JPS6328244B2 - - Google Patents

Info

Publication number
JPS6328244B2
JPS6328244B2 JP56164058A JP16405881A JPS6328244B2 JP S6328244 B2 JPS6328244 B2 JP S6328244B2 JP 56164058 A JP56164058 A JP 56164058A JP 16405881 A JP16405881 A JP 16405881A JP S6328244 B2 JPS6328244 B2 JP S6328244B2
Authority
JP
Japan
Prior art keywords
turbine
chamber
branch
rotary
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56164058A
Other languages
Japanese (ja)
Other versions
JPS5866016A (en
Inventor
Hiroshi Kawaoto
Kazuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBARA KIKI KOGYO KK
Original Assignee
OBARA KIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBARA KIKI KOGYO KK filed Critical OBARA KIKI KOGYO KK
Priority to JP16405881A priority Critical patent/JPS5866016A/en
Publication of JPS5866016A publication Critical patent/JPS5866016A/en
Publication of JPS6328244B2 publication Critical patent/JPS6328244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 この発明は測定精度、耐久性に優れた構造を有
する分流式流量計の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a branch flowmeter having a structure with excellent measurement accuracy and durability.

主流路の内部にオリフイス板を設け、このオリ
フイス板を挾んで主流路の上下流部に亘つた分流
路を設けると共にこの分流路内に所望の回転構造
の流量計測機構を置き分流路内を流れる分流流体
によつて流量計測機構を働かせて主流路を流れる
流体の流量を知ることができるようにした分流式
流量計は古くから知られている。
An orifice plate is provided inside the main channel, and a branch channel is provided that spans the upstream and downstream portions of the main channel by sandwiching this orifice plate, and a flow rate measuring mechanism with a desired rotational structure is placed in this branch channel to allow the flow to flow within the branch channel. 2. Description of the Related Art Divided flowmeters have been known for a long time, in which the flow rate measurement mechanism is activated by a diverted fluid, so that the flow rate of a fluid flowing through a main channel can be determined.

たとえば、1949年(昭和24年)英国ロンドンの
イーアンドエフ、エヌ、スポン会社が発行した
「流量計測と計器」(Flow measurement&
meters)の書籍、または1960年(昭和35年)ポ
ーランドワルシヤワで印刷されパーガモンプレス
会社が発行した「ハイドロメトリ」
(HYDROMETRY)の書物の中には第1図に示
す構造の分流式流量計が記載されている。
For example, in 1949 (Showa 24), ``Flow measurement and instruments'' was published by E&F, N, Spon Ltd. of London, England.
``Hydrometry'', printed in Warsaw, Poland, and published by Pergamon Press Company in 1960 (Showa 35)
(HYDROMETRY) describes a split-flow flowmeter with the structure shown in Figure 1.

すなわち、1は両端にそれぞれ流体輸送管(図
示せず)に接続できる接続部2,3を、またその
ほぼ中央部にオリフイス板取付部4を有する主流
路5と、この主流路5の側方に設けられて前記オ
リフイス取付部4を挾んで主流路5と連通する分
流路6とを具備する筐体、7は前記オリフイス板
取付部4に設けられたオリフイス板、8は回転タ
ービンで、分流路6の中間位置で入口側近くに配
設されている。9は、前記回転タービン8を軸支
できるノズルプレートで、分流路6の開口部近く
に固定させてある。10はノズルプレート9に穿
つたノズル孔で、分流路6に流入する流体によつ
て回転タービン8を回転できるように中心軸の周
囲に放散同形に複数個穿設されている。11は回
転タービン8の回転軸で筐体1の主流路5を貫通
する被覆管12を通つて筐体1と連結されて制動
液を充填させた制動室13内に臨まれて回転制動
板14と連結している。15は回転制動板14の
回転を検出する機械的または電気的などの回転検
出装置である。
That is, 1 has connection parts 2 and 3 at both ends which can be connected to fluid transport pipes (not shown), and a main flow path 5 having an orifice plate attachment part 4 approximately in the center thereof, and a main flow path 5 on the side of this main flow path 5. 7 is an orifice plate provided in the orifice plate mounting portion 4; 8 is a rotary turbine; It is arranged at an intermediate position of the passage 6 near the entrance side. Reference numeral 9 denotes a nozzle plate capable of supporting the rotary turbine 8 , which is fixed near the opening of the branch channel 6 . Reference numeral 10 designates a plurality of nozzle holes drilled in the nozzle plate 9, and a plurality of nozzle holes are drilled in the same shape around the central axis so that the rotary turbine 8 can be rotated by the fluid flowing into the branch channel 6. Reference numeral 11 denotes a rotating shaft of a rotary turbine 8, which is connected to the housing 1 through a cladding tube 12 passing through the main flow path 5 of the housing 1, facing into a brake chamber 13 filled with brake fluid, and a rotary brake plate 14. It is connected with. Reference numeral 15 denotes a mechanical or electrical rotation detection device for detecting the rotation of the rotary brake plate 14.

