JPS63281359A - Manufacture of conductive plastic electrode - Google Patents

Manufacture of conductive plastic electrode

Info

Publication number
JPS63281359A
JPS63281359A JP62113536A JP11353687A JPS63281359A JP S63281359 A JPS63281359 A JP S63281359A JP 62113536 A JP62113536 A JP 62113536A JP 11353687 A JP11353687 A JP 11353687A JP S63281359 A JPS63281359 A JP S63281359A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
fiber sheet
plastic plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62113536A
Other languages
Japanese (ja)
Inventor
Nobuhiko Kamura
嘉村 信彦
Haruhiko Yoshizaki
吉崎 東彦
Tetsuto Kawaguchi
河口 哲人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP62113536A priority Critical patent/JPS63281359A/en
Publication of JPS63281359A publication Critical patent/JPS63281359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To be able to manufacture an integrated conductive plastic electrode in conjugation of carbon fiber sheet to a definite part of carbon plastic plate in a simple measure by heat fusion bonding after providing a heat insulating layer at a part on one side or both sides of the carbon plastic plate, where no carbon fiber sheet is allocated. CONSTITUTION:At manufacture of an integrated electrode plate by heat fusion bonding of a carbon fiber sheet 3 with a carbon plastic plate 2, the carbon fiber sheet 3 is allocated only at a specific part on one side or both sides of the carbon plastic plate 2 and simultaneously a heat insulating layer 1 is provided at other parts, where no carbon fiber sheet 3 is allocated, on one side or both sides of the carbon plastic plate for heat fusion bonding. By the arrangement, avoiding penetration of adhesives, warp and shrinkage of the carbon plastic plate 2, and bite of the carbon fiber sheet 3 into the carbon plastic plate 2, a conductive plastic electrode, in which the carbon fiber sheet 3 is bonded with a specific part of the carbon plastic plate 2, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性プラスチック電極の製造方法に係わり、
さらに詳しくはレドックス・フロー型、亜鉛−ハロゲン
型などの新型二次電池において使用される導電性プラス
チック電極の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a conductive plastic electrode,
More specifically, the present invention relates to a method for manufacturing conductive plastic electrodes used in new types of secondary batteries such as redox flow type and zinc-halogen type secondary batteries.

〔産業上の利用分野〕[Industrial application field]

本発明は導電性プラスチック電極の製造方法に係わり、
さらに詳しくはレドックス・フロー型、亜鉛−ハロゲン
型などの新型二次電池において使用される導電性プラス
チック電極の製造方法に関するものである。
The present invention relates to a method of manufacturing a conductive plastic electrode,
More specifically, the present invention relates to a method for manufacturing conductive plastic electrodes used in new types of secondary batteries such as redox flow type and zinc-halogen type secondary batteries.

〔従来の技術〕[Conventional technology]

最近の国際石油需給は緩和基調で推移しているが、石油
の埋蔵量は有限であるため、埋蔵量は年々側々と減少し
ているのは事実である。また、ソ連原子力発電所の事故
に見られるように原子力発電所の規模も安全面から巨大
化にブレーキがかかってくることは必至である。その反
面、夏の電力需要は年々増加してきており、年間の電力
消費量にアンバランスがおきている。このようなピーク
時に備えてあらかじめオフピーク時の電力を貯蔵してお
こうという新型二次電池貯蔵システムの研究開発が種々
なされている。
Although the international oil supply and demand situation has recently been easing, it is true that oil reserves are finite and are decreasing year by year. Furthermore, as seen in the accident at the Soviet Union's nuclear power plant, it is inevitable that the scale of nuclear power plants will be put on hold for safety reasons. On the other hand, summer power demand is increasing year by year, creating an imbalance in annual power consumption. Various research and development efforts have been made on new types of secondary battery storage systems that store off-peak power in advance in preparation for such peak times.

ところで、この新型二次電池において従来から用いられ
ている電極は、カーボンプラスチック板などの導電性を
有するプレートからなるバイポーラ・プレートとクロス
、ニットまたはフェルト等からなる炭素繊維シートなど
を組み合わせて使用されていた。
By the way, the electrodes conventionally used in this new type of secondary battery are a combination of bipolar plates made of conductive plates such as carbon plastic plates and carbon fiber sheets made of cloth, knit, or felt. was.

