JPS63281633A - Ultrasonic endoscopic apparatus - Google Patents

Ultrasonic endoscopic apparatus

Info

Publication number
JPS63281633A
JPS63281633A JP11640587A JP11640587A JPS63281633A JP S63281633 A JPS63281633 A JP S63281633A JP 11640587 A JP11640587 A JP 11640587A JP 11640587 A JP11640587 A JP 11640587A JP S63281633 A JPS63281633 A JP S63281633A
Authority
JP
Japan
Prior art keywords
signal
coil
ultrasonic
magnetic
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11640587A
Other languages
Japanese (ja)
Inventor
Kazunori Shionoya
塩野谷 和則
Hidetsugu Ikuta
英嗣 生田
Koji Taguchi
耕司 田口
Shinichi Imaide
慎一 今出
Tatsuo Nagasaki
達夫 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11640587A priority Critical patent/JPS63281633A/en
Publication of JPS63281633A publication Critical patent/JPS63281633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To prevent the generation of the noise caused by a contact system and to perform the transmission of a signal in spite of a small scale, by forming a signal transmitting means for converting the signal received by a rotationally driven ultrasonic vibrator to a magnetic signal and converting said magnetic signal to an electric signal in a non-contact system by utilizing galvanomagnetic effect. CONSTITUTION:A magnetic resistor element 17 showing galvanomagnetic effect is fixed in opposed relation to a coil 10 on the center axis of said coil 10 and an amplifying circuit 18 is provided behind said element 17 and amplifies a receiving signal to transmit the same to an external apparatus 4. In the ultrasonic endoscopic apparatus thus constituted, the signal received by an ultrasonic vibration part 6 is transmitted to a coaxial cable 16 and amplified by an amplifier 11 to enter the coil 10. The magnetic field of the coil 10 is detected by the MR element 1 to be converted to an electric signal which is, in turn, transmitted to the external apparatus 4 through the amplifying circuit 18. Herein, the element converting the magnetic field to the electric signal is put to practical use by the use of the MR element regenerating high density magnetic recording such as VTR and, since the size of the element is small, the apparatus can be made more small-scale in the case used in an ultrasonic endoscopic apparatus.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は回転駆動される超音波振動子の受信信号の伝達
を電流磁気効果を用いた信号伝達手段で行うようにした
超音波内視鏡装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic endoscope in which a received signal of a rotationally driven ultrasonic transducer is transmitted by a signal transmitting means using a current magnetic effect. Regarding equipment.

[従来の技術] 従来の超音波内視鏡装置は、第6図にその電気的構成を
示すように内視鏡先端部に組込まれた超音波ffi動子
51をフレキシブルシャフト等により回転走査する機械
式ラジアル走査方式のものにおいては、前記振動子51
に接続された信号1;!52で伝送した信号をブラシ接
点53.54を介して一方は接地し、他方は外部の受信
表示vt置55と、ノイズカット用のダイオード56を
介して送信パルス発生回路57に導いていた。
[Prior Art] A conventional ultrasonic endoscope device rotates and scans an ultrasonic ffi element 51 built into the tip of an endoscope using a flexible shaft, as shown in FIG. 6, the electrical configuration of which is shown. In the mechanical radial scanning type, the vibrator 51
Signal 1 connected to ;! One side of the signal transmitted by the terminal 52 is grounded through brush contacts 53 and 54, and the other side is led to a transmission pulse generation circuit 57 through an external reception display VT device 55 and a noise cutting diode 56.

このようにブラシ接点53.54を用いた超音波内祝鏡
装置では回転中にブラシ接点53.54が瞬間的に離れ
たり、ブラシを構成する接点間の接触電位差の変化答に
より、受信した微弱な超音波信号に雑音が混入し、Ii
層像を表示する際にノイズとなって現われ、断層像を見
苦しくする欠点があった。又、特開昭58−41539
号に量水されているようにモータを先端部に収納して、
その回転軸に振動子を取付けたものもあるが第6図に示
すものと同様の欠点がある。
In this way, in the ultrasonic endoscope device using the brush contacts 53, 54, the brush contacts 53, 54 may be momentarily separated during rotation, or due to changes in the contact potential difference between the contacts that make up the brush, the received weak Noise is mixed into the ultrasound signal, and Ii
This has the disadvantage that it appears as noise when displaying a layered image, making the tomographic image difficult to see. Also, JP-A-58-41539
Store the motor at the tip as shown in the issue,
There are also devices in which a vibrator is attached to the rotating shaft, but they have the same drawbacks as the one shown in FIG.

