JPS63283195A - Radio wave absorber - Google Patents

Radio wave absorber

Info

Publication number
JPS63283195A
JPS63283195A JP11823087A JP11823087A JPS63283195A JP S63283195 A JPS63283195 A JP S63283195A JP 11823087 A JP11823087 A JP 11823087A JP 11823087 A JP11823087 A JP 11823087A JP S63283195 A JPS63283195 A JP S63283195A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
film
short fibers
semiconductive ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11823087A
Other languages
Japanese (ja)
Inventor
Tomio Oyachi
大矢知 富雄
Hitoshi Toyoda
豊田 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP11823087A priority Critical patent/JPS63283195A/en
Publication of JPS63283195A publication Critical patent/JPS63283195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To improve the practical utility by laminating a specific resistance film on the upper surface of a dielectric layer of predetermined thickness. CONSTITUTION:A dielectric layer 2 having lambdaepsilon/4 of thickness, where lambdaepsilon is radio wave length in a dielectric layer, is provided on a conductive plate 1. A resistance film 3 in which semiconductive ceramic carbon fiber having 0.1-100 mum of diameter, 10-100 of aspect ratio and 10<-3>-10<2>OMEGA.cm of volume resistivity is dispersed to be mixed in polymer substance, and a protective film 4 are laminated on the layer 2 to form a radio wave absorber. This absorber is preferably matched in space impedance to provide a light weight, a thin type, high durability, weather resistance and waterproofness against the radio wave of wide frequency band, and good workability by a coating method, thereby improving its practical utility.

Description

【発明の詳細な説明】 産業上の手1 本発明は、半導電性セラミック短繊維からなる抵抗皮膜
を利用したλ/4共振型の電波吸収体に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Procedure 1 The present invention relates to a λ/4 resonance type radio wave absorber using a resistive film made of semiconductive ceramic short fibers.

来の 術及び−日が解 しようとする間゛截呪代は高度
情報化社会であり、各種の情報メディアが氾濫し、また
、個々のメディアをみても増加の一途をたどっている。
We live in a highly information-oriented society, where we are flooded with various information media, and the number of individual media continues to increase.

電波を利用した通信、放送、観測及び探知なども例外で
はなく、従来からのAM放送、短波放送、FM放送、V
HFテレビ放送、UHFテレビ放送やマイクロ波多重無
線等の無線放送、海上無線航行、航空無線航行、陸上及
び海上移動無線等の無線放送及び通信に加え、通信衛星
や気象衛星による衛星放送やデータ通信の増加及びパー
ソナル無線の増加も見られ、現在ではあらゆる周波数帯
域の電波がくまなく利用されており、そのため電波の混
信、電波障害の多発、誤作動等の問題が生起し、今やこ
れらの現象は大きな社会環境問題となり、いわゆるEM
C(Electro Magnetic Co+npa
tibility)対策が渇望されている。
Communication, broadcasting, observation and detection using radio waves are no exception, and include conventional AM broadcasting, shortwave broadcasting, FM broadcasting, V
In addition to radio broadcasting and communications such as HF television broadcasting, UHF television broadcasting and microwave multiplex radio, maritime radio navigation, aviation radio navigation, land and maritime mobile radio, satellite broadcasting and data communication using communication satellites and meteorological satellites. As a result, radio waves in all frequency bands are now being used extensively, leading to problems such as radio wave interference, frequent radio interference, and malfunctions. It has become a major social and environmental problem, and the so-called EM
C (Electro Magnetic Co+npa
There is a strong need for countermeasures against this issue.

このEMC対策としては、電波吸収体の施工が挙げられ
る。この電波吸収体としては各種のものが提案、実施さ
れているが、EMC対策として最も有効な電波吸収体と
しては、電波の到来する方向側に抵抗皮膜を配すると共
に、その背面に導電板上に積層されるほぼλεハ(ここ
で、λEは誘電体内での電波の波長を示す)の厚さの誘
電体を配した積層構造を有する所謂λ/4共振型の電波
吸収体を挙げることができる。
An example of this EMC countermeasure is the installation of radio wave absorbers. Various types of radio wave absorbers have been proposed and implemented, but the most effective radio wave absorber as an EMC countermeasure is one that has a resistive film on the side in which the radio waves arrive, and a conductive plate on the back side. One example is a so-called λ/4 resonant type radio wave absorber having a laminated structure in which a dielectric material with a thickness of approximately λε (here, λE indicates the wavelength of the radio wave within the dielectric material) is laminated on the dielectric material. can.

このλハ共振型の電波吸収体の電波吸収機構は、到来電
波のちょうど半分の電力の電波を抵抗皮膜に反射させ、
λεハの厚みを有する誘電体中を透過して背面の導電板
で多重反射される逆位相の電波の総電力と相殺させるも
のである。こめためには、抵抗皮膜のインピーダンスが
空間インピーダンスよりやや小さいある特定の値を持ち
、また形状的には抵抗皮膜は可能な限り薄いことが望ま
しく、インピーダンスの虚数成分が大きいことは吸収帯
域幅を広くとれる点で有利となる。更に電波吸収体は、
以上の電磁物性が長期的に保持される耐候性及び耐久性
を有し、軽量で柔軟性を有し、施工のし易い機械的性質
を持っている必要がある。
The radio wave absorption mechanism of this λ-resonance type radio wave absorber reflects radio waves with exactly half the power of the incoming radio waves onto the resistive film.
This is to cancel out the total power of the opposite-phase radio waves that are transmitted through the dielectric having a thickness of λε and multiple reflected by the conductive plate on the back surface. In order to achieve this, it is desirable that the impedance of the resistive film has a certain value that is slightly smaller than the spatial impedance, and that the resistive film is as thin as possible in terms of shape. It is advantageous in that it can be used widely. Furthermore, the radio wave absorber
It is necessary to have weather resistance and durability to maintain the above electromagnetic properties for a long period of time, to be lightweight and flexible, and to have mechanical properties that are easy to construct.