電池の電極に求められる性能としては導電性、電解液の
不浸透性、循環電解液に対する流動抵抗性、及び機械的
強度が主なものである。しかし、これらの性能を同時に
満足させる素材は見出せないため、電解液の不浸透性と
機械的強度をバイポーラ・プレートに持たせ、導電性を
向上させるために表面に電子授受面積(表面積)の大き
い導電性炭素繊維シートを用いていた。これらの電極を
用いた電池内の電流は、電極から電極(バイポーラ・プ
レート/炭素繊維シート→炭素繊維シート/バイポーラ
・プレート)に移動していくため、この両者の間に生じ
る接触抵抗を軽減するためにバイポーラ・プレートと炭
素繊維シートの間を接合して一体化しようという試みが
為されている。
The main properties required for battery electrodes are conductivity, impermeability to electrolyte, flow resistance to circulating electrolyte, and mechanical strength. However, it has not been possible to find a material that satisfies these properties at the same time, so bipolar plates have to be impermeable to electrolyte and have mechanical strength, and have a large surface area for electron exchange (surface area) to improve conductivity. A conductive carbon fiber sheet was used. The current in a battery using these electrodes moves from one electrode to another (bipolar plate/carbon fiber sheet → carbon fiber sheet/bipolar plate), reducing the contact resistance that occurs between the two. Therefore, attempts have been made to bond and integrate a bipolar plate and a carbon fiber sheet.

例えば特開昭59−87768号公報のように、接着剤
により両者を接合する方法や、あるいは特開昭59−2
9385号公報のように熱プレスを用いて接合する方法
等が提案されている。しかしながら接着剤による接合は
、常温で接合が行えるためカーボンプラスチック板の加
熱変形を心配する必要がないものの、接着剤が炭素繊維
シートにしみこみ、電解液の流通を妨げ、圧力損失を増
大させるという欠陥を招いていた。一方、熱プレスによ
る圧着接合の方法はカーボンプラスチック板と炭素繊維
シートとの接触抵抗を軽減し、電気化学反応の効率向上
を行う方法として原理的には有効な手段である。しかし
、この方法は熱によりカーボンプラスチック板表面のマ
トリックス樹脂に温度分布が生じないように均一に加熱
溶融しないと、反りを生じたり、収縮が起こって寸法が
変化したりするため、従来はカーボンプラスチック板全
面に炭素繊維シートを熱融着接合し、その後に不要の炭
素繊維シートを削り取るという方法が用いられていた。
For example, as in JP-A No. 59-87768, there is a method of joining the two with adhesive, or JP-A-59-2
A method of joining using hot press, etc., as in Japanese Patent No. 9385, has been proposed. However, with adhesive bonding, there is no need to worry about heat deformation of the carbon plastic sheets because the bonding can be performed at room temperature, but the problem is that the adhesive soaks into the carbon fiber sheets, impeding the flow of electrolyte and increasing pressure loss. was inviting. On the other hand, the method of pressure bonding using hot press is in principle an effective means for reducing the contact resistance between the carbon plastic plate and the carbon fiber sheet and improving the efficiency of the electrochemical reaction. However, with this method, if the matrix resin on the surface of the carbon plastic plate is not heated and melted uniformly to avoid temperature distribution, it may warp or shrink, causing changes in dimensions. The method used was to heat-seal and bond a carbon fiber sheet to the entire surface of the board, and then scrape off the unnecessary carbon fiber sheet.

しかし、この方法は、削り取り作業に多大な時間を要す
る上に、削り取り面に凹凸が生じ易いという欠点があっ
た。
However, this method has the disadvantage that the scraping operation takes a lot of time and that unevenness is likely to occur on the scraped surface.

