JPS63281131A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPS63281131A
JPS63281131A JP11762487A JP11762487A JPS63281131A JP S63281131 A JPS63281131 A JP S63281131A JP 11762487 A JP11762487 A JP 11762487A JP 11762487 A JP11762487 A JP 11762487A JP S63281131 A JPS63281131 A JP S63281131A
Authority
JP
Japan
Prior art keywords
grating
liquid crystal
alignment
diffraction grating
modulation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11762487A
Other languages
Japanese (ja)
Inventor
Etsuro Kishi
悦朗 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11762487A priority Critical patent/JPS63281131A/en
Publication of JPS63281131A publication Critical patent/JPS63281131A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the improvement of a normally open display and a multiplex characteristic of the title modulator by specifying the dimension of a recessed part of a diffraction grating, placing periodically a limited length grating unit of the diffraction grating, and also, providing an oriented film for controlling a spontaneous orientation state of a liquid crystal on at least one substrate surface side of the opposed substrate surface sides. CONSTITUTION:Length in the grating direction of a recessed part 2a of a diffraction grating 2 is set within a range of 1/5-100 times as long as a grating pitch, and plural pieces of limited length grating units 2c consisting of a grating part 2b and the recessed part 2a are placed periodically, for instance, in a checked pattern. Also, on at least one substrate surface side of the opposed substrate surface sides, oriented films 3, 3' for controlling a spontaneous orientation state of said liquid crystal 1 are provided. In such a way, the control of the spontaneous orientation state is facilitated, and the realization of a normally open type display and the improvement of a multiplex characteristic can be executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光変調装置に関し、特に回折格子と液晶等の屈
折率可変物質を利用して光の通過や遮光等の光変調を行
った光表示用、光記録用、光結合用、光通信用そして光
演算用等の装置に好適な光変調装置に関するものである
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a light modulation device, and in particular to a light modulation device that modulates light such as passing light or blocking light by using a diffraction grating and a variable refractive index material such as a liquid crystal. The present invention relates to a light modulation device suitable for display, optical recording, optical coupling, optical communication, optical calculation, and other devices.

(従来の技術) 従来から良く知られている光変調を利用した表示素子と
しては、互いに偏光方向が直交する様に配した一対の偏
光板と、この一対の偏光板間に配され一対の透明基板の
相対する基板面に互いに直交する配向処理を施して液晶
を封入した素子とから成り、この液晶の配向状態をねじ
れた状態と基板面に垂直に向いた状態との間でスイッチ
ングを行い入射光の変調をする所謂TN(ツウィストネ
マチック)型の液晶表示素子がある。この種の表示素子
は構成が簡便で、駆動が容易なことから多岐に亘り利用
されているが、2枚の偏光板を利用して光束の透過及び
遮断を行う為に消光時、即ち光透過時の透過率が悪く光
束利用効率の面からは好ましい表示素子とは言えなかっ
た。
(Prior art) A display element that utilizes well-known light modulation consists of a pair of polarizing plates arranged so that the polarization directions are perpendicular to each other, and a pair of transparent polarizing plates arranged between the pair of polarizing plates. It consists of an element in which a liquid crystal is sealed by applying orthogonal alignment treatment to the facing surfaces of the substrates, and the alignment state of this liquid crystal is switched between a twisted state and a state perpendicular to the substrate surface to control the incidence of light. There is a so-called TN (twisted nematic) type liquid crystal display element that modulates light. This type of display element has a simple structure and is easy to drive, so it is used in a wide variety of applications.However, since it uses two polarizing plates to transmit and block the light flux, it is difficult to transmit light when it is extinguished. The display element had poor transmittance and could not be said to be a desirable display element from the viewpoint of luminous flux utilization efficiency.

又、液晶を利用した同種の表示素子として、液晶分子に
色素を混入させて用いる所謂ゲスト・ホストモードの液
晶表示素子があるが、この表示素子に於いても色素が介
在する為に消光時の透過率は良くても70%程度であっ
た。
In addition, as a similar type of display element using liquid crystal, there is a so-called guest-host mode liquid crystal display element that uses a dye mixed into liquid crystal molecules, but even in this display element, due to the presence of the dye, the The transmittance was about 70% at best.

