FIG. 5, but at the same time, the temperature detector 16 detects the temperature and the second damper 14 opens. Air flows through the second ventilation duct 12 , and bypass air that does not pass through the cooler 8 flows into the condenser 9 . At this time, the ventilation resistance of the intake air becomes smaller than when the second damper 14 is closed during normal operation, and the blower 1
0 static pressure decreases from P 1 to P 2 , the characteristic of the blower 10 is that the air volume increases from G 1 to G 2 based on the relationship between static pressure and air volume shown in Fig. 4, and the increased air volume increases from G 1 to G 2 .
Since G 2 −G 1 is the increase in the amount of ventilation to the condenser 9, the condensing pressure decreases to CP as shown in FIG.

また、冷却器8を通過する風量は送風機10の
風量が増加しても、一部バイパスされるために増
加せず、第1図に示す最適風量G1とほぼ同一に
維持できる。従つて、第1図に示すように除湿能
力はほぼ最高除湿能力Q1に維持でき、蒸発圧力
も上昇せず、前記の凝縮圧力の低下分が、そのま
ま効果として現われる。更に、相対湿度が所定値
よりも低くなると湿度検出器15がその湿度を検
出して第1のダンパ13を実線部位置の開放位置
より通風面積を減少させる点線位置方向に作動さ
せる。この時、通風抵抗は大きくなり、送風機1
0の静圧がP2からP3に増大するため、第4図に
示す静圧と風量の関係から送風機10の特性とし
て風量G2からG3に減少するため第1図に示すよ
うに除湿能力は増大しほぼ最高除湿能力Q3に維
持できる。なお、風量は減少しても第5図に示す
ように低湿度時の凝縮圧力は低下するため設定圧
力CPを越える事はない。
Further, even if the air volume of the blower 10 increases, the air volume passing through the cooler 8 does not increase because it is partially bypassed, and can be maintained almost the same as the optimum air volume G1 shown in FIG. Therefore, as shown in FIG. 1, the dehumidifying capacity can be maintained at approximately the maximum dehumidifying capacity Q1 , the evaporation pressure does not increase, and the aforementioned decrease in condensing pressure directly appears as an effect. Further, when the relative humidity becomes lower than a predetermined value, the humidity detector 15 detects the humidity and operates the first damper 13 toward the dotted line position where the ventilation area is reduced from the open position shown by the solid line. At this time, the ventilation resistance increases and the blower 1
Since the static pressure at 0 increases from P 2 to P 3 , the characteristic of the blower 10 is that from the relationship between static pressure and air volume shown in Figure 4, the air volume decreases from G 2 to G 3 , so dehumidification occurs as shown in Figure 1. The capacity increases and can maintain almost the maximum dehumidification capacity Q3 . Note that even if the air volume decreases, as shown in Figure 5, the condensing pressure at low humidity will decrease, so it will not exceed the set pressure CP.

また、上記実施例は第1及び第2のダンパ1
3,14の開閉制御を吸込空気温湿度によつて行
なつたが、吹出空気温度、もしくは凝縮圧力また
は温度、あるいは蒸発圧力または温度を検出して
それにより開閉制御してもよく、要するに直接、
あるいは間接的に周囲温度、湿度及び圧力を検出
して、手動、あいは自動的に開閉制御すればよ
い。
Further, in the above embodiment, the first and second dampers 1
Although the opening/closing control of No. 3 and 14 was performed based on the temperature and humidity of the suction air, it is also possible to detect the blowing air temperature, condensation pressure or temperature, or evaporation pressure or temperature and control the opening/closing accordingly. In other words, directly,
Alternatively, the opening/closing may be controlled manually or automatically by indirectly detecting the ambient temperature, humidity, and pressure.