更に、熱プレス法はプレス圧力により、炭素繊維シート
がカーボンプラスチック仮に食い込み、炭素繊維シート
の厚みを正確に調整しにくいという問題点もあり、これ
らの解決法が望まれていた。
Furthermore, the hot press method has the problem that the carbon fiber sheet temporarily bites into the carbon plastic due to the press pressure, making it difficult to accurately adjust the thickness of the carbon fiber sheet, and a solution to these problems has been desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以上のような従来技術で問題となっていた、接
着剤のしみこみ、カーボンプラスチック板の反り、収縮
、炭素繊維シートのカーボンプラスチック板への食い込
み等を解決し、製造が困難であったカーボンプラスチッ
ク板の所定部分のみに炭素繊維シートを接合させた導電
性プラスチック電極の製造方法を提供することを目的と
するものである。
The present invention solves the problems of the prior art, such as adhesive seepage, warpage and shrinkage of the carbon plastic plate, and the digging of the carbon fiber sheet into the carbon plastic plate, which was difficult to manufacture. The object of the present invention is to provide a method for manufacturing a conductive plastic electrode in which a carbon fiber sheet is bonded only to a predetermined portion of a carbon plastic plate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前述した問題点を解決するために研究を行
い、従来全く例を見ない製造手段を見出し本発明を完成
させた。すなわち、本発明は炭素繊維シートとカーボン
プラスチック板とを熱融着により一体化して電極板を製
造するに際し、炭素繊維シートをカーボンプラスチック
板の片面又は両面の所定部分のみに配置するとともに、
該炭素繊維シート配置部分以外のカーボンプラスチック
板の片面又は両面に断熱層を設け、しかるのち、熱融着
接合することを特徴とする導電性プラスチック電極の製
造方法である。
The present inventors conducted research in order to solve the above-mentioned problems, and discovered a completely unprecedented manufacturing means and completed the present invention. That is, when manufacturing an electrode plate by integrating a carbon fiber sheet and a carbon plastic plate by heat fusion, the present invention disposes the carbon fiber sheet only on a predetermined portion of one or both sides of the carbon plastic plate, and
This method of manufacturing a conductive plastic electrode is characterized in that a heat insulating layer is provided on one or both sides of the carbon plastic plate other than the portion where the carbon fiber sheet is arranged, and then heat fusion bonding is performed.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず、本発明にいう炭素繊維シートとはアクリル繊維、
レーヨン、リグニン・ポバール等の繊維及び石油系ピン
チ、石炭系ピッチ等より高温で炭化処理及び表面活性化
処理を施し、クロス、ニット又はフェルトなどのような
形に加工したものをいう。
First, the carbon fiber sheet referred to in the present invention is acrylic fiber,
Fibers such as rayon, lignin/poval, petroleum-based pinch, coal-based pitch, etc. are carbonized and surface activated at higher temperatures and processed into shapes such as cloth, knit, or felt.

また、本発明において用いられるカーボンプラスチック
板とはポリエチレン、ポリプロピレン、エチレン−プロ
ピレン共重合樹脂、ポリブテン、塩化ビニル樹脂、メチ
ルペンテンポリマー、フッソ系樹脂等の熱可塑性樹脂に
カーボンブランク、黒鉛などのような導電性フィラーを
混練したのち押出機等により成形して板状としたもので
、望ましくは体積固有抵抗で10Ω−ω以下の導電性を
有し、電池電解液の不浸透性を持ったものを指す。
Furthermore, the carbon plastic plate used in the present invention is a thermoplastic resin such as polyethylene, polypropylene, ethylene-propylene copolymer resin, polybutene, vinyl chloride resin, methylpentene polymer, fluorocarbon resin, carbon blank, graphite, etc. After kneading a conductive filler, it is formed into a plate shape using an extruder or the like, and preferably has a volume resistivity of 10Ω-ω or less and is impermeable to battery electrolyte. Point.