一方、特公昭53−3928号公報やUSP4,251
,137等に於いて反射型や透過型の位相回折格子と液
晶とを組合わせた表示素子や可変減色フィルター素子が
開示されている。これらで開示されている素子は確かに
光束利用効率は優れているが、特公昭53−3928号
公報に開示されている素子は単なる装飽効果を示すのみ
であり、文字や画像を表示する表示素子や光束の透過、
遮断を行う表示素子としては満足出来るものではなかっ
た。
On the other hand, Japanese Patent Publication No. 53-3928 and USP 4,251
, 137, etc., disclose a display element and a variable subtractive color filter element in which a reflective or transmissive phase diffraction grating is combined with a liquid crystal. Although the elements disclosed in these documents are certainly excellent in luminous flux utilization efficiency, the element disclosed in Japanese Patent Publication No. 53-3928 merely exhibits a saturation effect, and is not suitable for displaying characters or images. Transmission of elements and luminous flux,
This was not satisfactory as a display element that performs blocking.

又、USP4,251,137に開示されている可変減
色フィルター素子は少なくとも一方が光学的に等方性の
回折格子構造を有する基板間に屈折率可変物質、例えば
液晶を充填し、該液晶に電界を印加することにより液晶
の屈折率を変化させ、回折格子による回折効果を利用し
て光の透過、遮光等の光変調を行う表示素子である。
Further, the variable subtractive color filter element disclosed in US Pat. This is a display element that changes the refractive index of the liquid crystal by applying the same amount of light, and uses the diffraction effect of the diffraction grating to perform optical modulation such as transmitting light and blocking light.

この表示素子を用いて任意の偏光成分を有する入射光の
光変調制御を行う為には、これらの表示素子を互いに、
その回折格子の方向が直交する様に重ね合わせるか、又
は1対の対向する基板面に互いに配列方向が直交する様
に回折格子を形成し、この基板間に液晶を充填する構成
をとること等が必要となってくる。
In order to perform optical modulation control of incident light having an arbitrary polarization component using this display element, these display elements must be connected to each other,
The diffraction gratings may be stacked so that their directions are perpendicular to each other, or the diffraction gratings may be formed on a pair of opposing substrate surfaces so that their alignment directions are perpendicular to each other, and liquid crystal may be filled between the substrates. becomes necessary.

しかしながら回折格子の凹部に液晶を充填させる構造の
素子においては多くの場合回折格子中の各液晶分子は格
子ピッチに比較して道かに長い筒状、又は溝状の格子壁
(通常、格子長さ〉〉格子ピッチx100)に囲まれて
いる。この為その格子壁面力に起因する格子に平行な方
向の大きな形状配向規制力に束縛され、通常の無格子の
液晶表示素子では可能であった相対する上下基板面上の
配向膜による電圧無印加時の液晶の自発配向状態の設定
が困難となり、機能上及び構造上の不都合を生じていた
However, in devices with a structure in which the recesses of the diffraction grating are filled with liquid crystal, in many cases each liquid crystal molecule in the diffraction grating has a cylindrical or groove-like grating wall (usually the grating length s〉〉lattice pitch x 100). For this reason, it is constrained by a large shape alignment regulating force in the direction parallel to the lattice due to the lattice wall force, and no voltage can be applied due to the alignment films on the opposing upper and lower substrate surfaces, which is not possible with ordinary lattice-free liquid crystal display elements. It has become difficult to set the spontaneous alignment state of the liquid crystal at the time, resulting in functional and structural inconveniences.

(発明が解決しようとする問題点) 本発明は回折格子の凹部に液晶を充填し、該液晶の配向
状態を制御し、光の透過や遮光等の光変調を行う際、回
折格子の凹部の格子方向の形状及び相対する基板面側の
少なくとも一方に所定の機能を有する配向膜を設け、該
凹部に充填した液晶の配向状態を所望の状態に設定する
ことにより、従来困難であったノーマリオープン表示や
マルチプレックス特性の向上環の諸機能の向上を図った
光変調装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention fills the recesses of a diffraction grating with liquid crystal, controls the alignment state of the liquid crystal, and performs light modulation such as light transmission or light blocking. By providing an alignment film with a predetermined function on at least one of the shape in the lattice direction and the opposing substrate surface side, and setting the alignment state of the liquid crystal filled in the recess to the desired state, it is possible to achieve normalization, which was previously difficult. The purpose of the present invention is to provide a light modulation device with improved functions for open display and multiplex characteristics.