この上記構成を備える分流式流量計は、矢符方
向に流れる被計測流体が主流路5に流入すると、
設定された分流比の下に一部の流体は分流路6内
に入りノズルプレート9のノズル孔10から噴射
されて後述の如く回転タービン8に流量の2乗と
流体密度に比例するトルクを与える。トルクを与
えられた回転タービン8はその回転軸11が制動
室13内の回転制動板14と連結して回転数の2
乗と制動液の密度に比例する制動トルクを受けて
平衡するので、分流流量は回転数に比例し制動液
密度と流体密度比の平方根に比例する。更にこの
分流々量と主流路流量との関係は上記制動液密度
及び流体密度が一定で、且つ分流路部と主流路部
のオリフイス係数比に変化がなければ、回転ター
ビンの回転数を求めることによつて流量を知るこ
とができる。
In the branch flowmeter having the above configuration, when the fluid to be measured flowing in the direction of the arrow enters the main channel 5,
Under the set division ratio, a part of the fluid enters the division channel 6 and is injected from the nozzle hole 10 of the nozzle plate 9, giving the rotating turbine 8 a torque proportional to the square of the flow rate and the fluid density, as described later. . The rotary turbine 8 to which the torque has been applied has its rotary shaft 11 connected to the rotary brake plate 14 in the brake chamber 13 so that the rotational speed is 2.
Since it is balanced by receiving a braking torque which is proportional to the brake fluid density and the braking fluid density, the divided flow rate is proportional to the rotational speed and proportional to the square root of the braking fluid density and the fluid density ratio. Furthermore, the relationship between the branch flow rate and the main flow rate can be determined by determining the rotation speed of the rotating turbine if the above-mentioned braking fluid density and fluid density are constant and the orifice coefficient ratio of the branch flow path part and the main flow path part does not change. The flow rate can be determined by

このような、古くから知られる分流式流量計に
関して最近第2図および第3図に示される構造の
ものが見受けられる。
Regarding such long-known split-flow flowmeters, structures shown in FIGS. 2 and 3 have recently been seen.

第2図に示すものは特開昭53−75964号(特願
昭51−150313)に開示されており第3図に示すも
のは第2図の構造のものを改良したものとして特
開昭54−42172号(特願昭52−108365)において
公知である。
The structure shown in Fig. 2 is disclosed in JP-A-53-75964 (Japanese Patent Application No. 51-150313), and the structure shown in Fig. 3 is an improved version of the structure shown in Fig. 2. -42172 (Japanese Patent Application No. 52-108365).

つぎに、各図について説明する。なを第1図と
同一の構成は同一の符号で表わし、その説明の詳
細は省く。
Next, each figure will be explained. Components that are the same as those in FIG. 1 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

まづ、第2図に示す分流式流量計は、分流路6
にタービン室16を形成し、分流路6を流れる分
流流体の流れの接線力を受けて回転できるように
タービン室16内に回転タービン8を配設したこ
とを構造上の特徴とする。
First, the branch flowmeter shown in Fig. 2 has a branch flowmeter 6.
The structure is characterized in that a turbine chamber 16 is formed in the turbine chamber 16, and a rotary turbine 8 is disposed within the turbine chamber 16 so as to be able to rotate in response to the tangential force of the flow of the divided fluid flowing through the divided flow path 6.

これに対し、第3図に示す分流式流量計は分流
路6に形成されるタービン室16内に、第1図に
示す構造のノズルプレート9を固着しこのノズル
プレート9で軸支される回転タービン8をノズル
プレート9のノズル孔10を通つて噴射する分流
流体によつて回転させるようにしたことを特徴と
している。
On the other hand, in the split flow meter shown in FIG. 3, a nozzle plate 9 having the structure shown in FIG. The turbine 8 is characterized in that the turbine 8 is rotated by the divided fluid injected through the nozzle holes 10 of the nozzle plate 9.

しかしながら第1図ないし第3図に示されるい
づれの分流式流量計も分流路6を形成する分流部
材aは主流路5を穿つた筐体1とは別体構造であ
り両者の接続個処には必らずパツキンのようなシ
ール部材bの介在を余儀なくしている。
However, in any of the branch type flowmeters shown in FIGS. 1 to 3, the branch member a forming the branch channel 6 has a separate structure from the casing 1 in which the main channel 5 is bored, and the connection point between the two is This necessarily necessitates the intervention of a sealing member b such as a gasket.