しかし、このλ/4共振型の電波吸収体として、従来よ
りその構成要素それぞれについて材質と製法に関し種々
提案されているが、性能、耐久性、施工性、価格の点で
一長一短があり、未だ広く実用に供せられるものが見当
らないのが実状である。
However, although various materials and manufacturing methods have been proposed for each component of this λ/4 resonance type radio wave absorber, they have advantages and disadvantages in terms of performance, durability, workability, and price, and are still not widely used. The reality is that there is nothing that can be put to practical use.

特に抵抗皮膜の材質とその製造方法が問題であり、従来
、その材質及び製造方法としては、下記に示すa−eな
どが提案又は実施されているが、それぞれ下記の如き欠
点がある。
In particular, the material of the resistive film and its manufacturing method are a problem. Conventionally, the following materials and manufacturing methods have been proposed or implemented, but each of them has the following drawbacks.

a、導電カーボン又は金属フィラーが分散配合された皮
膜又は塗膜。
a. A film or coating in which conductive carbon or metal filler is dispersed.

b、カーボンの焼付又はニクロームの真空蒸着による抵
抗皮膜。
b. Resistance coating by carbon baking or nichrome vacuum deposition.

C0硫化銅処理アクリル繊維を格子状に疎らに配置した
抵抗皮膜。
A resistance film made of CO copper sulfide treated acrylic fibers arranged sparsely in a grid pattern.

d、硫化銅処理又は金属メッキ処理導電繊維。d. Conductive fiber treated with copper sulfide or metal plating.

e、カーボン繊維。e, carbon fiber.

このうち、aの皮膜又は塗膜は、膜内でのコンダクタン
ス又は透過損失のバラツキが大きく、λ74共振型電波
吸収体の設計に要求されるインピーダンスの整合をとる
ことが困難であり、また耐候性及び耐久性にも欠ける。
Among these, the film or coating film a has large variations in conductance or transmission loss within the film, making it difficult to match the impedance required for the design of a λ74 resonant radio wave absorber, and also has poor weather resistance. It also lacks durability.

また、bの製造方法による抵抗皮膜は、大面積に均一に
しかも経済的に抵抗皮膜を形成することが難しく、温熱
耐久性にも不足しており、実用化されるには至っていな
い。
Furthermore, the resistive coating produced by the manufacturing method b is difficult to form uniformly and economically over a large area, and also lacks thermal durability, so that it has not been put to practical use.

更に、Cの抵抗皮膜の場合は、インピーダンスの整合を
とるために格子間隔をいちいち調整しなければならず、
かつ短波長電波に対しては格子間からの電波の漏洩が問
題となる。
Furthermore, in the case of a C resistor film, the lattice spacing must be adjusted one by one in order to match the impedance.
Furthermore, leakage of radio waves from between the grids becomes a problem for short wavelength radio waves.

また、dの導電繊維は、いずれも高温又は高湿下でその
導電性が変わり易く、何らかの保護コーティングをしな
ければならない。
Furthermore, the conductivity of the conductive fibers d tends to change under high temperature or high humidity conditions, and therefore some kind of protective coating must be applied.

eのカーボン繊維は、その初期導電性が不特定のため使
いずらいものであり、また価格が高価なため、特殊用途
に限定される。
Carbon fiber (e) is difficult to use because its initial conductivity is unspecified, and is expensive, so it is limited to special uses.

従って、性能的にも経済的にも優れたλ14共振型電波
吸収体の抵抗皮膜が望まれ、実用性の高い電波吸収体の
開発が要望される。
Therefore, a resistive film for a λ14 resonance type radio wave absorber that is excellent in performance and economy is desired, and there is a demand for the development of a highly practical radio wave absorber.

本発明は、上記事情に鑑みなされたもので、到来電波に
対して空間インピーダンス(約377Ω)と容易に整合
がとれ、かつこの電磁物性の耐久性と耐候性に優れ、軽
量で柔軟性を有し、しかも容易に施工することができて
、実用性の高いλ14共振型電波吸収体を提供すること
を目的とする。
The present invention has been developed in view of the above circumstances, and has the ability to easily match the spatial impedance (approximately 377Ω) to incoming radio waves, has excellent electromagnetic properties of durability and weather resistance, and is lightweight and flexible. However, it is an object of the present invention to provide a λ14 resonance type radio wave absorber that can be easily constructed and has high practicality.

封通ぶを  するための−び 本発明者らは、上記目的を達成するため鋭意検討を行な
った結果、導電板上に積層される厚さがほぼλε/4 
(ここで、λEは誘電体内での電波の波長を示す)の誘
電体層の上面に半導電性チタン酸アルカリ短繊維などの
半導電性セラミック短繊維を高分子物質に分散配合して
得られた抵抗皮膜を貼り合せるなどして積層した電波吸
収体が、軽量で柔軟かつ施工性に富み、広い周波数帯域
の電波を良く吸収すると共に、耐久性と耐候性に優れ、
かかる電波吸収体が十分実用性を持って各種用途に使用
されることを知見し、本発明を完成するに至ったもので
ある。
In order to achieve the above object, the inventors of the present invention conducted extensive studies and found that the thickness of the layers laminated on the conductive plate was approximately λε/4.
(Here, λE indicates the wavelength of radio waves in the dielectric material) is obtained by dispersing semiconductive ceramic short fibers such as semiconductive alkali titanate short fibers in a polymer material on the top surface of the dielectric layer. The radio wave absorber, which is laminated by laminating resistive films, is lightweight, flexible, and easy to construct, and it absorbs radio waves in a wide frequency range well, and has excellent durability and weather resistance.
It was discovered that such a radio wave absorber can be used for various purposes with sufficient practicality, and the present invention was completed.