(問題点を解決するための手段) 2枚の基板と該2枚の基板間の相対する基板面の一方に
回折格子を設け、該回折格子と該基板との間に液晶を充
填し、該液晶の配向状態を制御する手段とを設けた光変
調装置において、前記回折格子の凹部の格子方向の長さ
を格子ピッチの115〜100倍とし、該回折格子の有
限長格子単位を周期的に配置すると共に、前記相対する
基板面側の少なくとも一方の基板面側に前記液晶の自発
配向状態を規制する配向膜を設けたことである。
(Means for solving the problem) A diffraction grating is provided on one of two substrates facing each other, a liquid crystal is filled between the diffraction grating and the substrate, and a liquid crystal is filled between the diffraction grating and the substrate. In the light modulation device, the length of the concave portion of the diffraction grating in the grating direction is set to 115 to 100 times the grating pitch, and the finite length grating units of the diffraction grating are periodically arranged. In addition, an alignment film for regulating the spontaneous alignment state of the liquid crystal is provided on at least one of the opposing substrate surfaces.

(実施例) 第1図は本発明の一実施例の構成と光変調機能を示す説
明図である。図中5.5′は透明基板、4.4′は透明
電極、2は回折格子であり、使用波長に対して透明な光
学部材より成っている。本実施例における回折格子2の
凹部2aの格子方向の長さ1□は格子ピッチの175〜
100倍の範囲内に設定されており、格子部2bと凹部
2aより成る形状の有限長格子単位2Cが複数個、例え
ば市松模様に周期的に配置されている。
(Embodiment) FIG. 1 is an explanatory diagram showing the configuration and light modulation function of an embodiment of the present invention. In the figure, 5.5' is a transparent substrate, 4.4' is a transparent electrode, and 2 is a diffraction grating, which are made of optical members that are transparent to the wavelength used. In this embodiment, the length 1□ of the concave portion 2a of the diffraction grating 2 in the grating direction is 175~
A plurality of finite length lattice units 2C each having a shape of lattice portions 2b and recesses 2a are arranged periodically in a checkerboard pattern, for example.

1は液晶であり、例えば誘電異方性が負のネマチック液
晶であり、回折格子2の凹部2aに充填されている。特
に本実施例では液晶1は電圧無印加のときは後述する配
向膜3,3′により規制され、透明基板5.5′方向に
配向規制されたホメオトロピック配向を示している。3
,3′は垂直配向剤により処理の施されている配向膜で
あり、透明基板5.5′の双方の基板面側に設けられて
おり、回折格子の凹部の長さが限定される構造の形状配
向規制力の小さな市松模様の回折格子の凹部2aに充填
された液晶分子1の配向状態を制御している。
1 is a liquid crystal, for example a nematic liquid crystal with negative dielectric anisotropy, and is filled in the recess 2a of the diffraction grating 2. In particular, in this embodiment, when no voltage is applied, the liquid crystal 1 is regulated by alignment films 3 and 3', which will be described later, and exhibits homeotropic alignment in the direction of the transparent substrate 5 and 5'. 3
, 3' are alignment films treated with a vertical alignment agent, which are provided on both substrate surfaces of the transparent substrate 5 and 5', and have a structure in which the length of the recess of the diffraction grating is limited. The orientation state of the liquid crystal molecules 1 filled in the recesses 2a of the checkered diffraction grating with a small shape orientation regulating force is controlled.

6は任意の偏光特性を有する入射光、7,7′は入射光
5のうちの互いに偏光方向が直交する偏光成分で、偏光
成分7は回折格子2の格子方向の成分、偏光成分7′は
格子方向と直交する方向の成分である。
6 is incident light having arbitrary polarization characteristics, 7 and 7' are polarization components of the incident light 5 whose polarization directions are perpendicular to each other, polarization component 7 is a component in the grating direction of diffraction grating 2, and polarization component 7' is This is the component in the direction perpendicular to the lattice direction.

本実施例では回折格子2の両側に対向して設けた透明電
極4.4′を介して回折格子2の凹部に充填した液晶l
に電界を印加し、液晶1のチルト角を変化させ、該液晶
1の屈折率を制御することにより、入射光6に所望の回
折効果を生じせしめて光変調を行っている。
In this embodiment, the liquid crystal l is filled into the concave portion of the diffraction grating 2 via transparent electrodes 4 and 4' provided oppositely on both sides of the diffraction grating 2.
By applying an electric field to the liquid crystal 1, changing the tilt angle of the liquid crystal 1, and controlling the refractive index of the liquid crystal 1, a desired diffraction effect is produced in the incident light 6, and light modulation is performed.