また、上述の公知の分流式流量計は概して蒸気
のような高温流体の計測に用いられており、主流
路5と分流路6とが別体構造の部材すなわち筐体
1と分流部材aとがシール部材bを介して区劃さ
れているため接続部に生ずる温度勾配によつて少
流量特性が劣化するという不都合を生ずる。以下
にその理由を述べる。
Further, the above-mentioned known branch flowmeter is generally used for measuring high temperature fluids such as steam, and the main channel 5 and the branch channel 6 are members of separate structure, that is, the housing 1 and the branch member a. Since they are separated through the sealing member b, there is a disadvantage that the low flow rate characteristics are deteriorated due to the temperature gradient that occurs at the connection portion. The reason is explained below.

(i) 前述の如くタービン翼車8の受ける回転トル
クTTは、回転制動板14の受ける制動トルク
TDと等しい。回転トルクTT及び制動トルクTD
は次式であらわされる。
(i) As mentioned above, the rotational torque T T received by the turbine wheel 8 is the braking torque received by the rotary brake plate 14.
Equal to T D. Rotating torque T T and braking torque T D
is expressed by the following equation.

TT=FTrT=KTΓGq2・γT ……() TD=FD・rD=KDΓWN2・γD ……() rT:タービン翼車ノ
ズル部半径 rD:制動翼平均半径 こゝで KT:比例定数 FT:タービン翼車駆動力 KD:比例定数 FD:制動力 ΓG:流体密度 ΓW:制動液密度 q:分流流量 N:タービン翼車
回転数 K:定 数 ()=()であるから ()式より分流路6を通過する流量は、制
動室13の流体密度と測定流体の密度の比の平
方根と回転制動板14の回転数に比例すること
が分る。
T T =F T r T =K T Γ G q 2・γ T ...() T D =F D・r D =K D Γ W N 2・γ D ...() r T : Turbine wheel nozzle Part radius r D : Average radius of the brake blade where K T : Proportional constant F T : Turbine wheel driving force K D : Proportional constant F D : Braking force Γ G : Fluid density Γ W : Braking fluid density q : Divided flow rate N: Turbine wheel rotation speed K: Constant Because () = () From equation (), it can be seen that the flow rate passing through the branch channel 6 is proportional to the square root of the ratio of the fluid density in the brake chamber 13 to the density of the measured fluid and the rotational speed of the rotary brake plate 14.

(ii) つぎに主流路5の流量Qpと分流路6の流量
qは、 但しαp、αg:主流路5、分流路6のオリフイス
係数 Kp、Kq:主流路5、分流路6の蒸気膨脹係数
も通過面積の積 したがつて流体密度ΓG一定であれば Qp/g=αoKo/αgKg=一定(但ΓGが一定)……(
) で示される。
(ii) Next, the flow rate Q p of the main flow path 5 and the flow rate q of the branch flow path 6 are: However, α p , α g : Orifice coefficients of the main flow path 5 and branch flow path 6 K p , K q : Steam expansion coefficients of the main flow path 5 and branch flow path 6 are also products of passing areas. Therefore, if the fluid density Γ G is constant Q p /g=αoKo/α g K g = constant (However, Γ G is constant)...(
).

上記(i)(ii)で示されるように分流式流量計では、
精度良く計量するために()式、()式が正
しく適用されていなければならない。
As shown in (i) and (ii) above, in a split flow meter,
For accurate weighing, formulas () and () must be applied correctly.

しかし、前述した従来の分流式流量計では分流
部材aと主流路5の筐体1とはパツキンなどのシ
ール部材bを介して接続しているので、シール部
材bの熱伝導率は悪く分流部材aを通過する流体
の温度降下は避けることができない。したがつて
エンタルピが下り、乾き度が小さくなり比容積が
小さくなるので分流も小さくなる。実験によると
室温26℃に於ける5.5Kg/cm2の飽和蒸気はパツ
キンの有無による100%流量では主流路部と分流
部の温度差はなかつたが30%流量附近では約2.5
分流部が低かつた。その結果第4図に示すように
流量が小流域になると測定精度が点線に示すよう
に急速に低下する不都合があつた。
However, in the conventional split flow meter described above, the split flow member a and the housing 1 of the main flow path 5 are connected via the seal member b such as a packing, so the heat conductivity of the seal member b is poor and the flow split member A temperature drop in the fluid passing through a is unavoidable. Therefore, the enthalpy decreases, the degree of dryness decreases, the specific volume decreases, and the shunt flow also decreases. According to experiments, for saturated steam of 5.5 kg/cm 2 at a room temperature of 26°C, there was no temperature difference between the main flow section and the branch section at 100% flow rate with and without packing, but around 30% flow rate there was a temperature difference of about 2.5
The diversion section was low. As a result, as shown in FIG. 4, when the flow rate becomes small, the measurement accuracy rapidly decreases as shown by the dotted line.