従って、本発明は、導電板上に積層される厚さがほぼλ
ε/4 (ここで、λξは誘電体内での電波の波長を示
す)の誘電体層の上面に半導電性セラミック短繊維を高
分子物質に分散配合して得られた抵抗皮膜が積層されて
なることを特徴とする電波吸収体を提供するものである
Therefore, in the present invention, the thickness of the layer stacked on the conductive plate is approximately λ
A resistive film obtained by dispersing semiconductive ceramic short fibers in a polymeric substance is laminated on the top surface of a dielectric layer of ε/4 (here, λξ indicates the wavelength of radio waves within the dielectric). The present invention provides a radio wave absorber characterized by the following characteristics.

以下、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の電波吸収体は、第1図に示したように、導電板
1上に積層される誘電体層2の上面に抵抗皮、[3を積
層してなるもので、この場合本発明にあっては、抵抗皮
膜を半導電性セラミック短繊維を高分子物質に分散配合
して得られたフィルムにて構成したものである。
The radio wave absorber of the present invention, as shown in FIG. In some cases, the resistive film is made of a film obtained by dispersing semiconductive ceramic short fibers in a polymeric substance.

ここで、本発明の電波吸収体の抵抗皮膜の形成に用いら
れる半導電性セラミック短繊維としては、必ずしも制限
されるものではないが、繊維径が0.1〜100/j1
1.アスペクト比が10〜1000の形状で、体積固有
抵抗率が10′″3〜102Ω・国のものであることが
好ましく、より好ましくは繊維径0.1〜10Iia、
アスペクト比10〜300、体積固有抵抗率10−1〜
50Ω・国のものである。
Here, the semiconductive ceramic short fibers used for forming the resistance film of the radio wave absorber of the present invention are not necessarily limited, but have a fiber diameter of 0.1 to 100/j1.
1. It is preferable that the shape has an aspect ratio of 10 to 1000 and a specific volume resistivity of 10'''3 to 102Ω, more preferably a fiber diameter of 0.1 to 10Iia,
Aspect ratio 10~300, volume resistivity 10-1~
50Ω/country.

繊維径が1004より大きい場合又はアスペクト比が1
000を越える半導電性セラミック短繊維を用いた場合
、表面平滑性が低下し、ピンホールが発生し易く、機械
的性質が低下して、柔軟で施工性に優れた皮膜が得られ
ない場合がある。また、繊維径が0.IJs未満又はア
スペクト比が10未満の半導電性セラミック短繊維を用
いた場合は、従来の導電性粉体フィラーを用いた場合と
大差がなくなり、本発明電波吸収体の大きな特徴である
高度に平面的に配向したごく薄い抵抗皮膜が得られない
場合が生じる。更に、体積固有抵抗率が10−3Ω・1
未満又は↓02Ω・備を超える場合には、良好な機械的
性質を保持したままで、又は再現性の良い製法にて、抵
抗皮膜のインピーダンスを設計上要求される値(377
Ωよりも少し低い値)に設定することが困難となる場合
が生じる。
When the fiber diameter is larger than 1004 or the aspect ratio is 1
If semiconductive ceramic short fibers exceeding 0.000 are used, the surface smoothness will decrease, pinholes will easily occur, the mechanical properties will decrease, and it may not be possible to obtain a film that is flexible and has excellent workability. be. In addition, the fiber diameter is 0. When semiconductive ceramic short fibers with an aspect ratio of less than IJs or less than 10 are used, there is no major difference from the case when conventional conductive powder fillers are used, and the highly flat surface is a major feature of the radio wave absorber of the present invention. In some cases, it may not be possible to obtain a very thin resistive film that is oriented in the same direction. Furthermore, the specific volume resistivity is 10-3Ω・1
If the impedance of the resistive film is less than or exceeds ↓02Ω, the impedance of the resistive film should be adjusted to the design value (377Ω) while maintaining good mechanical properties or using a manufacturing method with good reproducibility.
There may be cases where it is difficult to set the value to a value slightly lower than Ω.

この半導電性セラミック短繊維としては、その形状と導
電性に関し前記の規定範囲をそれ自体満足する半導電性
セラミック繊維をそのまま用いてもよく、また形状的に
前記の規定範囲内にある非導電性のセラミック短繊維を
表面導電処理法により導電化して、前記範囲の半導電性
を付与したものを使用するようにしてもよい。
As this semiconductive ceramic short fiber, a semiconductive ceramic fiber that satisfies the above-mentioned range in terms of shape and conductivity may be used as is, or a non-conductive ceramic fiber whose shape is within the above-mentioned range may be used. It is also possible to use short ceramic fibers that have been made conductive by a surface conductive treatment method to have semiconductivity within the above range.