このため、上記欠点を軽減するものとして第7図に示す
ような従来例がある。
For this reason, there is a conventional example shown in FIG. 7 that alleviates the above drawbacks.

即ち、破線で示す回転される側に前置増幅器58を設け
て振動子51の受信超音波信号を増幅する。この増幅器
58も振動子51の回転と同期して回転するため電流を
供給するブラシ接点59、増幅器58の出力信号を外部
に出力するためのブラシ接点60、コモン信号用のブラ
シ接点61、送信パルス印加用のブラシ接点62が必要
となる。
That is, a preamplifier 58 is provided on the rotated side shown by the broken line to amplify the ultrasonic signal received by the transducer 51. This amplifier 58 also rotates in synchronization with the rotation of the vibrator 51, so there is a brush contact 59 that supplies current, a brush contact 60 that outputs the output signal of the amplifier 58 to the outside, a brush contact 61 for common signal, and a transmission pulse. A brush contact 62 for application is required.

なお、ノイズカット用のダイオード56もやはり回転部
側に設けられている。このように構成された超音波内視
鏡装置では受信超音波信号を一旦増幅した模ブラシ接点
60を通づので、ブラシ接点60で発生するノイズ電圧
が第3図の符号53のブラシ接点でのノイズ電圧と同等
ならば、第6図に示した構成よりもS/Nの向上が期待
できる。
Note that the noise cutting diode 56 is also provided on the rotating part side. In the ultrasonic endoscope device configured in this way, the received ultrasonic signal is passed through the simulated brush contact 60 which has been amplified once, so that the noise voltage generated at the brush contact 60 is transmitted to the brush contact 53 in FIG. If the noise voltage is the same, an improvement in S/N can be expected than in the configuration shown in FIG.

[発明が解決しようとする問題点] しかしながら今度は電源用の直流電流が、信号電流に重
畳してコモン信号ラインに設けられたブラシ接点61に
流れるので、この直流電流によりブラシノイズが問題と
なり、やはり表示画像に雑音が現れる欠点がある。
[Problems to be Solved by the Invention] However, since the DC current for the power supply is superimposed on the signal current and flows through the brush contact 61 provided on the common signal line, brush noise becomes a problem due to this DC current. However, there is a drawback that noise appears in the displayed image.

このため、本出願人は、特開昭61−103436号に
おいて、ロータリトランスを用いて信号の伝達を行う関
連技術例を提案した。この関連技術例は、非接触であり
、上記欠点を解決しているが、現状では小型化が難しい
。このため、より小型化できて同様の機能を有するもの
が望まれる。
For this reason, the present applicant proposed a related technology example in which signals are transmitted using a rotary transformer in Japanese Patent Laid-Open No. 103436/1983. Although this related technology example is non-contact and solves the above-mentioned drawbacks, it is difficult to miniaturize it at present. Therefore, something that can be made smaller and has similar functions is desired.

本発明は上述した点にかんがみてなされたもので、回転
駆動される超音波振動子で受信した信号を非接触で伝達
できることができると共に、小型化にも適した超音波内
視鏡装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and provides an ultrasonic endoscope device that can transmit signals received by a rotationally driven ultrasonic transducer in a non-contact manner and is also suitable for miniaturization. The purpose is to

[問題点を解決する手段及び作用] 本発明では回転駆動される超音波振動子で受信した信号
を磁気信号に変換し、この磁気信号を電流磁気効果を利
用して非接触で電気信号に変換する信号伝達手段を形成
することによって、接触方式のノイズの発生がなく且つ
小型で信号の伝達を行えるようにしている。
[Means and effects for solving the problem] In the present invention, a signal received by a rotationally driven ultrasonic transducer is converted into a magnetic signal, and this magnetic signal is converted into an electric signal without contact using the current magnetic effect. By forming the signal transmitting means, it is possible to transmit signals in a small size and without the generation of noise in the contact method.