この発明は、従来の叙上の点に着目して成され
たことを一つの特徴とするもので、主流路を備え
た筐体構造と一体的に分流路を形成せしめパツキ
ンなどのシール部材の介在による熱伝導の悪化を
防ぎ第4図の実線に示すような流量が小さい場合
でも流量精度の高い分流式の流量計を得ることを
目的とするものである。
One of the characteristics of this invention is that it has been achieved by paying attention to the points mentioned above, and it is possible to form a branch channel integrally with a housing structure provided with a main channel, and to prevent sealing members such as packing. It is an object of the present invention to provide a branch type flowmeter that prevents deterioration of heat conduction due to interference and has high flow rate accuracy even when the flow rate is small as shown by the solid line in FIG.

また、従来の前述した分流式流量計を精査する
と回転タービン8は分流路6内に制動室13とは
別体構成によつて配設された構造を備えている。
換言すれば筐体1に対し制動室13は回転タービ
ン8の取付装置とは別個の作業行程を経て取付け
られるので、制動室13の回転制動板14と回転
タービン8とを回転軸11で一体的に固着する作
業が必要で、正確な芯出しを得ることが組立製作
上甚だ困難であつた。また、一旦正確に取付けて
あつても長期間の使用によつて芯出し構造が偏倚
しこれによつて正確な計測を行えず軸受の摩耗も
早くなるという不都合もあつた。
Further, when examining the conventional split flow meter described above, the rotary turbine 8 has a structure in which the rotary turbine 8 is disposed in the split flow path 6 in a separate structure from the brake chamber 13.
In other words, since the brake chamber 13 is attached to the housing 1 through a separate work process from the attachment device for the rotary turbine 8, the rotary brake plate 14 of the brake chamber 13 and the rotary turbine 8 are integrated by the rotary shaft 11. It was extremely difficult to obtain accurate centering during assembly and manufacturing. Furthermore, even if the bearing is installed accurately, the centering structure may become biased due to long-term use, making it impossible to perform accurate measurements and causing the bearing to wear more quickly.

この発明は従来の叙上の点にも着目して成され
たもので、回転制動板を含む制動室に回転軸と回
転タービンと前記回転軸を貫通させた被覆管とこ
の被覆管に取付けられるノズルプレートを含む保
持体とを一体的に組み合わせてタービン計測ユニ
ツト体を構成せしめ、このタービン計測ユニツト
体を分流路の一側から回転タービンとノズルプレ
ート側を挿通固定されて筐体と一体化できるよう
にして回転タービンと回転制動板と回転軸とを正
確な芯出し状態で確保すると共に精度劣化を防い
で耐久性の優れた新規な流量計を得ることにあ
る。
This invention was made by paying attention to the points mentioned above, and includes a brake chamber including a rotary brake plate, a rotary shaft, a rotary turbine, a cladding tube through which the rotary shaft passes, and a cladding tube attached to the cladding tube. The turbine measurement unit body is constructed by integrally combining the holder including the nozzle plate, and the turbine measurement unit body can be integrated with the housing by inserting and fixing the rotating turbine and the nozzle plate side from one side of the branch channel. The purpose of this invention is to obtain a novel flowmeter with excellent durability by ensuring accurate centering of a rotating turbine, a rotating brake plate, and a rotating shaft, and preventing deterioration of accuracy.

以下にこの発明の二実施例を第5図以降につい
て説明する。なを従来例と同一構成は同一符号で
表わしその説明の詳細は省く。
Two embodiments of this invention will be described below with reference to FIG. 5 and subsequent figures. Components that are the same as those of the conventional example are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

17はタービン計測ユニツト体Aのフランジ部
で、主流路5と一体構造で穿設された分流路6の
タービン室16に通ずる開口部18と当接させパ
ツキン19を介して筐体1にビスなどの止具20
で止着できるようになつている。
Reference numeral 17 designates a flange portion of the turbine measuring unit body A, which is brought into contact with an opening 18 leading to the turbine chamber 16 of a branch channel 6 formed integrally with the main channel 5, and is attached to the housing 1 via a gasket 19 with a screw or the like. stopper 20
It can be fastened with.