本発明の電波吸収体の抵抗皮膜として好適に使用される
半導電性セラミック短繊維の具体例としては、一般式 %式% (式中Mはアルカリ金属、a、b及びXは実数で、0≦
a≦8.0≦b≦4.0<x<2)で示される還元チタ
ン酸アルカリ又はブロンズチタン酸アルカリと呼ばれる
半導電性チタン酸アルカリ短繊維、或いは一般式 %式% (式中Mはアルカリ金属、a、b及びyは実数で、0≦
a≦8,0≦b≦4.O<y≦2)で表わされるチタン
酸アルカリ短繊維を金属、金属酸化物、ハロゲン化金属
化合物等の導電性金属化合物で被覆した半導電性チタン
酸アルカリ短繊維などが挙げられる。
A specific example of the semiconductive ceramic staple fiber suitably used as the resistance coating of the radio wave absorber of the present invention is given by the general formula % (where M is an alkali metal, a, b, and X are real numbers, and 0 ≦
a≦8.0≦b≦4.0<x<2) Semiconductive alkali titanate short fibers called reduced alkali titanate or bronze alkali titanate, or the general formula % formula % (wherein M is Alkali metal, a, b and y are real numbers, 0≦
a≦8, 0≦b≦4. Examples include semiconductive alkali titanate short fibers obtained by coating alkali titanate short fibers represented by O<y≦2) with a conductive metal compound such as a metal, a metal oxide, or a metal halide compound.

これらの半導電性チタン酸アルカリ短繊維の製法に関し
ては、特開昭57−103204、同58−13512
9、同58−135130、同60−9005、同61
−55217、同61−167017号公報等に記載さ
れた種々の方法が知られている。
Regarding the manufacturing method of these semiconductive alkali titanate short fibers, please refer to JP-A-57-103204 and JP-A-58-13512.
9, 58-135130, 60-9005, 61
Various methods are known, such as those described in JP-A-55217 and JP-A-61-167017.

本発明電波吸収体の抵抗皮膜は一上述した半導電性セラ
ミック短繊維をバインダーとしての高分子物質に分散配
合して得られるものであり、この半導電性セラミック短
繊維を分散配合するバインダーとして使用される高分子
物質としては、その種類に特に制限はなく、目的に応じ
て製造のし易さ、価格、要求される機械的強度と耐久性
、耐候性等の観点から選択される種々のものを使用し得
るが、汎用的には、ウレタン樹脂或いは塩化ビニル樹脂
が適している。
The resistive film of the radio wave absorber of the present invention is obtained by dispersing and blending the above-mentioned semiconductive ceramic staple fibers in a polymeric substance as a binder, and is used as a binder to disperse and blend the semiconductive ceramic staple fibers. There are no particular restrictions on the type of polymer material used, and various materials can be selected depending on the purpose from the viewpoints of ease of manufacture, price, required mechanical strength and durability, weather resistance, etc. may be used, but urethane resin or vinyl chloride resin is generally suitable.

この場合、半導電性セラミック短繊維の配合量は高分子
物質100重量部に対して20〜200重量部の範囲が
好ましく、特に50〜150重社部配合したものが本発
明の目的を達成するに対してより好ましい。上記半導電
性セラミック短繊維の配合量が20重量部未満の場合は
、抵抗皮膜のインピーダンスが103Ω以上となり、空
間インピーダンス(約377Ω)との整合がとれなくな
る場合がある。また、前述したように、λハ共振型′1
ヒ波吸収体の抵抗皮膜は、所要のインピーダンスが得ら
れる範囲内でできるだけ薄いことが望ましく、半導電性
セラミック短繊維の配合量を多くするほど有利であるが
、配合量が200重量部を超える場合は、抵抗皮膜の機
械的強度が低下して実用的に劣る場合が生じる。
In this case, the blending amount of the semiconductive ceramic short fibers is preferably in the range of 20 to 200 parts by weight per 100 parts by weight of the polymeric substance, and in particular, a blend of 50 to 150 parts by weight achieves the object of the present invention. more preferable to If the blending amount of the semiconductive ceramic short fibers is less than 20 parts by weight, the impedance of the resistive film will be 10 3 Ω or more, which may not match the spatial impedance (approximately 377 Ω). In addition, as mentioned above, λ is resonant type'1
It is desirable that the resistance film of the radio wave absorber be as thin as possible within the range that provides the required impedance, and it is more advantageous to increase the amount of semiconductive ceramic staple fibers, but if the amount exceeds 200 parts by weight In this case, the mechanical strength of the resistive film may decrease, making it practically inferior.

また、抵抗皮膜の厚さは15〜150Amであることが
好ましく、より好ましくは30〜100声である。上述
した如く、抵抗皮膜の厚みは薄いほど機能的には好まし
いが、15Ia未満の場合は機械的強度が不足し、また
電波吸収体を製作するのが困難になる場合があり、また
1507aを超える場合は抵抗皮膜のインピーダンス成
分の中のレジスタンス成分に対するリアクタンス成分の
割合が大きくなり過ぎ、空間インピーダンスとの整合が
とれなくなる場合がある。
Further, the thickness of the resistive film is preferably 15 to 150 Am, more preferably 30 to 100 Am. As mentioned above, the thinner the resistive film is, the better it is functionally, but if it is less than 15Ia, the mechanical strength will be insufficient and it may be difficult to manufacture a radio wave absorber, and if it is more than 1507a In this case, the ratio of the reactance component to the resistance component among the impedance components of the resistive film becomes too large, and matching with the spatial impedance may not be achieved.