本発明においては、このようなカーボンプラスチック板
表面温度をマトリックス樹脂の融点+10°C以上から
融点+80℃以下の温度範囲、好ましくは融点+20℃
以上から融点+70°C以下の温度範囲に保持して表層
部のマトリックス樹脂を軟化させ、そこに炭素繊維シー
トを所定部分のみに配置し圧着した後、冷却固化させて
両者を熱融着接合させるものである。ここで所定部分と
はカーボンプラスチック板上にあって、炭素繊維シート
を配置する部分を指し、この部分が電池の電極となる。
In the present invention, the surface temperature of such a carbon plastic plate is set within a temperature range from 10° C. or higher to the melting point of the matrix resin to 80° C. or lower, preferably 20° C. or higher than the melting point of the matrix resin.
From the above, the matrix resin in the surface layer is softened by maintaining the temperature within the melting point +70°C or less, and the carbon fiber sheet is placed only in the designated areas and crimped, then cooled and solidified to bond the two by heat fusion. It is something. Here, the predetermined portion refers to the portion on the carbon plastic plate where the carbon fiber sheet is placed, and this portion becomes the electrode of the battery.

所定部分以外、即ち、炭素繊維シートの配置部分以外は
電解液流量調整のためのマニホールド、電極枠との接合
部となる部分で、炭素繊維シートがあってはならない所
である。そこで、カーボンプラスチック板上で炭素繊維
シートの配置部分以外の箇所の片面又は両面に断熱層を
設け、加熱源からカーボンプラスチック仮に伝わる熱を
遮蔽し、炭素繊維シートにかかる圧着力を吸収して炭素
繊維シートの折損とカーボンプラスチック板への食い込
みを防止すると共に、炭素繊維シート配置部分以外の箇
所の加熱による反りの発生を防止する役目を果たさせる
ものである。
The parts other than the predetermined parts, that is, the parts other than the part where the carbon fiber sheet is arranged, are the parts that become the joints with the manifold and the electrode frame for adjusting the flow rate of the electrolytic solution, and are places where the carbon fiber sheet should not be present. Therefore, a heat insulating layer is provided on one or both sides of the carbon plastic board other than the area where the carbon fiber sheet is placed, to shield the heat transmitted from the heat source to the carbon plastic, absorb the pressure applied to the carbon fiber sheet, and This serves to prevent the fiber sheet from breaking and digging into the carbon plastic plate, as well as to prevent warping due to heating in areas other than the carbon fiber sheet placement area.

この場合、本発明にいう断熱層とは、その厚めが望まし
くは炭素繊維シートの厚みの0.5〜0゜95倍である
ものを指す。断熱層の厚みが炭素繊維シートの厚みの0
.5未満の場合は炭素繊維シートが圧着力で折損し易く
、又断熱層の厚みが0゜95倍より大きい場合は炭素繊
維シートに局部的に圧力がかかり難くなり接合むらが発
生する。さらに、断熱層は、熱融着接合に供されるカー
ボンプラスチック板のマトリックス樹脂の融点+10°
C以上から融点+80°C以下の温度において、圧縮強
さ20kg/cm”以上、熱伝導率1.0kcal/m
−h  ・℃以下の物性を有するものが望ましい。
In this case, the heat insulating layer referred to in the present invention refers to a layer whose thickness is desirably 0.5 to 0.95 times the thickness of the carbon fiber sheet. The thickness of the insulation layer is 0 of the thickness of the carbon fiber sheet.
.. If the thickness is less than 5, the carbon fiber sheet is likely to break due to the pressure bonding force, and if the thickness of the heat insulating layer is greater than 0.95 times, pressure will not be applied locally to the carbon fiber sheet, resulting in uneven bonding. Furthermore, the heat insulating layer has a melting point of the matrix resin of the carbon plastic plate subjected to heat fusion bonding +10°.
Compressive strength 20 kg/cm or more, thermal conductivity 1.0 kcal/m at temperatures from C or higher to melting point +80°C or lower
It is desirable to have physical properties of -h .degree. C. or less.