ところで、タービン計測ユニツト体Aは、制動
液を充填させた回転制動板14を配設した制動室
13と、この回転制動板14の回転を検出する適
宜構成の回転検出装置15と、前記回転制動板1
4に下端が回動自在に支承された回転軸11とこ
の回転軸11が貫通して上端に固着された回転タ
ービン8と、この回転タービン8の直下に配設さ
れてノズル孔10を散設したノズルプレート9と
前記回転軸11を保護する短尺な被覆管12と、
前記ノズルプレート9の周縁より上方に突設して
回転タービン8の外周を保護すると共にタービン
室16の内壁と略々大きさの等しい周壁部21
と、この周壁部21の外周に嵌挿されたOリング
22とによつて一体的構造を備える。なを、制動
室13に至る外周上部には従来のように放熱構造
を必要とする蒸気などを計測する場合には放熱フ
イン23を設けるなど所望の筐体構造を備える。
By the way, the turbine measurement unit body A includes a brake chamber 13 in which a rotary brake plate 14 filled with brake fluid is disposed, a rotation detection device 15 configured as appropriate for detecting the rotation of the rotary brake plate 14, and a rotation detecting device 15 configured to detect the rotation of the rotary brake plate 14. Board 1
4, a rotary shaft 11 whose lower end is rotatably supported, a rotary turbine 8 through which the rotary shaft 11 passes and is fixed to the upper end, and a nozzle hole 10 disposed directly below the rotary turbine 8. a short cladding tube 12 that protects the nozzle plate 9 and the rotating shaft 11;
A peripheral wall portion 21 that protrudes upward from the periphery of the nozzle plate 9 to protect the outer periphery of the rotating turbine 8 and is approximately equal in size to the inner wall of the turbine chamber 16.
and an O-ring 22 fitted onto the outer periphery of this peripheral wall portion 21 to provide an integral structure. Furthermore, the upper part of the outer periphery leading to the brake chamber 13 is provided with a desired casing structure, such as a heat dissipation fin 23 when measuring steam or the like that requires a heat dissipation structure as in the past.

つぎに、主流路5を備えかつこの主流路5に連
通する分流路6を一体的に設けた筐体には、第5
図および第6図に示す実施例の場合と第7図およ
び第8図に示す実施例の場合との二種類の筐体1
a,1bが示されている。一方の筐体1aは、主
流路5と分流路6とが平行に穿たれかつタービン
室16も同様に主流路5と平行に設けられた構成
を備えるが、他方の筐体、1bは主流路5とター
ビン室16とが90度位相を異にしこのタービン室
16の上下部に主流路5と連通する分流路6が開
口した構成を備える。
Next, in the case that is provided with the main flow path 5 and is integrally provided with a branch flow path 6 that communicates with the main flow path 5, a fifth
Two types of casings 1: the embodiment shown in Figs. 6 and 6, and the embodiment shown in Figs. 7 and 8.
a and 1b are shown. One housing 1a has a configuration in which the main flow path 5 and the branch flow path 6 are bored in parallel, and the turbine chamber 16 is similarly provided in parallel to the main flow path 5, whereas the other case 1b has a main flow path 6. 5 and a turbine chamber 16 are out of phase by 90 degrees, and branch passages 6 communicating with the main passage 5 are opened at the upper and lower portions of the turbine chamber 16.

主流路5に対しタービン室16の形成が平行で
あるか90度異なつているかによつてタービン室1
6内に配設される回転タービン8と、この回転タ
ービン8を一体に備えるタービン計測ユニツト体
Aの取付位置が変わるので、配管に応じて両実施
例の流量計を適宜選択できる。
The turbine chamber 1 depends on whether the formation of the turbine chamber 16 is parallel or 90 degrees different from the main flow path 5.
Since the mounting positions of the rotary turbine 8 disposed in the rotary turbine 6 and the turbine measurement unit body A integrally provided with the rotary turbine 8 are changed, the flowmeters of both embodiments can be appropriately selected depending on the piping.

なを、図において符号24は回転軸11の軸
承、25は流量指示計をそれぞれ示す。
In the figure, reference numeral 24 indicates a bearing for the rotating shaft 11, and reference numeral 25 indicates a flow rate indicator.

叙上の構成に成るので、回転タービン8、制動
室13、被覆管12、ノズルプレート9などで一
体構造となつたタービン計測ユニツト体Aを筐体
1a,1bの分流路6に設けたタービン室16の
開口部18よりノズルプレート9の周壁部21を
そのOリング22をタービン室16の内壁に摺接
させながら、上部を挿し込み、フランジ部17を
開口部18の端面と一致させ、パツキン19を介
して止具20によつてきわめて簡単に取付けるこ
とができる。
Since the configuration is as described above, the turbine measurement unit body A, which has an integrated structure including the rotating turbine 8, the brake chamber 13, the cladding tube 12, the nozzle plate 9, etc., is installed in the turbine chamber in the branch passage 6 of the housings 1a and 1b. While sliding the O-ring 22 of the peripheral wall 21 of the nozzle plate 9 on the inner wall of the turbine chamber 16, insert the upper part of the nozzle plate 9 through the opening 18 of the nozzle plate 16, aligning the flange 17 with the end surface of the opening 18, and insert the gasket 19. It can be attached very simply by means of the stopper 20 via the .