なお、この抵抗皮膜の厚みの均一性は、λ14共振型の
電波吸収体の設計上重要な要素の1つであり、あらかじ
め所要の方法で公差内の皮膜を作り上げておき、それを
誘電体層の上に貼り合せる等の適宜な手段で積層するの
が望ましい。
The uniformity of the thickness of this resistive film is one of the important elements in the design of the λ14 resonance type radio wave absorber.The film must be created within the tolerance using the required method in advance, and then applied to the dielectric layer. It is desirable to laminate the material by an appropriate means such as bonding it on top of the material.

この抵抗皮膜を工業的に生産する場合は、通常連続的に
長尺物として作られるため、物性に短繊維の配向現象が
見られ、電磁特性が長さ方向と幅方向では異なる場合が
生じる。従って、吸収しようとする電波がテレビ放送の
ように水平偏波或いはパーソナル無線のように垂直偏波
である場合など、到来電波の偏波面が予め分かっている
場合には、抵抗皮膜の配向方向を電波の偏波面に合せて
設計し施工すればよい、また、到来電波の偏波面が分か
らない場合には、2枚の抵抗皮膜用のフィルムをその短
繊維の配向方向が互にほぼ直交するように貼り合せた2
Nフイルムを抵抗皮膜として用い、配向をキャンセルし
た2層フィルムのインピーダンスを所定の値に設定する
ことにより、全方向の電波に対して等しく吸収性能を示
す電波吸収体とし、これを施工すればよい。また、単層
の抵抗皮膜において、長径が到来電波の半波長以下の長
さである穴を短繊維の配向方向に密にかつ非配向方向に
粗となるように穿設することによっても、配向性のない
電波吸収体を得ることができる。
When this resistive film is produced industrially, it is usually made continuously as a long product, so that short fiber orientation phenomenon is observed in the physical properties, and the electromagnetic properties may differ in the length direction and the width direction. Therefore, if the plane of polarization of the incoming radio wave is known in advance, such as when the radio wave to be absorbed is horizontally polarized like in television broadcasting or vertically polarized like in personal wireless, the direction of orientation of the resistive film can be adjusted. The design and construction should be done according to the plane of polarization of the radio waves.Also, if the plane of polarization of the incoming radio waves is unknown, two films for resistive coating should be designed and constructed so that the orientation directions of the short fibers are almost perpendicular to each other. pasted on 2
By using N film as a resistive film and setting the impedance of the two-layer film whose orientation has been canceled to a predetermined value, it is possible to create a radio wave absorber that exhibits equal absorption performance for radio waves in all directions, and then install this. . Orientation can also be improved by drilling holes in a single-layer resistive film, the long axis of which is less than half the wavelength of the incoming radio wave, so that they are dense in the orientation direction of the short fibers and coarser in the non-orientation direction. A neutral radio wave absorber can be obtained.

この場合、穴の長径を到来電波の半波長以下にすること
が肝要で、穴の径が到来電波の半波長より大きくなると
電波がほとんど透過してしまい、抵抗膜の用をなさなく
なる。
In this case, it is important to make the long axis of the hole less than half the wavelength of the incoming radio wave; if the diameter of the hole is larger than half the wavelength of the incoming radio wave, most of the radio wave will pass through, rendering the resistive film useless.

本発明においては、上述した抵抗膜を誘電体層上に積層
するが、誘電体層は、抵抗皮膜と背面の導電反射板との
電気長(到来電波の行路)を到来電波の誘電体内での波
長のほぼ1/4に保持するために不可欠の構成要件であ
り、この誘電体層の厚さは前述のλ14共振型電波吸収
体の原理上λε14(ここで、石は誘電体内での電波の
波長を示す)とするが、実際の電波吸収体構造では抵抗
皮膜の厚みのため多少のりアクタンス成分を持ち、理論
上の厚みλεハからは若干ずれることがあり、このずれ
の範囲は、通常λε/4の0.7〜1.3程度である。
In the present invention, the above-mentioned resistive film is laminated on the dielectric layer, and the dielectric layer is designed to control the electrical length between the resistive film and the conductive reflector on the back (the path of the incoming radio wave) within the dielectric layer. This dielectric layer is an essential component in order to maintain approximately 1/4 of the wavelength, and the thickness of this dielectric layer is λε14 (here, the thickness of the dielectric layer is λε14 (here, the stone is the thickness of the radio wave within the dielectric). However, the actual radio wave absorber structure has some glue actance component due to the thickness of the resistive film, and may deviate slightly from the theoretical thickness λε, and the range of this deviation is usually λε /4 is about 0.7 to 1.3.

この誘電体層の材料としては、ポリエチレン、ポリプロ
ピレン、ポリスチレン、ポリ塩化ビニル等の有機発泡体
が好適に使用されるが、特に耐久性と経済性の点から発
泡率10〜40倍のポリエチレン発泡体が望ましい。
As the material for this dielectric layer, organic foams such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride are preferably used, but polyethylene foams with an expansion rate of 10 to 40 times are particularly preferred from the viewpoint of durability and economical efficiency. is desirable.

誘電体層は導電板上に積層されるが、この場合誘電体層
は使用時に導電板上に積層するようにしてもよく、また
予め導電板上に誘電体層を積層しておくこともできる。
The dielectric layer is laminated on the conductive plate, but in this case, the dielectric layer may be laminated on the conductive plate during use, or the dielectric layer may be laminated on the conductive plate in advance. .

なお、誘電体層を積層する導電板としては、銅、アルミ
ニウム、銀又はそれらの合金など種々のものが使用し得
る。
Note that various materials such as copper, aluminum, silver, or alloys thereof can be used as the conductive plate on which the dielectric layer is laminated.