具体的にはエチレンプロピレンゴム、プロピレンオキサ
イドゴム、アクリルゴム、シリコンゴム、弗化ビニリデ
ン・六弗化プロピレン共重合体、弗化ビニリデン・三弗
化エチレン共重合体、弗化シリコンゴム、弗化ポリエス
テルゴムなどのシートがある。或いは木材、コルク、発
泡セラミックス、プラスチックなどのシート状物も使用
することができる。これらの中からマトリックス樹脂の
種類、充填材の量等を勘案して選択する。
Specifically, ethylene propylene rubber, propylene oxide rubber, acrylic rubber, silicone rubber, vinylidene fluoride/propylene hexafluoride copolymer, vinylidene fluoride/ethylene trifluoride copolymer, silicon fluoride rubber, and fluorinated polyester. There are sheets made of rubber, etc. Alternatively, sheet materials such as wood, cork, foamed ceramics, and plastic may also be used. A material is selected from among these in consideration of the type of matrix resin, the amount of filler, etc.

更に、断熱層の表面を平滑鏡面、シボ模様、リブ付等に
加工することにより電池組立の簡素化、電解液の漏洩防
止等電極としての性能向上を計ることが容易となる。
Furthermore, by processing the surface of the heat insulating layer to have a smooth mirror surface, a textured pattern, ribbing, etc., it becomes easy to simplify battery assembly and improve the performance as an electrode, such as preventing electrolyte leakage.

次に本発明の製造方法により炭素繊維シートをカーボン
プラスチック板上の所定部分に熱融着接合して得られる
電極の態様例を模式的に示すと、第1図に示すようにカ
ーボンプラスチック板2の周囲を額縁状に残して、該周
囲部に断熱N1を設け、中央部の片側又は両側に炭素繊
維シート3を配置するもの、或いは第2図のようにカー
ボンプラスチック板2上の2箇所以上の片側又は両側に
配置するものなど、種々の場合が考えられる。
Next, an example of an electrode obtained by heat-sealing and bonding a carbon fiber sheet to a predetermined portion of a carbon plastic plate according to the manufacturing method of the present invention is schematically shown. As shown in FIG. The surrounding area is left in the shape of a picture frame, the surrounding area is provided with heat insulation N1, and the carbon fiber sheet 3 is arranged on one or both sides of the central area, or two or more places on the carbon plastic plate 2 as shown in Fig. 2. Various cases are possible, such as placing it on one side or both sides.

次にこれらの図について、さらに詳しく説明すると、第
1図a、bはカーボンプラスチック板2の両面中央部に
炭素繊維シート3を配置し、該周囲部に断熱層lを設け
た時の平面図及び断面図を示し、第1図Cは該積層物を
熱板4で圧着する状態を示す。 第1図Cの状態におい
て、炭素繊維シート3は断熱層1の厚みまでは圧縮され
るが、断熱層lの厚み未満にはならないように、プレス
圧を調整する。第1図dはカーボンプラスチック板の所
定部分に炭素繊維シートを接合して一体化した導電性プ
ラスチック電極の断面図を示す。
Next, to explain these figures in more detail, Figures 1a and 1b are plan views when the carbon fiber sheet 3 is placed in the center of both sides of the carbon plastic plate 2, and the heat insulating layer l is provided around the periphery. and a sectional view, and FIG. 1C shows a state in which the laminate is pressed with a hot plate 4. In the state shown in FIG. 1C, the carbon fiber sheet 3 is compressed to the thickness of the heat insulating layer 1, but the press pressure is adjusted so that the thickness does not become less than the thickness of the heat insulating layer l. FIG. 1d shows a sectional view of a conductive plastic electrode formed by bonding a carbon fiber sheet to a predetermined portion of a carbon plastic plate.

また第2図はカーボンプラスチック板上の2箇所の両面
に炭素繊維シートを配置する場合を示したものである。
Further, FIG. 2 shows a case where carbon fiber sheets are arranged on both sides of two places on a carbon plastic plate.

このように、炭素繊維シートの配置位置、配置数は自由
に変えることが出来るので、電池の種類及び構造によっ
て電極構造が変わっても、それぞれそれらに見合った態
様のプラスチック電極を提供することが出来る。
In this way, the placement position and number of carbon fiber sheets can be changed freely, so even if the electrode structure changes depending on the type and structure of the battery, it is possible to provide plastic electrodes that suit each type and structure. .