[実施例コ 以下、図面を参照して本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図は本発明の第1実施例の超音波内視鏡装置を示す
FIG. 1 shows an ultrasonic endoscope apparatus according to a first embodiment of the present invention.

第1図に示すように第1実施例の超音波内視鏡装置1は
超音波送受信手段を設けた超音波内視鏡2と、この超音
波内視Ii2から同軸ケーブル3を介して接続された外
部装置4とから構成されている。上記超音波内視鏡2は
体腔内に挿入できるように細径にされた挿入部5の先端
部に超音波振動子6が配置され、そのフレキシブルシャ
フト7の後端は副操作部8内の回動部9と接続している
As shown in FIG. 1, the ultrasonic endoscope apparatus 1 of the first embodiment is connected to an ultrasonic endoscope 2 provided with ultrasonic transmitting/receiving means, and this ultrasonic endoscope Ii2 via a coaxial cable 3. and an external device 4. In the ultrasonic endoscope 2, an ultrasonic transducer 6 is disposed at the tip of an insertion section 5 which has a small diameter so that it can be inserted into a body cavity, and the rear end of the flexible shaft 7 is inserted into a sub-operation section 8. It is connected to the rotating part 9.

上記回動部9の後端にはコイル10が配置されており、
回動部9には振動子駆動アンプ11、送信部12、送受
信切換部13等が収納されている。
A coil 10 is arranged at the rear end of the rotating part 9,
The rotating section 9 houses a vibrator driving amplifier 11, a transmitting section 12, a transmitting/receiving switching section 13, and the like.

フレキシブルシャフト7と回動部9には、モータ14の
回転動力がベルト15を介して伝達され、超音波振動子
6、コイル10を回転駆動する構成となっている。
The rotational power of the motor 14 is transmitted to the flexible shaft 7 and the rotating part 9 via a belt 15, and the ultrasonic transducer 6 and the coil 10 are rotationally driven.

上記超音波振動子6は、送信部12から高周波パルスが
印加されることによって、超音波が励振され、回転駆動
と共に適宜の角度範囲にわたり、放射状に超音波が出射
され、機械式ラジアル走査を行う。しかして、対象物の
音響インピーダンスの異る境界面で反射され、振動子5
にて受信される。この振動子6により電気信号に変換さ
れた信号はフレキシブルシャフト7内を挿通した同軸ケ
ーブル6を経て回動部9に入力される。しかして送受信
切換部13を経てアンプ11に入力され、増幅された後
回動部9の先端のコイル10まで伝送される。コイル1
0の中心軸上に対向して電流磁気効Wを示ス磁気抵抗素
子(Magneto−resist ive Elem
ent略してMR素子と言う)17を固定し、この後に
増幅回路18を設けて受信信号を増幅して外部装置4に
伝達する。このような構成の超音波内視鏡装置では超音
波振動子6で受信した信号は同軸ケーブル16で伝達さ
れ、アンプ11で増幅された後コイル10に入る。コイ
ル10に電流が流れる時磁界ができるのはよく知られて
いることであり、この磁界をMR素子17で検知し、電
気信号に変換し、増幅回路18を経て外部装置4に伝達
される。ここで磁界を電気信号に変換する素子というの
はVTR等の高密度磁気記録の再生でMR素子を使って
実用化されており、素子の大きさも小型であるため超音
波内視鏡装置に用いた際装置をより小型化できる。
The ultrasonic transducer 6 is excited with ultrasonic waves by applying high-frequency pulses from the transmitter 12, and is driven to rotate and emit ultrasonic waves radially over an appropriate angular range to perform mechanical radial scanning. . Therefore, it is reflected at the boundary surface of the object with different acoustic impedance, and the oscillator 5
Received at. The signal converted into an electrical signal by the vibrator 6 is input to the rotating section 9 via the coaxial cable 6 inserted through the flexible shaft 7. The signal is then input to the amplifier 11 via the transmission/reception switching section 13, amplified, and then transmitted to the coil 10 at the tip of the rotating section 9. coil 1
A magnetoresistive element (Magneto-resistive element) that faces the central axis of 0 and exhibits a current magnetic effect W.
(abbreviated as MR element) 17 is fixed, and then an amplifier circuit 18 is provided to amplify the received signal and transmit it to the external device 4. In the ultrasonic endoscope apparatus having such a configuration, a signal received by the ultrasonic transducer 6 is transmitted through the coaxial cable 16, amplified by the amplifier 11, and then input to the coil 10. It is well known that a magnetic field is created when current flows through the coil 10, and this magnetic field is detected by the MR element 17, converted into an electrical signal, and transmitted to the external device 4 via the amplifier circuit 18. The element that converts a magnetic field into an electric signal is an MR element that has been put into practical use for reproducing high-density magnetic recording in VTRs, etc., and because the element is small, it is used in ultrasound endoscope equipment. This allows the device to be made more compact.