本発明の電波吸収体は、実際に使われる場合において、
第1図に示すように、防水性、耐久性、耐候性を更に向
上させるため又は美観を向上させるために、到来電波の
入射及び吸収体構造の電磁特性を損なわない限りで、絶
縁性の有機発泡体シート、有機高分子フィルム、有機塗
膜等の保S層(第1図中参照符号4)を貼り合せ或いは
塗装法などにより形成することができる。
When the radio wave absorber of the present invention is actually used,
As shown in Figure 1, in order to further improve waterproofness, durability, weather resistance, or aesthetics, insulating organic An S-retaining layer (reference numeral 4 in FIG. 1) such as a foam sheet, an organic polymer film, or an organic coating film can be formed by bonding or painting.

溌Δル悲肱澁 以上説明したように、本発明の電波吸収体は抵抗皮膜と
して半導電性セラミック短繊維を高分子物質に分散配合
したフィルムを用いたことにより、VHF帯域よりUH
F、SHF、EHF帯域の広い周波数帯の電波に対して
、軽量で耐久性に優れ。
As explained above, the radio wave absorber of the present invention uses a film in which semiconductive ceramic short fibers are dispersed in a polymeric material as a resistive film, so that it can be used in a range from VHF to UH.
Lightweight and highly durable for radio waves in wide frequency bands of F, SHF, and EHF bands.

施工がし易く、かつ電波吸収性能に優れた電波吸収体を
提供し得、通信及び放送のゴースト対策、マイクロ波送
受信設備、船舶漁船レーダー装置。
It is possible to provide a radio wave absorber that is easy to construct and has excellent radio wave absorption performance, and can be used to prevent ghosts in communication and broadcasting, microwave transmission and reception equipment, and radar equipment for ships and fishing boats.

衛星放送受信機の周辺部の電波障害対策、橋梁、高層建
築体の偽像対策等、広く一般にEMC対策の一環として
必要とされているところに好適に使用され得る。
It can be suitably used in a wide range of areas where it is generally required as a part of EMC countermeasures, such as countermeasures against radio wave interference in the vicinity of satellite broadcasting receivers, countermeasures against false images in bridges and high-rise buildings, etc.

以下、実施例と比較例を示し、本発明を具体的に説明す
るが、本発明は下記実施例に制限されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.

〔実施例1〕 厚さ200声のアルミニウム板上に積層された厚さが8
nmのポリエチレン発泡体(発泡率30倍)の上面に、
繊維径が0.2〜Q 、5 pg 、アスペクト比が2
0〜1002体積固有抵抗率が3Ω・1である半導電性
チタン酸カリウム短繊維100重量部をウレタン樹脂1
00重量部に分散配合させて厚さ50pのフィルムに成
形した抵抗皮膜を貼り合せて、電波吸収体を作製した。
[Example 1] 8mm thick aluminum plate laminated on 200mm thick aluminum plate
On the top surface of the nm polyethylene foam (foaming rate 30 times),
Fiber diameter is 0.2~Q, 5 pg, aspect ratio is 2
0 to 1002 100 parts by weight of semiconductive potassium titanate short fibers having a specific volume resistivity of 3Ω·1 are added to 1 part by weight of urethane resin.
A radio wave absorber was produced by dispersing and blending the resistive film into a film having a thickness of 50 p.

〔実施例2〕 厚さ200pのアルミニウム板上に積層された厚さが8
画のポリエチレン発泡体(発泡率30倍)の上面に、繊
維径が0.2〜Q 、5 、cm 、アスペクト比が2
0〜1009体積固有抵抗率が1Ω・口である半導電性
チタン酸カリウム短繊維70重量部をウレタン樹脂10
0重量部に分散配合させて厚さ40声のフィルムに成形
した抵抗皮膜を貼り合せて、電波吸収体を作製した。
[Example 2] 8mm thick aluminum plate laminated on 200mm thick aluminum plate
The upper surface of the polyethylene foam (expansion rate: 30 times) in the picture shows fibers with a diameter of 0.2 to Q,5,cm and an aspect ratio of 2.
0 to 1009 70 parts by weight of semiconductive potassium titanate short fibers with a specific volume resistivity of 1 Ω/cm were mixed with 10 parts by weight of urethane resin
A radio wave absorber was prepared by dispersing and blending the resistive film into a film having a thickness of 40 parts.

〔比較例1〕 厚さ200/7111のアルミニウム板上に積層された
厚さが8mのポリエチレン発泡体(発泡率30倍)の上
面に、繊維径が0.2〜Q 、 5 pre 、アスペ
クト比が20〜1002体積固有抵抗率が104Ω・口
である半導電性チタン酸カリウム短繊維150重量部を
ウレタン樹脂100重量部に分散配合させて厚さ100
−のフィルムに成形した抵抗皮膜を貼り合せて、電波吸
収体を作製した。
[Comparative Example 1] On the top surface of an 8 m thick polyethylene foam (foaming rate: 30 times) laminated on an aluminum plate with a thickness of 200/7111, fiber diameters of 0.2 to Q, 5 pre, aspect ratio 150 parts by weight of semiconductive potassium titanate short fibers having a specific volume resistivity of 20 to 1002 and 104 Ω/cm are dispersed and blended into 100 parts by weight of urethane resin to form a material with a thickness of 100 Ω.
A radio wave absorber was produced by bonding a resistive film formed on the film of -.