次に本実施例における光変調装置の光変調原理について
説明する。第1図において液晶1に電界が印加されてい
ない自発配向状態、即ち静的状態においては同図に示す
ように液晶1が回折格子2の凹部2a内において透明基
板5,5′方向に配向されたホメオトロピック配向を示
している。この静的状態の光変調装置に入射光6を入射
させたとき、入射光6の偏光成分7,7′は共に液晶1
の常屈折率n0を感じる。ここで回折格子2の格子部2
bの屈折率n6をn、I=noとなるように予め設定し
ておけば入射光6は回折を起さずそのまま全部透過し、
光変調装置は消去状態即ちオーブン状態となる。
Next, the light modulation principle of the light modulation device in this embodiment will be explained. In FIG. 1, in a spontaneous alignment state where no electric field is applied to the liquid crystal 1, that is, in a static state, the liquid crystal 1 is aligned in the direction of the transparent substrates 5 and 5' within the recess 2a of the diffraction grating 2, as shown in the same figure. It shows a homeotropic orientation. When the incident light 6 is incident on the light modulation device in a static state, the polarization components 7 and 7' of the incident light 6 are both polarized by the liquid crystal 1.
Feel the ordinary refractive index n0. Here, the grating part 2 of the diffraction grating 2
If the refractive index n6 of b is set in advance so that n, I=no, the incident light 6 will be completely transmitted without causing any diffraction.
The light modulator is in an erased or oven state.

次に液晶1に透明電極4.4′を介して電界を印加する
と、液晶1は格子方向に沿ったホモジニアス配向状態と
なってくる。そうすると入射光6の偏光成分7.7′の
うち、液晶1の配向方向と直交する偏光成分7′は電圧
印加前と同様に液晶1の常屈折率n0を感じる為何ら変
化せず、そのまま透過する。一方、液晶1の配向方向と
平行な偏光成分7は液晶1の異常屈折率neを感じる。
Next, when an electric field is applied to the liquid crystal 1 through the transparent electrodes 4.4', the liquid crystal 1 becomes homogeneously aligned along the lattice direction. Then, among the polarized light components 7.7' of the incident light 6, the polarized light component 7' that is perpendicular to the orientation direction of the liquid crystal 1 will not change at all and will be transmitted as is because it will feel the ordinary refractive index n0 of the liquid crystal 1 as before the voltage application. do. On the other hand, the polarized light component 7 parallel to the alignment direction of the liquid crystal 1 senses the extraordinary refractive index ne of the liquid crystal 1.

ここでn、=neである為、入射光6のうち偏光成分7
は回折格子2により回折される。この為光変調装置は表
示状態、即ちクローズ状態となる。このように第1図に
示す光変調装置は電圧印加で表示状態とし、電圧無印加
で消去状態の所謂ノーマリオープン型の表示機能を有し
ている。
Here, since n, = ne, the polarized light component 7 of the incident light 6
is diffracted by the diffraction grating 2. Therefore, the light modulation device is in a display state, that is, a closed state. As described above, the optical modulation device shown in FIG. 1 has a so-called normally open display function in which the display state is set by applying a voltage, and the erase state is set by applying no voltage.

一般に任意方向の偏光成分の光変調を行うには回折格子
の格子方向が互いに直交するように第1図に示す光変調
装置の要部を積層すれば良い。
Generally, in order to perform optical modulation of polarized light components in arbitrary directions, it is sufficient to stack the main parts of the optical modulation device shown in FIG. 1 so that the grating directions of the diffraction gratings are orthogonal to each other.