このようにして、タービン室16内に沿つてタ
ービン計測ユニツト体Aが取付けられるが、回転
タービン8はタービン室16内に嵌挿される前に
予じめタービン計測ユニツト体Aを組立製作する
過程で正確な芯出しを行うことができるので、筐
体1への組立作業時にこのような芯出調整をする
必要がない。また分流路6は主流路5と一体構造
の筐体1a,1bに設けてあるので分流路6を流
れる分流流体が従来のようなシール部材の接続に
よつて伴う熱伝導率の悪化を軽減できる。
In this way, the turbine measurement unit body A is installed along the inside of the turbine chamber 16, but before the rotary turbine 8 is inserted into the turbine chamber 16, the turbine measurement unit body A is assembled and manufactured in advance. Since accurate centering can be performed, there is no need to perform such centering adjustment during assembly work to the housing 1. In addition, since the branch channel 6 is provided in the housings 1a and 1b that are integrally structured with the main channel 5, the deterioration in thermal conductivity of the branch fluid flowing through the branch channel 6 that is caused by the connection of a conventional sealing member can be reduced. .

なを、この発明では分流路6ではなくその中間
に形成されるタービン室16の一側にタービン計
測ユニツト体Aを挿着するための開口部18が形
成され、パツキン19を介してタービン室16と
同一方向に接続させてある。
However, in this invention, an opening 18 for inserting the turbine measurement unit A is formed on one side of the turbine chamber 16 formed in the middle of the branch channel 6 instead of the branch channel 6, and the turbine chamber 16 is inserted through a packing 19. are connected in the same direction.

制動室内の制動液の密度変化は小さくすること
が望ましく、パツキン19を介して計測ユニツト
体Aを挿着することによることにより制動室Aへ
の熱伝達を小さくするので制動液の温度上昇を妨
げ、密度変化を小さくし、望ましい結果となる。
It is desirable to minimize the change in the density of the brake fluid in the brake chamber, and by inserting the measurement unit A through the packing 19, the heat transfer to the brake chamber A is reduced, which prevents the temperature of the brake fluid from rising. , the density change is reduced, which is the desired result.

つぎに、これらの実施例に用いられているオリ
フイス7の構成について説明する。すなわち、筐
体1の主流路5に通ずる開口部26を穿ち、該開
口部26よりオリフイス7を固着した取付板27
を挿通して所望の主流路5に設けた取付部4に嵌
合状態で固定し、筐体1の外部両側から斜め方向
に挿通させた止杆28,28により取付板27の
周縁を固定させると共に開口部26に蓋板29を
止着閉塞して構成される。
Next, the configuration of the orifice 7 used in these embodiments will be explained. That is, the mounting plate 27 has an opening 26 communicating with the main flow path 5 of the casing 1 and has the orifice 7 fixed through the opening 26.
is inserted into the mounting portion 4 provided in the desired main flow path 5 and fixed in a fitted state, and the peripheral edge of the mounting plate 27 is fixed by the locking rods 28, 28 inserted diagonally from both sides of the outside of the housing 1. At the same time, a cover plate 29 is fixed and closed to the opening 26.

したがつて、オリフイス7は、被計測流体の種
類、流速などに応じて他の口径の異なるオリフイ
ス7を簡単に交換取付けられると共に清拭などを
簡単に行うことができる。
Therefore, the orifice 7 can be easily replaced with another orifice 7 having a different diameter depending on the type of fluid to be measured, flow velocity, etc., and can be easily cleaned.

なを、このオリフイス構成は本出願人が既に開
発した実願昭56−118690号の考案と同一である。
This orifice configuration is the same as that proposed in Utility Application No. 118690/1983, which was already developed by the present applicant.

以上、この発明について実施例を記述したが上
述の実施例の構成に何等限定されるものではな
い。
Although embodiments of the present invention have been described above, the present invention is not limited to the configuration of the embodiments described above.

この発明は叙上のように、主流路に対しオリフ
イスを挾んで形成される分流路が、前記主流路と
一体構造の筐体に設けられ前記分流路の中間に形
成されるタービン室の開口部を介して一体構造の
タービン計測ユニツト体を嵌挿し、フランジ部で
パツキンと共に止具で固着するようにしたもので
あるので、飽和蒸気、高温蒸気などの計測を有効
に行うことができる。
As described above, the present invention is characterized in that a branch passage formed with an orifice interposed between the main passage is provided in a housing integral with the main passage, and an opening of a turbine chamber is formed in the middle of the branch passage. Since the integrated turbine measurement unit body is inserted through the flange portion and fixed with a stopper together with the gasket, it is possible to effectively measure saturated steam, high temperature steam, etc.

また、分流路と主流路との分岐点にシール部分
がないので熱伝導率の悪化を軽減してエンタルピ
の下がるのを防ぎ同時に比容積の低下を防いで少
流量域での測定精度を確保して、測定流量範囲を
拡大できる効果を有する。
In addition, since there is no seal part at the branch point between the branch channel and the main channel, it reduces the deterioration of thermal conductivity and prevents the enthalpy from decreasing.At the same time, it prevents the specific volume from decreasing and ensures measurement accuracy in the low flow range. This has the effect of expanding the measurement flow range.