〔比較例2〕 厚さ200pのアルミニウム板上に積層された厚さが8
Iのポリエチレン発泡体(発泡率30倍)の上面に、ア
セチレンブラック80重量部をウレタン樹脂100重量
部に分散配合させて厚さ200p!Mのフィルムに成形
した抵抗皮膜を貼り合せて、電波吸収体を作製した。
[Comparative Example 2] 8mm thick aluminum plate laminated on 200mm thick aluminum plate
80 parts by weight of acetylene black was dispersed and blended into 100 parts by weight of urethane resin on the top surface of the polyethylene foam (expansion rate: 30 times) of I, resulting in a thickness of 200p! A radio wave absorber was produced by bonding the molded resistive film to the M film.

〔比較例3〕 厚さ200pのアルミニウム板上に積層された厚さが8
mmのポリエチレン発泡体(発泡率30倍)の上面に、
長径25.のNiフレーク25重量部をウレタン樹脂1
00重量部に分散配合させて厚さ50,41111のフ
ィルムに成形した抵抗皮膜を貼り合せて、電波吸収体を
作製した。
[Comparative Example 3] 8mm thick aluminum plate laminated on 200mm thick aluminum plate
On the top surface of mm polyethylene foam (foaming rate 30 times),
Long diameter 25. 25 parts by weight of Ni flakes and 1 part of urethane resin
A radio wave absorber was prepared by dispersing and blending the resistive film into a film having a thickness of 50,41,111 mm and bonding the resistive film to 0.00 parts by weight.

〔比較例3〕 厚さ200pのアルミニウム板上に積層された厚さが8
mのポリエチレン発泡体(発泡率30倍)の上面に、比
抵抗5X10−”Ω・備の硫化銅処理アクリル繊維を間
隔8mの格子状に織り込んだ織布を抵抗皮膜として貼り
合せて、電波吸収体を作製した。
[Comparative Example 3] 8mm thick aluminum plate laminated on 200mm thick aluminum plate
A woven fabric made of copper sulfide-treated acrylic fibers with a resistivity of 5 x 10-''Ω woven in a lattice pattern with a spacing of 8 m is attached as a resistive film to the top surface of polyethylene foam (foaming rate: 30 times). The body was created.

次に、以上の実施例1,2及び比較例1〜4で作製した
電波吸収体について、80℃×90%RH×100時間
の湿熱耐久試験前及び後の試料の電波吸収性能をRLア
ーチ式試験機を用い、2.5〜11GHzの周波数帯域
で測定した。その吸収のピーク値を第1表に示す。
Next, regarding the radio wave absorbers produced in Examples 1 and 2 and Comparative Examples 1 to 4 above, the radio wave absorption performance of the samples was measured before and after a moist heat durability test of 80°C x 90% RH x 100 hours using the RL arch method. The measurement was performed using a tester in the frequency band of 2.5 to 11 GHz. The absorption peak values are shown in Table 1.

第   1   表 次に、実施例1の吸収体の温熱耐久試験前の試料につい
て行なった電波吸収性能試験の測定チャートを第2図に
示す。この第2図に示した結果から、実施例1の電波吸
収体は約5.2GHzに吸収のピーク値を持ち、4.5
〜6GHzで20dB以上、3.5〜7GHzで10d
B以上の吸収特性を示す広い周波数帯域で優れた電波吸
収能を示す電波吸収体であることが分かる。
Table 1 Next, FIG. 2 shows a measurement chart of the radio wave absorption performance test conducted on the sample of the absorber of Example 1 before the thermal durability test. From the results shown in FIG. 2, the radio wave absorber of Example 1 has an absorption peak value of approximately 5.2 GHz, and a peak value of 4.5 GHz.
~20dB or more at 6GHz, 10d at 3.5-7GHz
It can be seen that this is a radio wave absorber that exhibits excellent radio wave absorption ability in a wide frequency band with absorption characteristics of B or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電波吸収体の構造の一例を示す一部省略
断面図、第2図は実施例1の電波吸収体について行なっ
た電波吸収性能試験の測定チャートを示すグラフである
。 1・・・導電板、   2・・・誘電体層、3・・・抵
抗皮膜、  4・・・保護膜。
FIG. 1 is a partially omitted sectional view showing an example of the structure of the radio wave absorber of the present invention, and FIG. 2 is a graph showing a measurement chart of a radio wave absorption performance test conducted on the radio wave absorber of Example 1. DESCRIPTION OF SYMBOLS 1... Conductive plate, 2... Dielectric layer, 3... Resistance film, 4... Protective film.

Claims (1)