また、熱融着方法はプレス、ロール、ヘルドコンベア等
加熱圧着できるものであればどれでも使用することが出
来る。この場合、カーボンプラスチック板2は長方形に
切断した板であっても、押出機等から出てきいる途中の
連続したシートでもよく、また断熱層1も長方形に切断
したシート状のものでも、またはエンドレスなヘルドコ
ンヘア状でもよい。
Further, as the heat fusion bonding method, any method such as a press, a roll, a heald conveyor, etc. that can be used for heat and pressure bonding can be used. In this case, the carbon plastic plate 2 may be a rectangular cut plate or a continuous sheet coming out of an extruder etc., and the heat insulating layer 1 may be a rectangular cut sheet or an endless sheet. It may be in the shape of a held con hair.

〔実施例〕〔Example〕

以下、実施例に基づいて、本発明の効果を具体的に説明
する。
Hereinafter, the effects of the present invention will be specifically explained based on Examples.

カーボンプラスチック板はポリエチレン、カーボンブラ
ンク、黒鉛をそれぞれ、50重量部、17重量部、33
重量部づつ配合しバンバリーミキサ−を用いて混練して
ベレットとした後、押出成形機により厚さ1.5mmX
幅500tl×長さ600Hの厚さに成形した。ポリエ
チレンとしては、融点130℃の高密度ポリエチレンを
用いた。成形したカーボンプラスチック板の体積固有抵
抗は0.20Ω−ωであった。
The carbon plastic plate contains 50 parts by weight, 17 parts by weight, and 33 parts by weight of polyethylene, carbon blank, and graphite, respectively.
After mixing parts by weight and kneading into pellets using a Banbury mixer, the pellets were made into pellets with a thickness of 1.5 mm by an extrusion molding machine.
It was molded to a thickness of 500 tl width x 600 h length. As the polyethylene, high-density polyethylene with a melting point of 130°C was used. The volume resistivity of the molded carbon plastic plate was 0.20Ω-ω.

炭素繊維シートとしては面積電気抵抗0.22Ωcm”
 、厚さ2.61mのクロス、面積電気抵抗0026Ω
cm2、厚さ3.Olのフェルト及び面積電気抵抗0.
22Ωcm2、厚さ2.3韮のクロスを使用した。炭素
繊維シートの大きさはいずれも幅44011×長さ45
0璽1とした。
As a carbon fiber sheet, the area electrical resistance is 0.22Ωcm”
, 2.61m thick cloth, area electrical resistance 0026Ω
cm2, thickness 3. Ol felt and area electrical resistance 0.
A cloth with a resistance of 22Ωcm2 and a thickness of 2.3mm was used. The size of each carbon fiber sheet is width 44011 x length 45
It was set as 0 Seal 1.

断熱層は第1表に示したように、接合する炭素繊維シー
トの厚さ、強度、剛性等に対応する厚さ、材質の物で、
その他の形状は全て、幅520mmx長さ620Hの長
方形シートの中央に幅4411×長さ451■1の長方
形の穴を開けた物を使用した。
As shown in Table 1, the heat insulating layer has a thickness and material that corresponds to the thickness, strength, rigidity, etc. of the carbon fiber sheets to be joined.
For all other shapes, a rectangular sheet with a width of 520 mm and a length of 620 mm was used, with a rectangular hole of width 4411 mm x length 451 mm in the center.

熱融着は温度調節油を循環する方式の熱板を有し、油圧
により微細駆動が可能な20トン熱プレスにより行った
。熱融着操作は、まず、熱プレス上に断熱層、炭素繊維
シート、カーボンプラスチック板を第1図すに示したよ
うに配置し、炭素繊維シートとカーボンプラスチック板
の間の温度が第1表に示した加熱温度に達してから、3
0秒間予熱し、同じく第1表に示した加圧力で30秒間
加圧した。接合板は断熱層と共に熱プレスより取り出し
木製板間に挟んで1kg/cm2以下の加圧下で冷却し
た後、断熱層を剥がして炭素繊維シート/カーボンプラ
スチック択一体化電極板を得た。
Heat fusion was carried out using a 20-ton hot press equipped with a hot plate that circulates temperature-adjusting oil and capable of being finely driven by hydraulic pressure. In the heat fusion operation, first, the heat insulating layer, carbon fiber sheet, and carbon plastic plate are placed on a heat press as shown in Figure 1, and the temperature between the carbon fiber sheet and the carbon plastic plate is as shown in Table 1. After reaching the specified heating temperature,
It was preheated for 0 seconds and then pressurized for 30 seconds at the pressure shown in Table 1. The bonded plate was taken out from the heat press together with the heat insulating layer, sandwiched between wooden boards and cooled under a pressure of 1 kg/cm2 or less, and then the heat insulating layer was peeled off to obtain a carbon fiber sheet/carbon plastic integrated electrode plate.