ここで第1図に示すように回折格子2の格子部2bと凹
部2aの格子ピッチ寸法なP、、P2とし、格子ピッチ
を2P (=P+ +P2 )、格子部2bと凹部2a
の格子方向の寸法をl+、12とし、格子方向ピッチを
21 (=1.+12)、格□子寸法のライン比をP+
 / (PI+p2)、格子方向のスペース比を11 
/ (II +12 )とする。そうするとこれらの値
で決定される1周期中における格子部2bの屈折率n、
と凹部2aに充填された液晶1のホモジニアス配向によ
る液晶1の格子方向の偏光成分7に対する屈折率n6は
第2図に示すようになる。第2図において横軸は格子ピ
ッチ、縦軸は格子方向ピッチを示す。又、20aは凹部
2aの領域、20bは格子部2bの領域を示す。
Here, as shown in FIG. 1, the grating pitch dimensions of the grating part 2b and the recessed part 2a of the diffraction grating 2 are P, , P2, the grating pitch is 2P (=P+ +P2), and the grating part 2b and the recessed part 2a.
The dimension in the lattice direction is l+, 12, the pitch in the lattice direction is 21 (=1.+12), and the line ratio of the lattice dimension is P+
/ (PI+p2), space ratio in lattice direction is 11
/ (II +12). Then, the refractive index n of the grating portion 2b during one period determined by these values,
The refractive index n6 for the polarized light component 7 in the lattice direction of the liquid crystal 1 due to the homogeneous orientation of the liquid crystal 1 filled in the recess 2a is as shown in FIG. In FIG. 2, the horizontal axis shows the grating pitch, and the vertical axis shows the pitch in the grating direction. Further, 20a indicates a region of the recessed portion 2a, and 20b indicates a region of the lattice portion 2b.

尚、本実施例において格子方向のとッチ21を11≠1
2とし4つ、又はそれ以上の領域より有限長格子単位を
構成して周期的に配置しても良い。今、回折格子2の格
子部、即ち凹部2aの高さをT、回折格子2を矩形状と
したとき偏光成分7.7′に対する回折格子2の零次透
過回折光の回折効率η。は概略、次式で表わされる。
In addition, in this embodiment, the switch 21 in the lattice direction is set to 11≠1.
A finite length lattice unit may be constructed from two, four, or more regions and arranged periodically. Now, assuming that the height of the grating portion of the diffraction grating 2, that is, the concave portion 2a, is T, and the diffraction grating 2 is rectangular, the diffraction efficiency η of the zero-order transmitted diffracted light of the diffraction grating 2 with respect to the polarization component 7.7' is. is roughly expressed by the following equation.

ηo =  P%・Py’ + (1−PX)24y2
+PxJ]−Py)2+(+−Pj2・(+−py)2 + 2P、−P、”−(1−P、)・cos(2yrR
)+ 2P、2・P、−(1−P、)−cos(2yr
R)+ 4P、−P、・(1−PX)・(1−P、)+
 2n−pX)−(+−py)(px+py−2pxp
y)cos(2πR)p、−7/ (PI+P2)  
、  p、 −II / (it÷12)R−(ne 
−n、)4 /λ−Δn−T /λ尚、上式(1)は波
長λ<<P、lと仮定した場合の近似式でありP、1が
数μm程度の場合は多少のズレが生ずる。
ηo = P%・Py' + (1-PX)24y2
+PxJ]-Py)2+(+-Pj2・(+-py)2+2P,-P,"-(1-P,)・cos(2yrR
)+2P,2・P,−(1−P,)−cos(2yr
R)+ 4P, -P,・(1-PX)・(1-P,)+
2n-pX)-(+-py)(px+py-2pxp
y) cos(2πR)p, -7/ (PI+P2)
, p, -II / (it÷12)R-(ne
-n, )4 /λ-Δn-T /λ Note that the above equation (1) is an approximate equation assuming that the wavelength λ<<P, l, and if P, 1 is about several μm, there will be some deviation. occurs.

次に本実施例において回折格子2の凹部の格子方向の長
さを前述の如く特定した条件下で透明基板5.5′の双
方の基板面側に設けた配向膜3゜3′の液晶1に対する
作用について説明する。
Next, in this embodiment, under the conditions in which the length of the concave portion of the diffraction grating 2 in the grating direction was specified as described above, the liquid crystal 1 of the alignment film 3.3' provided on both substrate surfaces of the transparent substrate 5.5'. The effect on this will be explained.