【特許請求の範囲】 1、導電板上に積層される厚さがほぼλ_ε_/_4(
ここで、λ_εは誘電体内での電波の波長を示す)の誘
電体層の上面に半導電性セラミック短繊維を高分子物質
に分散配合して得られた抵抗皮膜が積層されてなること
を特徴とする電波吸収体。 2、半導電性セラミック短繊維が、繊維径0.1〜10
0μm,アスペクト比10〜1000,体積固有抵抗率
10^−^3〜10^2Ω・cmである半導電性セラミ
ック短繊維である特許請求の範囲第1項に記載の電波吸
収体。 3、半導電性セラミック短繊維が、半導電性チタン酸ア
ルカリ短繊維である特許請求の範囲第1項又は第2項に
記載の電波吸収体。 4、抵抗皮膜が、高分子物質100重量部に対して半導
電性セラミック短繊維を20〜200重量部分散配合し
た厚さが15〜150μmのフィルムである特許請求の
範囲第1項乃至第3項のいずれか1項に記載の電波吸収
体。 5、抵抗皮膜が、半導電性セラミック短繊維の配向方向
が互にほぼ直交するように積層された多層フィルムであ
る特許請求の範囲第1項乃至第4項のいずれか1項に記
載の電波吸収体。 6、抵抗皮膜が、長径が到来電波の半波長以下の長さで
ある穴を半導電性セラミック短繊維の配向方向に密にか
つ非配向方向に粗になるように穿設した単層フィルムで
ある特許請求の範囲第1項乃至第4項のいずれか1項に
記載の電波吸収体。 7、抵抗皮膜の表面に絶縁性の有機発泡体シート、有機
高分子フィルム及び有機塗膜から選ばれる保護層を積層
した特許請求の範囲第1項乃至第6項のいずれか1項に
記載の電波吸収体。 8、誘電体層がポリエチレン、ポリプロピレン、ポリス
チレン、ポリウレタン及びポリ塩化ビニルから選ばれた
有機発泡体より形成されたものである特許請求の範囲第
1項乃至第7項のいずれか1項に記載の電波吸収体。
[Claims] 1. The thickness of the layers laminated on the conductive plate is approximately λ_ε_/_4 (
Here, λ_ε indicates the wavelength of radio waves in the dielectric material) A resistive film obtained by dispersing semiconductive ceramic short fibers in a polymeric material is laminated on the top surface of the dielectric layer. Radio wave absorber. 2. The semiconductive ceramic short fibers have a fiber diameter of 0.1 to 10
The radio wave absorber according to claim 1, which is a semiconductive ceramic short fiber having an aspect ratio of 0 μm, an aspect ratio of 10 to 1000, and a specific volume resistivity of 10^-^3 to 10^2 Ω·cm. 3. The radio wave absorber according to claim 1 or 2, wherein the semiconductive ceramic short fibers are semiconductive alkali titanate short fibers. 4. Claims 1 to 3, wherein the resistive film is a film having a thickness of 15 to 150 μm and containing 20 to 200 parts by weight of semiconductive ceramic short fibers dispersed in 100 parts by weight of a polymeric substance. The radio wave absorber according to any one of paragraphs. 5. The radio wave according to any one of claims 1 to 4, wherein the resistive film is a multilayer film in which the orientation directions of semiconductive ceramic short fibers are laminated so that they are substantially perpendicular to each other. Absorber. 6. The resistive film is a single-layer film in which holes whose major axis is less than half the wavelength of the incoming radio wave are perforated densely in the orientation direction of the semiconductive ceramic short fibers and coarsely in the non-orientation direction. A radio wave absorber according to any one of claims 1 to 4. 7. The method according to any one of claims 1 to 6, wherein a protective layer selected from an insulating organic foam sheet, an organic polymer film, and an organic coating film is laminated on the surface of the resistive film. Radio wave absorber. 8. The dielectric layer according to any one of claims 1 to 7, wherein the dielectric layer is formed of an organic foam selected from polyethylene, polypropylene, polystyrene, polyurethane, and polyvinyl chloride. Radio wave absorber.
JP11823087A 1987-05-15 1987-05-15 Radio wave absorber Pending JPS63283195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11823087A JPS63283195A (en) 1987-05-15 1987-05-15 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11823087A JPS63283195A (en) 1987-05-15 1987-05-15 Radio wave absorber

Publications (1)

Publication Number Publication Date
JPS63283195A true JPS63283195A (en) 1988-11-21

Family

ID=14731446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11823087A Pending JPS63283195A (en) 1987-05-15 1987-05-15 Radio wave absorber

Country Status (1)

Country Link
JP (1) JPS63283195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923953A (en) * 2016-11-10 2019-06-21 麦克赛尔控股株式会社 Electro-magnetic wave absorption piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923953A (en) * 2016-11-10 2019-06-21 麦克赛尔控股株式会社 Electro-magnetic wave absorption piece

Similar Documents

Publication Publication Date Title
Munk et al. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence
Costa et al. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces
Ghosh et al. Perforated lightweight broadband metamaterial absorber based on 3-D printed honeycomb
TWI565135B (en) Electronic device including a patch antenna and photovoltaic layer and related methods
JPH07288393A (en) Electromagnetic wave absorber
CN107317108B (en) Radar radome absorber based on helical structure
CN104201468A (en) X/K-band composite metamaterial and radome-array integrated structure
TW201301661A (en) Electronic device including electrically conductive mesh layer patch antenna and related methods
JPH08111594A (en) Electromagnetic wave absorbing device and method
Alkaraki et al. Performance comparison of simple and low cost metallization techniques for 3D printed antennas at 10 GHz and 30 GHz
TW201305661A (en) Electronic device including a patch antenna and visual display layer and related methods
RU2370866C1 (en) Antiradar coating
Munaga et al. An ultra-thin dual-band polarization-independent metamaterial absorber for EMI/EMC applications
US20230188634A1 (en) Communications tarpaulin
CN113782975A (en) Wave-transparent dielectric plate-resistive film frequency selection surface composite wave-absorbing device
JPH05114813A (en) Radio wave absorber
CN212257701U (en) Dual-band magnetic material wave-absorbing structure
US4752525A (en) Wave absorber and method for making same
US20210119343A1 (en) Capacitive stealth composite structure
Baskey et al. A flexible, ultra thin, frequency-selective-surface based absorber film for the radar cross section reduction of a cubical object
JPS63283195A (en) Radio wave absorber
JPS58210696A (en) Radio wave absorber
JPS6312198A (en) Electric wave absorbing electromagnetic shielding member
Sudhendra et al. A novel 6 to 14 ghz. thin radar absorber based on circular resistive patch fss
Abdulhakim et al. A novel polarization independent wideband circuit analog absorber using crossed loops