得られた一体化電極板の評価結果は第1表に示した。こ
こで、炭素繊維シート厚みとはカーボンプラスチック板
上に出ている炭素繊維シートの厚みを言い、炭素繊維折
損層とは一体化電極板より真空掃除機で集めた炭素繊維
屑の量を言う。又、接合状態は炭素繊維シートをカーボ
ンプラスチック板から剥がしてみて良否を肉眼で判定し
た。
The evaluation results of the obtained integrated electrode plate are shown in Table 1. Here, the carbon fiber sheet thickness refers to the thickness of the carbon fiber sheet exposed on the carbon plastic plate, and the carbon fiber broken layer refers to the amount of carbon fiber debris collected from the integrated electrode plate by a vacuum cleaner. Moreover, the bonding condition was determined by peeling off the carbon fiber sheet from the carbon plastic plate and visually judging whether it was good or bad.

本発明方法により製造した試験番号1〜4の一体化電極
板はいずれも、炭素繊維シートの変形も折損も少なく、
また炭素繊維シート配置部以外のカーボンプラスチック
板の表面状態も非常に良好であり、一体化電極板の反り
も全く見られなかった。
In all of the integrated electrode plates of test numbers 1 to 4 manufactured by the method of the present invention, there was little deformation or breakage of the carbon fiber sheet.
In addition, the surface condition of the carbon plastic plate other than the carbon fiber sheet placement area was also very good, and no warping of the integrated electrode plate was observed.

一方、本発明方法によらない接合条件で接合した結果を
第1表の試験番号5〜6に比較例、試験番号7〜8に参
考例として示したが、いずれも、満足な部分接合一体化
電極板は得られなかった。
On the other hand, the results of bonding under bonding conditions not based on the method of the present invention are shown in Table 1 as comparative examples in test numbers 5 and 6, and as reference examples in test numbers 7 and 8. No electrode plate was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炭素繊維シートをカーボンプラスチッ
ク板上の所定部分に接合して一体化した導電性プラスチ
ック電極を簡易な手段で製造することができ、産業上の
効果は著しい。
According to the present invention, a conductive plastic electrode in which a carbon fiber sheet is bonded to a predetermined portion of a carbon plastic plate to be integrated can be manufactured by a simple means, and the industrial effect is remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の製造方法により得られる
電極の態様例を示す模式図であって、第1図aはカーボ
ンプラスチック仮に炭素繊維シートを配置し、周辺部に
断熱層を設けた態様を示す平面図、同すはaの断面図、
同Cはbにおける圧着時の状態を示す断面図、同dはC
において得られた一体化電極板の態様を示す断面図であ
る。 1:断熱層、  2:カーボンプラスチック仮、3:炭
素繊維シート、  4:熱板。
FIGS. 1 and 2 are schematic diagrams showing embodiments of electrodes obtained by the manufacturing method of the present invention. FIG. A plan view showing an embodiment, and a sectional view of a,
C is a cross-sectional view showing the state during crimping in b, and d is C
FIG. 2 is a cross-sectional view showing an aspect of the integrated electrode plate obtained in . 1: Heat insulation layer, 2: Temporary carbon plastic, 3: Carbon fiber sheet, 4: Heat plate.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維シートとカーボンプラスチック板とを熱
融着により一体化して電極板を製造するに際し、炭素繊
維シートをカーボンプラスチック板の片面又は両面の所
定部分のみに配置すると共に、該炭素繊維シート配置部
分以外のカーボンプラスチック板の片面又は両面に断熱
層を設け、しかるのち熱融着接合することを特徴とする
導電性プラスチック電極の製造方法。
(1) When manufacturing an electrode plate by integrating a carbon fiber sheet and a carbon plastic plate by heat fusion, the carbon fiber sheet is placed only on a predetermined portion of one or both sides of the carbon plastic plate, and the carbon fiber sheet is A method for producing a conductive plastic electrode, which comprises providing a heat insulating layer on one or both sides of a carbon plastic plate other than the placement portion, and then heat-sealing and bonding.
(2)断熱層の厚みが炭素繊維シートの厚みの0.5〜
0.95倍であることを特徴とする特許請求の範囲第1
項記載の導電性プラスチック電極の製造方法。
(2) The thickness of the heat insulation layer is 0.5 to the thickness of the carbon fiber sheet
Claim 1 characterized in that it is 0.95 times
2. Method for manufacturing a conductive plastic electrode as described in Section 1.
JP62113536A 1987-05-12 1987-05-12 Manufacture of conductive plastic electrode Pending JPS63281359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113536A JPS63281359A (en) 1987-05-12 1987-05-12 Manufacture of conductive plastic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113536A JPS63281359A (en) 1987-05-12 1987-05-12 Manufacture of conductive plastic electrode