第3図°(A)は従来の光変調素子の要部説明図である
。同図に示す光変調素子は格子ピッチに対して格子方向
の長さが通かに大きい(格子とッチX100<格子方向
の長さ)為に、回折格子の凹部中に充填された液晶1は
格子方向に発生する強い形状配向規制力に束縛され、格
子方向のホモジニアス配向を強制される。この格子方向
の形状配向規制力はサブミクロンルミクロンの格子ピッ
チを有する回折格子においては非常に大きい為、種々の
配向状態を得ようとする場合、通常の無格子液晶セルで
行われている相対する上下基板面側に設けた配向膜によ
る自発配向状態の規制力では困難となってくる。
FIG. 3A is an explanatory diagram of the main parts of a conventional optical modulation element. In the light modulation element shown in the figure, the length in the grating direction is much larger than the grating pitch (grating and pitch X100<length in the grating direction), so the liquid crystal 1 is constrained by a strong shape orientation regulating force generated in the lattice direction, and is forced to have homogeneous orientation in the lattice direction. This shape orientation regulating force in the lattice direction is extremely large in a diffraction grating with a submicron-Lumicron lattice pitch, so when trying to obtain various orientation states, it is necessary to It becomes difficult to control the spontaneous alignment state by the alignment films provided on the upper and lower substrate surfaces.

例えば垂直配向膜の場合、液晶は完全なホメオトロどツ
ク配向にならず格子方向の形状規制力と上下垂直配向膜
の規制力が重なり合い、結果として格子方向の傾斜配向
を行うに過ぎない。
For example, in the case of a vertical alignment film, the liquid crystal is not perfectly homeotropically aligned, but the shape regulating force in the lattice direction and the regulating force of the upper and lower vertical alignment films overlap, and as a result, only an inclined alignment in the lattice direction is achieved.

これに対して本実施例では前述の如く回折格子の格子方
向の長さを格子ピッチの175〜100倍に限定した有
限長格子単位を周期的に配置した構成をとることにより
格子方向の形状配向規制力を弱め結果として上下基板面
側に設けた配向膜による規制力により、液晶の配向状態
を良好に制御している。
On the other hand, in this embodiment, as described above, the length of the diffraction grating in the grating direction is limited to 175 to 100 times the grating pitch, and finite length grating units are arranged periodically to improve the shape orientation in the grating direction. As a result of weakening the regulating force, the alignment state of the liquid crystal can be well controlled by the regulating force by the alignment films provided on the upper and lower substrate surfaces.

例えば第3図(B)に示すように通常の無格子液晶セル
と同様に上下基板面の配向膜処理による垂直配向、第3
図(C)に示すような格子方向と直交方向の平行配向、
そして第3図(D)に示すような平行ツイスト配向等の
自発配向状態を任意に、しかも良好な状態に設定するこ
とを可能としている。
For example, as shown in FIG. 3(B), vertical alignment is achieved by alignment film treatment on the upper and lower substrate surfaces, as in a normal non-lattice liquid crystal cell;
Parallel orientation in the direction orthogonal to the lattice direction as shown in Figure (C),
Furthermore, it is possible to arbitrarily set a spontaneous alignment state such as a parallel twist alignment as shown in FIG. 3(D) to a good state.

ここで本実施例における回折格子2の液晶1に対する形
状配向規制力の制御原理を剛体同志の斥力に基づく「壁
面力」のモデルを例にとり簡単に説明する。
Here, the principle of controlling the shape alignment regulating force of the diffraction grating 2 on the liquid crystal 1 in this embodiment will be briefly explained using a model of "wall force" based on the repulsion between rigid bodies as an example.

第4図(A)に示すように回折格子2の凹部の高さがT
、幅(格子ピッチの半周期)をP、長さがLの回折格子
2から成る剛体壁箱30a (格子中心(0,0,0)
 )中に閉じ込められた任意の位置(Xo+Y0、Zo
)の剛体棒が8壁より受ける剛体斥力のうち凹部の長さ
しによる各壁面力の合成ベクトル(=形状配向規制力)
の変化を定性的に説明する。
As shown in FIG. 4(A), the height of the concave portion of the diffraction grating 2 is T.
, a rigid wall box 30a consisting of a diffraction grating 2 with a width (half period of the grating pitch) of P and a length of L (grid center (0, 0, 0)
) at any position (Xo+Y0, Zo
) is the composite vector of each wall force due to the length of the recess (=shape orientation regulating force) among the rigid repulsive forces that the rigid rod of ) receives from the 8 walls.
Qualitatively explain the changes in