さらに、この発明によれば分流路のタービン室
には、予じめ芯出して正確に回転タービンを設置
したタービン計測ユニツト体を挿通固着するだけ
で主流路の流れの方向とタービン室の方向とが
種々異なる形式の筐体の流体機器に、簡単に取付
けられるので、組立製作が容易で作業性の向上に
役立つと共に精度低下を伴うことがなく耐久性に
優れる。
Furthermore, according to the present invention, the direction of flow in the main channel and the direction of the turbine chamber can be determined simply by inserting and fixing the turbine measuring unit body, in which the rotating turbine is accurately installed with centering in advance, into the turbine chamber of the branch channel. Since it can be easily attached to fluid equipment with various types of casings, it is easy to assemble and manufacture, which helps improve work efficiency, and has excellent durability without deteriorating accuracy.

また、この発明は、飽和水蒸気に限らず、他の
ガス蒸気、液体の計量に用いることができると共
に、タービン計測ユニツト体の構成は、基本的に
回転タービンと回転軸とこの回転軸が接続される
制動室と回転検出装置とを備える一体構造であれ
ば良く、他の外形構造、大きさ、附属部材の有無
などは従来一般に用いられている各種のものを自
由に選択使用できることは勿論である。
Furthermore, the present invention can be used not only for measuring saturated steam but also for measuring other gas vapors and liquids, and the turbine measuring unit is basically configured such that a rotating turbine, a rotating shaft, and this rotating shaft are connected. It is sufficient to have an integrated structure that includes a braking chamber and a rotation detection device, and it goes without saying that the other external structure, size, presence or absence of attached parts, etc. can be freely selected from various conventionally used ones. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図イ,ロおよび第3図は従来例の
数例を示す流量計の説明断面図、第4図は流量%
と計測精度との関係を示すグラフ、第5図および
第6図はこの発明に係る流量計の一実施例を示す
一部切欠正面図と一部切欠側面図、第7図および
第8図はこの発明の他の実施例を示す一部切欠正
面図と一部切欠側面図、第9図はタービン計測ユ
ニツト体の要部の拡大切欠側面図、第10図は同
上平面図、第11図はオリフイス取付構造を示す
要部断面図である。 1,1a,1b……筐体、5……主流路、6…
…分流路、7……オリフイス板、8……回転ター
ビン、9……ノズルプレート、10……ノズル
孔、11……回転軸、12……被覆管、13……
制動室、14……回転制動板、15……回転検出
装置、16……タービン室、17……フランジ
部、18……開口部、21……周壁部、22……
Oリング、23……放熱フイン、a……分流部
材、b……シール部材、A……タービン計測ユニ
ツト体。
Figure 1, Figure 2 A, B, and Figure 3 are explanatory cross-sectional views of flowmeters showing several examples of conventional examples, and Figure 4 is the flow rate percentage.
5 and 6 are a partially cutaway front view and a partially cutaway side view showing an embodiment of the flowmeter according to the present invention, and FIGS. 7 and 8 are graphs showing the relationship between the flowmeter and the measurement accuracy. A partially cutaway front view and a partially cutaway side view showing another embodiment of the present invention, FIG. 9 is an enlarged cutaway side view of the main part of the turbine measuring unit body, FIG. 10 is a plan view of the same, and FIG. 11 is a partially cutaway side view. FIG. 3 is a sectional view of a main part showing an orifice mounting structure. 1, 1a, 1b...housing, 5...main flow path, 6...
...Division channel, 7... Orifice plate, 8... Rotating turbine, 9... Nozzle plate, 10... Nozzle hole, 11... Rotating shaft, 12... Cladding tube, 13...
Braking chamber, 14... Rotating brake plate, 15... Rotation detection device, 16... Turbine chamber, 17... Flange section, 18... Opening section, 21... Surrounding wall section, 22...
O-ring, 23... Heat dissipation fin, a... Diversion member, b... Seal member, A... Turbine measurement unit body.

Claims (1)