〔考案の効果〕[Effect of idea]

以上のようにこの考案では、周囲温度が高くな
つたときの凝縮圧力の上昇を抑制し、装置の異常
停止が防止でき、また、湿度が低下した時におい
ても最適風量で運転できるため安定した除湿能力
を発揮させることができる。
As described above, this idea suppresses the increase in condensing pressure when the ambient temperature rises, prevents the equipment from stopping abnormally, and allows operation at the optimal air volume even when humidity drops, resulting in stable dehumidification. You can demonstrate your abilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は除湿能力と風量の関係を示すグラフ、
第2図は凝縮圧力と風量の関係を示すグラフ、第
3図はこの考案の一実施例を示す除湿装置の構成
図、第4図は通風抵抗と風量との関係を示すグラ
フ、第5図は凝縮圧力と吸込空気温度の関係を示
すグラフである。 図中、8は冷却器、9は凝縮器、11は第1の
通風ダクト、12は第2の通風ダクト、13は第
1のダンパ、14は第2のダンパである。
Figure 1 is a graph showing the relationship between dehumidification capacity and air volume.
Fig. 2 is a graph showing the relationship between condensation pressure and air volume, Fig. 3 is a block diagram of a dehumidifier showing an embodiment of this invention, Fig. 4 is a graph showing the relationship between ventilation resistance and air volume, and Fig. 5 is a graph showing the relationship between condensation pressure and suction air temperature. In the figure, 8 is a cooler, 9 is a condenser, 11 is a first ventilation duct, 12 is a second ventilation duct, 13 is a first damper, and 14 is a second damper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷却器および凝縮器の順序で通風し、上記冷却
器で冷却除湿された吸込空気を上記凝縮器で採熱
して吹出し、被除湿室の除湿をするようにしたも
のにおいて、上記被除湿室の空気を上記冷却器へ
導く第1の通風ダクト、及び上記被除湿室の空気
を上記冷却器をバイパスして上記凝縮器へ導く第
2の通風ダクトを備え、上記第1、及び第2の通
風ダクトにはそれぞれ単独で開閉する第1及び第
2のダンパを設けた除湿装置。
The air in the dehumidified room is ventilated in the order of the cooler and the condenser, and the suction air that has been cooled and dehumidified by the cooler is collected heat by the condenser and blown out to dehumidify the room to be dehumidified. a first ventilation duct that guides the air to the cooler, and a second ventilation duct that leads the air in the room to be dehumidified to the condenser bypassing the cooler, the first and second ventilation ducts The dehumidifier includes first and second dampers that open and close independently.
JP15272783U 1983-09-30 1983-09-30 dehumidifier Granted JPS6060625U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15272783U JPS6060625U (en) 1983-09-30 1983-09-30 dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15272783U JPS6060625U (en) 1983-09-30 1983-09-30 dehumidifier

Publications (2)

Publication Number Publication Date
JPS6060625U JPS6060625U (en) 1985-04-26
JPS632831Y2 true JPS632831Y2 (en) 1988-01-25

Family

ID=30338097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15272783U Granted JPS6060625U (en) 1983-09-30 1983-09-30 dehumidifier

Country Status (1)

Country Link
JP (1) JPS6060625U (en)

Also Published As

Publication number Publication date
JPS6060625U (en) 1985-04-26

Similar Documents

Publication Publication Date Title
US6427454B1 (en) Air conditioner and controller for active dehumidification while using ambient air to prevent overcooling
JP2001041542A (en) Air conditioner
JPH07158899A (en) Vintilation control device of air conditioner
JP2001116329A (en) Control of air conditioner
JPH0712382A (en) Heat exchanger for ventilation
JP4325119B2 (en) Air conditioner
JPS632831Y2 (en)
KR101423448B1 (en) Ventilation unit for outdoor air cooling
JPH06337150A (en) Method for controlling air-conditioning device
JP3197596B2 (en) Air conditioner
JP2651328B2 (en) Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
JP2000304326A (en) Heat exchange ventilating apparatus
KR100849549B1 (en) Air conditioning apparatus
KR100430002B1 (en) Driving control method of air conditioner for bathroom
KR20180035291A (en) Air conditioning system
JP2912696B2 (en) Air conditioner
KR100889128B1 (en) Air conditioning apparatus
JPH0718570B2 (en) Air purification ventilation air conditioner and control system of the device
JPH05248690A (en) Air conditioner
JPS5916177B2 (en) air conditioner
KR20000033608A (en) Humidifier of cooliing/heating air conditioner and control method thereof
JPS63271070A (en) Air conditioner
WO2021039490A1 (en) Ventilator
JP3404968B2 (en) Air conditioner
JPH11182969A (en) Air conditioner