第4図(A) 、 (B)に示すように壁面と液晶分子
31が最も斥力を及ぼしにくい状態、即ち互いに平行で
ある状態がエネルギー的に安定であると考える。同図に
おいてxy壁面(z−T/2 )の点(x、y、T/2
)に位置する微少壁面(dx dy)が液晶分子31 
(X0、V0、Zo)に及ぼす力d F (x、y、T
/2)は方向がxy面に平行なe、(X成分)e2 (
X成分)であり大きさが第4図(C)に示すように液晶
分子31と微少壁面とのなす角α(X成分)、β(X成
分)を考慮した微少壁面の実効面積に比例し、液晶分子
と微少壁面との距離の関数 exp(−(x−xo)2◆(y−yo)2+(T/2
−za)2/p)(但しρは斥力伝達の有効距離を示す
定数)に比例すると仮定する。そうするとxy壁面z 
= T/2が液晶分子に及ぼす力F (z−T/2 )
は−−一−−(2) となる。但しに’、pは定数である。
As shown in FIGS. 4(A) and 4(B), the state in which the wall surface and the liquid crystal molecules 31 exert the least repulsive force, that is, the state in which they are parallel to each other, is considered to be energetically stable. In the same figure, the point (x, y, T/2
) is the liquid crystal molecule 31
Force d F (x, y, T
/2) is e whose direction is parallel to the xy plane, (X component) e2 (
X component), and its size is proportional to the effective area of the micro wall surface taking into account the angles α (X component) and β (X component) formed between the liquid crystal molecules 31 and the micro wall surface, as shown in Figure 4 (C). , the function of the distance between the liquid crystal molecules and the minute wall exp(-(x-xo)2◆(y-yo)2+(T/2
-za)2/p) (where ρ is a constant indicating the effective distance of repulsive force transmission). Then xy wall surface z
= Force F that T/2 exerts on liquid crystal molecules (z-T/2)
becomes −−1−−(2). However, ' and p are constants.

以下同様にして6壁面の合力F=F、+F、+F2をx
、y、zの3成分に分けて記述すると(但しkは定数で
ある。)となる。
Similarly, the resultant force of the 6 walls F=F, +F, +F2 is x
, y, and z (where k is a constant).

液晶のプレチルト角θ。(x、y平面と液晶分子とのな
す角)は平行配向規制力FP=FX+F。
Liquid crystal pretilt angle θ. (The angle formed by the x, y plane and the liquid crystal molecules) is the parallel alignment regulating force FP=FX+F.

と垂直配向規制力Fv=FXによフて決定され、θo=
  jan−’ (Fv / Fp)    =・=・
”−=・(4)で示される。
is determined by the vertical alignment regulating force Fv=FX, and θo=
jan-' (Fv / Fp) =・=・
”−=·(4).

例えば回折格子の凹部の高さT = 1.5μm、格子
幅P = 0.75μmとした場合に、凹部の長さしに
よる格゛子中心に位置する液晶(0,0,0)に及ぼさ
れる垂直配向規制力FV、平行配向規制力FPの変化を
(2)式、(3)式に従って計算すると第5図に示すよ
うになる。
For example, when the height T of the recess of the diffraction grating is 1.5 μm and the grating width P = 0.75 μm, the length of the recess will affect the liquid crystal (0,0,0) located at the center of the grating. When the changes in the vertical alignment regulating force FV and the parallel alignment regulating force FP are calculated according to equations (2) and (3), the results are shown in FIG.

同図に示すように垂直配向規制力Fvは凹部の長さL#
1μ以上ではほとんど変化しないのに対して、平行配向
規制力Fpは凹部の長さL〜50μm程度まで増加しつ
づけ、50μm前後で略飽和する。
As shown in the figure, the vertical alignment regulating force Fv is the length of the recess L#
On the other hand, the parallel alignment regulating force Fp continues to increase up to the length L of the recessed portion to approximately 50 μm, and is approximately saturated at around 50 μm, whereas it hardly changes at 1 μm or more.