Publications (1)

Publication Number Publication Date
JPS63281359A true JPS63281359A (en) 1988-11-17

Family

ID=14614809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113536A Pending JPS63281359A (en) 1987-05-12 1987-05-12 Manufacture of conductive plastic electrode

Country Status (1)

Country Link
JP (1) JPS63281359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057507A1 (en) * 1999-03-23 2000-09-28 Unisearch Limited Electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057507A1 (en) * 1999-03-23 2000-09-28 Unisearch Limited Electrodes
US6656639B1 (en) * 1999-03-23 2003-12-02 Unisearch Limited Bipolar electrode having non-conductive electrode substrate and fibrous electrochemically active material

Similar Documents

Publication Publication Date Title
KR102518686B1 (en) All-solid battery and method for manufacturing the same
US3690950A (en) Battery plate grid
CA1296383C (en) Composite graphite separator plate for fuel cell stack
ATE46593T1 (en) INTEGRATED GAS SEAL FOR THE GAS DISTRIBUTION ASSEMBLY OF A FUEL CELL AND METHOD OF MANUFACTURE THERE.
US6921599B2 (en) Sealing assembly for an MEA and method for manufacturing the sealing assembly
EP1586132B1 (en) One-step method of bonding and sealing a fuel cell membrane electrode assembly
JP4338985B2 (en) Battery part, lithium polymer battery and manufacturing method thereof
US4177330A (en) Laminar batteries and methods of making the same
KR20150071889A (en) Manufacture method of MEA for fuel cell
JPS63281359A (en) Manufacture of conductive plastic electrode
CN110600750B (en) All-vanadium redox flow battery composite terminal electrode and preparation method thereof
CN114976090A (en) Method for manufacturing integrated bipolar reaction plate
JPS6380485A (en) Sealed laminated cell
JP2001052681A5 (en) Process for producing sheet battery and polymer electrolyte battery
CN208507703U (en) Sleeve, electrical connection module, electronic building brick and electronic product
JPS63164169A (en) Manufacture of conductive plastic electrode
JPH06101341B2 (en) Manufacturing method of ribbed separator for fuel cell
CN109461869A (en) A kind of composite diaphragm and preparation method thereof
JPH01213955A (en) Manufacture of flat type battery
JP3829797B2 (en) Manufacturing equipment for hybrid solar collector panels
CN115411293B (en) Sealing process of flow galvanic pile
JPH0210661A (en) Manufacture of end plate electrode
CA1314927C (en) Composite substrate for fuel cell and process for producing the same
CN114566666A (en) Composite bipolar plate for flow battery, preparation tool and preparation method
JP2009224272A (en) Fuel cell