【特許請求の範囲】 1 オリフイスを備えた主流路に対し、前記オリ
フイスを挾んで主流路の上流側と下流側に亘つて
連通する分流路を設け、この分流路を流れる分流
流体により分流路に配設した回転タービンを回転
させると共にこの回転タービンと回転軸で接続さ
れる制動室内に配設された回転制動板により前記
回転タービンの回転トルクと制動トルクとを平衡
させることによつて流量に比例した回転を求め、
上記回転を回転検出装置で取り出し主流路を流れ
る流体の流量を知ることができるようにした流量
計において、主流路と分流路とを一体構造の筐体
に設けかつ分流管の中間にはタービン室を設ける
と共にこのタービン室の一側に開口部を穿ち、回
転タービン、ノズルプレート、回転軸、被覆管、
制動室および回転検出装置などを一体に備えたタ
ービン計測ユニツト体を拝嵌固着してタービン室
内に回転タービンをノズルプレートと共に配設で
きるようにして成る流量計。 2 ノズルプレートは、その周壁部にOリングを
嵌合してタービン室の内壁と当接させて成る特許
請求の範囲第1項記載の流量計。 3 主流路に対しタービン室中心軸を平行位置に
一体に設けかつこのタービン室と同一方向にター
ビン計測ユニツト体を設けて成る特許請求の範囲
第1項記載の流量計。 4 主流路に対しタービン室中心軸を90度異なら
せた位置に一体に設け、かつこのタービン室と同
一方向にタービン計測ユニツト体を設けて成る特
許請求の範囲第1項記載の流量計。
[Scope of Claims] 1. A branch channel is provided for a main channel provided with an orifice and communicates with the upstream and downstream sides of the main channel by sandwiching the orifice, and the branch fluid flowing through the branch channel is connected to the branch channel. Proportional to the flow rate by rotating the installed rotary turbine and balancing the rotational torque of the rotary turbine with the braking torque using a rotary brake plate installed in a brake chamber connected to the rotary turbine through a rotating shaft. Find the rotation,
In a flowmeter in which the rotation is detected by a rotation detection device and the flow rate of the fluid flowing through the main channel can be determined, the main channel and the branch channel are provided in an integrated housing, and a turbine chamber is located in the middle of the branch channel. At the same time, an opening is bored on one side of this turbine chamber, and the rotating turbine, nozzle plate, rotating shaft, cladding tube,
A flowmeter comprising a turbine measurement unit integrally equipped with a brake chamber, a rotation detection device, etc., which is firmly fitted into the turbine chamber so that a rotating turbine can be disposed together with a nozzle plate in the turbine chamber. 2. The flowmeter according to claim 1, wherein the nozzle plate has an O-ring fitted to its peripheral wall to abut against the inner wall of the turbine chamber. 3. The flowmeter according to claim 1, wherein the turbine chamber central axis is integrally provided in a position parallel to the main flow path, and a turbine measuring unit is provided in the same direction as the turbine chamber. 4. The flowmeter according to claim 1, wherein the turbine chamber is integrally provided at a position where the central axis of the turbine chamber is different from the main flow path by 90 degrees, and a turbine measuring unit is provided in the same direction as the turbine chamber.
JP16405881A 1981-10-16 1981-10-16 Flowmeter Granted JPS5866016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16405881A JPS5866016A (en) 1981-10-16 1981-10-16 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16405881A JPS5866016A (en) 1981-10-16 1981-10-16 Flowmeter

Publications (2)

Publication Number Publication Date
JPS5866016A JPS5866016A (en) 1983-04-20
JPS6328244B2 true JPS6328244B2 (en) 1988-06-07

Family

ID=15785978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16405881A Granted JPS5866016A (en) 1981-10-16 1981-10-16 Flowmeter

Country Status (1)

Country Link
JP (1) JPS5866016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693099A (en) * 2020-06-24 2020-09-22 江苏杰创流量仪表有限公司 Anticorrosive type orifice flowmeter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442172A (en) * 1977-09-10 1979-04-03 Sanfuremu Akiyumu Kk Flow meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442172A (en) * 1977-09-10 1979-04-03 Sanfuremu Akiyumu Kk Flow meter

Also Published As

Publication number Publication date
JPS5866016A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
JP6093177B2 (en) Fluid flow meter
AU700116B2 (en) Vortex flow meter detector and vortex flow meter
EP0277121A1 (en) Fluid flowmeter.
EP0137623B1 (en) A flowmeter
US6923074B2 (en) Ball valve with flow-rate gauge incorporated directly in the ball
JPS6335924B2 (en)
JPS59109820A (en) Device for measuring flow of fluid
JPS6328244B2 (en)
JPH09101186A (en) Pitot-tube type mass flowmeter
US3518880A (en) Metering apparatus
FI78781C (en) MAETANORDNING FOER MAETNING AV STROEMNING OCH / ELLER DESS EGENSKAPER.
JPS6328245B2 (en)
US4741216A (en) Split flowtube for molten metal magnetic flowmeter
TWI809609B (en) Pipe fitting device capable of detecting physical changes of fluid and flow guide thereof
US3552208A (en) Impeller-type flowmeter
SU1095883A3 (en) Turbine flow meter
JPS622496Y2 (en)
JPS6326725Y2 (en)
JPS622495Y2 (en)
JPH0219697Y2 (en)
JP2582961B2 (en) Flow sensor bypass unit
JPH08145743A (en) Turbine flowmeter
JPS622490Y2 (en)
JP2582010Y2 (en) Area flow meter
JPS5815869Y2 (en) flow meter