尚、回動部9内の送信部12.アンプ11等には、内蔵
した電池とか、特開昭61−103436号に開示した
ようにブラシ接点とダイオードを用いて外部から供給し
ても良い。
It should be noted that the transmitter 12 within the rotating section 9. Power may be supplied to the amplifier 11 and the like from the outside using a built-in battery or a brush contact and a diode as disclosed in JP-A-61-103436.

第2図は本発明の第2実施例の主要部を示す。FIG. 2 shows the main parts of a second embodiment of the invention.

この第2実施例ではコイル10にMR素子17を対向配
置すると共に、このコイル10の磁束を受けない配置と
か磁気シールド等して、前記MR祖17と特性の揃った
MR素子21を直列に接続し、これら直列接続のMR素
子17.21に電圧Eを印加した状態で、MR素子17
両端の電圧を検出Jるようにしている。
In this second embodiment, an MR element 17 is disposed opposite to a coil 10, and the MR element 17 and an MR element 21 having uniform characteristics are connected in series by arranging the coil 10 so that it does not receive the magnetic flux or magnetically shielding it. Then, with the voltage E applied to these MR elements 17 and 21 connected in series, the MR element 17
The voltage at both ends is detected.

この第2実施例では、特性の揃ったMR素子17.21
を用いることによって1個の場合よりも温度に対づ°る
出力変化等の影響を受けないようにできる。
In this second embodiment, MR elements 17 and 21 with uniform characteristics are used.
By using one, it is possible to be less affected by changes in output due to temperature than in the case of one.

第3図は本発明の第3実施例の主要部を示す。FIG. 3 shows the main parts of a third embodiment of the present invention.

この第3実施例ではアンプ11で増幅した後、A/Dコ
ンバータ31でディジタル信号にして、このディジタル
信号をパラレル・シリアル変換器32でシリアル信号に
変換した後、コイル10に印加している。一方、コイル
1oに対向配置したMR素子17の出力は増幅回路18
を通した後、波形整形器33で整形して2値化信号にさ
れる。
In this third embodiment, the signal is amplified by an amplifier 11, converted into a digital signal by an A/D converter 31, converted into a serial signal by a parallel-to-serial converter 32, and then applied to the coil 10. On the other hand, the output of the MR element 17 placed opposite to the coil 1o is transmitted to the amplifier circuit 18.
After passing through the signal, the signal is shaped by a waveform shaper 33 and converted into a binary signal.

この2値化信号はケーブル3を経て外部のシリアル・パ
ラレル変換器34でパラレルデータに変換し、このパラ
レルデータはD/Aコンバータ35でアナログ信号に戻
される。尚、第3図においてシリアル・パラレル変換器
34及びD/Aコンバータ35を外部装置4内に収納し
ても良いし、副操作部8内に収納しても良い。
This binary signal is converted into parallel data by an external serial/parallel converter 34 via a cable 3, and this parallel data is returned to an analog signal by a D/A converter 35. Incidentally, in FIG. 3, the serial/parallel converter 34 and the D/A converter 35 may be housed within the external device 4 or may be housed within the sub-operation section 8.

第4図は本発明の第4実施例を示す。FIG. 4 shows a fourth embodiment of the invention.

この第4実施例では上記MR素子を用いないで電流磁気
効果を有するホール素子41を用いている。コイル10
に対向して配置したホール素子41には、電源Vcから
電流が供給され磁界検出出力は差動アンプ42に入力さ
れ、この差動アンプ42からリニアの差動出力が得られ
るようにしである。尚、このアンプ42には可変抵抗4
3によってオフセット電圧補償を行うことができる。
In this fourth embodiment, instead of using the MR element, a Hall element 41 having a galvanomagnetic effect is used. coil 10
A current is supplied from the power supply Vc to the Hall element 41 disposed opposite to the hall element 41, and the magnetic field detection output is inputted to the differential amplifier 42, so that a linear differential output is obtained from the differential amplifier 42. Note that this amplifier 42 has a variable resistor 4.
Offset voltage compensation can be performed by 3.

第5図は本発明の第5実施例の主要部を示す。FIG. 5 shows the main parts of a fifth embodiment of the present invention.

この実施例は、例えば第2図において、アンプ11の出
力信号をFM変調器45でFM変調した後コイル10に
印加している。
In this embodiment, for example, as shown in FIG. 2, the output signal of the amplifier 11 is FM-modulated by an FM modulator 45 and then applied to the coil 10.

また、増幅回路18の出力はFM復調器46で復調した
後、ケーブル3を経て外部装置4側に導くようにしてい
る。
Further, the output of the amplifier circuit 18 is demodulated by an FM demodulator 46 and then led to the external device 4 via the cable 3.

このようにすると、ノイズは一般にAM波であり、耐ノ
イズ性に優れた信号の伝達を行うことができる。
In this way, the noise is generally an AM wave, and it is possible to transmit a signal with excellent noise resistance.

尚、上記第4実施例においても、第3実施例のように2
値化したディジタル信号に変換して伝達するようにもで
きる。
In addition, in the fourth embodiment, as in the third embodiment, two
It is also possible to convert it into a digital signal and transmit it.

[発明の効果] 以上述べたように本発明によれば、電流磁気効果を利用
して回転部と非回転部の間の信号の伝達を非接触で行う
ようにしであるので、接触による雑音の混入を排除でき
るし、小型にできる。
[Effects of the Invention] As described above, according to the present invention, since signals are transmitted between the rotating part and the non-rotating part without contact using the current magnetic effect, noise caused by contact is reduced. It can eliminate contamination and can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の概略構成図、第2図は本
発明の第2実施例の主要部を示す構成図、第3図は本発
明の第3実施例の主要部を示す構成図、第4図は本発明
の第4実施例の主要部を示す構成図、第5図は本発明の
第5実施例の主要部を示す構成図、第6図は従来例にお
ける電気系の要部を示す回路図、第7図は他の従来例に
おける電気系の要部を示1回路図である。 1・・・超音波内視鏡@iff  2・・・超音波内視
鏡4・・・外部装置     5・・・挿入部6・・・
(超音波)31i動子 9・・・回動部10・・・コイ
ル     11・・・アンプ17・・・MR素子  
  18・・・増幅回路第1図 第3図 第2図 第4図 第5図
FIG. 1 is a schematic configuration diagram of the first embodiment of the present invention, FIG. 2 is a configuration diagram showing the main parts of the second embodiment of the invention, and FIG. 3 is a diagram showing the main parts of the third embodiment of the invention. Fig. 4 is a block diagram showing the main parts of the fourth embodiment of the present invention, Fig. 5 is a block diagram showing the main parts of the fifth embodiment of the invention, and Fig. 6 is the electrical diagram of the conventional example. FIG. 7 is a circuit diagram showing the main parts of the electrical system in another conventional example. 1... Ultrasonic endoscope @if 2... Ultrasonic endoscope 4... External device 5... Insertion section 6...
(Ultrasonic) 31i mover 9... Rotating part 10... Coil 11... Amplifier 17... MR element
18... Amplifier circuit Figure 1 Figure 3 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 回転伝達部材を介して内視鏡先端部に設けられた超音波
振動子を回転駆動させる機械式ラジアル走査方式の超音
波内視鏡装置において、電流磁気効果を利用して回転す
る先端部の超音波振動子が受信した信号を非回転部に伝
達することを特徴とした超音波内視鏡装置。
In a mechanical radial scanning type ultrasonic endoscope device that rotates an ultrasonic transducer provided at the tip of the endoscope via a rotation transmission member, the ultrasonic transducer of the rotating tip uses current magnetic effect. An ultrasonic endoscope device characterized in that a signal received by a sonic transducer is transmitted to a non-rotating part.
JP11640587A 1987-05-13 1987-05-13 Ultrasonic endoscopic apparatus Pending JPS63281633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11640587A JPS63281633A (en) 1987-05-13 1987-05-13 Ultrasonic endoscopic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11640587A JPS63281633A (en) 1987-05-13 1987-05-13 Ultrasonic endoscopic apparatus

Publications (1)

Publication Number Publication Date
JPS63281633A true JPS63281633A (en) 1988-11-18

Family

ID=14686237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11640587A Pending JPS63281633A (en) 1987-05-13 1987-05-13 Ultrasonic endoscopic apparatus

Country Status (1)

Country Link
JP (1) JPS63281633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189421A (en) * 1992-02-21 2000-07-11 Boston Scientific Ltd Method and device for photographing inside of vas
JP2007252573A (en) * 2006-03-23 2007-10-04 Aloka Co Ltd Wireless ultrasonic diagnostic apparatus
JP2011087949A (en) * 1995-06-29 2011-05-06 Teratech Corp Portable ultrasound imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127448A (en) * 1975-04-30 1976-11-06 Matsushita Electric Works Ltd Latching relay
JPS58147783A (en) * 1982-02-26 1983-09-02 シャープ株式会社 Liquid crystal display
JPS6176141A (en) * 1984-09-25 1986-04-18 株式会社日立製作所 Ultrasonic diagnostic apparatus
JPS61103436A (en) * 1984-10-26 1986-05-21 オリンパス光学工業株式会社 Ultrasonic endoscope apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127448A (en) * 1975-04-30 1976-11-06 Matsushita Electric Works Ltd Latching relay
JPS58147783A (en) * 1982-02-26 1983-09-02 シャープ株式会社 Liquid crystal display
JPS6176141A (en) * 1984-09-25 1986-04-18 株式会社日立製作所 Ultrasonic diagnostic apparatus
JPS61103436A (en) * 1984-10-26 1986-05-21 オリンパス光学工業株式会社 Ultrasonic endoscope apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189421A (en) * 1992-02-21 2000-07-11 Boston Scientific Ltd Method and device for photographing inside of vas
JP2011087949A (en) * 1995-06-29 2011-05-06 Teratech Corp Portable ultrasound imaging system
JP2007252573A (en) * 2006-03-23 2007-10-04 Aloka Co Ltd Wireless ultrasonic diagnostic apparatus

Similar Documents

Publication Publication Date Title
US5055775A (en) Transmission device
JP4625145B2 (en) Acoustic vibrator and image generation apparatus
US4034744A (en) Ultrasonic scanning system with video recorder
US8465430B2 (en) Ultrasonic diagnostic apparatus
JPH074373B2 (en) Ultrasound endoscopy
CN104068888A (en) Detection circuit, driving method, probe, and subject information acquiring apparatus
WO2006062042A1 (en) Ultrasonic observation apparatus
JPS63281633A (en) Ultrasonic endoscopic apparatus
Zhang et al. Construction of an intravascular ultrasound catheter with a micropiezoelectric motor internally installed
JPH0431259B2 (en)
JPS61103436A (en) Ultrasonic endoscope apparatus
JP3691646B2 (en) Ultrasonic probe
JPS6176141A (en) Ultrasonic diagnostic apparatus
JP2512469B2 (en) Ultrasonic transducer drive
JPH0515536A (en) Ultrasonic probe
JP2006150053A (en) Capsule type ultrasonic diagnostic apparatus
JP2874994B2 (en) Ultrasound diagnostic equipment
CA1089077A (en) Ultrasonic transducer probe
JP2000005169A (en) Ultrasonic transmit-receive circuit, and ultrasonograph having the same
JP3294733B2 (en) Probe unit
JPH0542152A (en) Ultrasonic endoscope
JP2004188171A (en) Ultrasonic diagnostic equipment
JPS6111026A (en) Ultrasonic diagnostic apparatus for body cavity
JPH0718745B2 (en) measuring device
JPH06154217A (en) Ultrasonic diagnosing apparatus