特に有限長格子単位に基づく格子方向の凸凹比、即ち1
.+12比を1:1とすればフラウンホーファの(1)
式によって示される様に零次回折効率を通常の回折格子
(格子ピッチ×100く〈凹部の長さ)同等に維持しつ
つ、光学的機能を劣化させることなく、凹部の長さしを
前述の如く設定することを特徴としている。凹部の長さ
しが格子ピッチのI75以下と短くなりすぎると一周期
中の凹部と凸部の長さの比が1:4の場合においても凹
部の長さが格子溝方向の長さにより大きくなり格子溝方
向への液晶の配向が困難となる為、光学機能を果たさな
くなり、又格子ピッチの100倍以上と長くなりすぎる
と第4図に示される様に水平方向の配向規制力FPはほ
ぼ飽和してしまい、溝方向の長さを限定しない通常の格
子と実質的に等しくなってしまう。
In particular, the convexity ratio in the lattice direction based on finite length lattice units, that is, 1
.. If the +12 ratio is 1:1, Fraunhofer's (1)
As shown by the formula, while maintaining the zero-order diffraction efficiency equivalent to that of a normal diffraction grating (grating pitch x 100 × length of the recess), the length of the recess can be changed as described above without deteriorating the optical function. The feature is that it can be set as follows. If the length of the recess becomes too short, i.e. less than the grating pitch I75, the length of the recess will become larger than the length in the grating groove direction even if the ratio of the length of the recess to the convex part in one cycle is 1:4. Since it becomes difficult to align the liquid crystal in the direction of the grating grooves, the optical function is no longer fulfilled, and if the length is too long (more than 100 times the grating pitch), as shown in Figure 4, the horizontal alignment regulating force FP will be almost zero. This results in saturation, and the length in the groove direction becomes substantially equal to a normal lattice that does not limit the length.

この為本実施例では回折格子2の凹部の格子方向の長さ
しを数10μmピッチ以下とし、即ち前述の如く格子ピ
ッチの175〜100倍程度とし、形状配向規制力F=
Fp+Fvを通常格子セルの数分の1程度にまで減少さ
せている。これにより上下基板面側に設けた配向膜によ
る配向規制力により液晶1の配向状態を良好に制御する
ことのできる状態をつくり出している。
For this reason, in this embodiment, the length of the concave portions of the diffraction grating 2 in the grating direction is set to a pitch of several tens of μm or less, that is, as described above, approximately 175 to 100 times the grating pitch, and the shape orientation regulating force F=
Fp+Fv is reduced to about a fraction of that of a normal grid cell. This creates a state in which the alignment state of the liquid crystal 1 can be well controlled by the alignment regulating force of the alignment films provided on the upper and lower substrate surfaces.

次に第3図(B) 、 (G) 、 (o)に示す本発
明の一実施例について説明する。第3図(B)は上下基
板面側に、例えば比較的臨界表面エネルギーの小さいシ
ラニン系界面治性剤で垂直配向処理を施したものであり
、回折格子の上方と下方の矢印B1は各々上下の不図示
の配向膜の規制力の方向を示す。格子方向の長さしが限
定された有限長格子単位を市松模様に周期的に配置した
構造の回折格子によって形状配向規制力を弱め、これに
より上下基板面側に設けた配向膜による規制力を支配的
とし、従来の回折格子において傾斜配向をしていた液晶
を改良し、良好なるホメオトロピック配向状態をつくり
出している。
Next, an embodiment of the present invention shown in FIGS. 3(B), 3(G), and 3(o) will be described. In Fig. 3(B), the upper and lower substrate surfaces are subjected to vertical alignment treatment using, for example, a silanine-based surfactant with a relatively small critical surface energy, and the upper and lower arrows B1 of the diffraction grating indicate the upper and lower directions, respectively. The direction of the regulating force of the alignment film (not shown) is shown. The shape orientation regulating force is weakened by the diffraction grating, which has a structure in which finite length lattice units with limited length in the lattice direction are periodically arranged in a checkered pattern, thereby reducing the regulating force due to the alignment films provided on the upper and lower substrate surfaces. By improving the liquid crystal, which was dominant and tilted in conventional diffraction gratings, a good homeotropic alignment was created.

第3図(C)は上下基板面側にポリイミド等で平行配向
処理を施した後、格子方向と直交する方向にラビング処
理を行い、格子方向に対し直交方向のホモジニアス配向
状態をつくり出したものである。
In Figure 3(C), the upper and lower substrate surfaces are subjected to parallel alignment treatment using polyimide, etc., and then rubbed in a direction perpendicular to the lattice direction to create a homogeneous alignment state in the direction perpendicular to the lattice direction. be.

同図に示す格子方向直交配向型素子と従来型の格子方向
平行配向型素子とを組み合わせることにより、構造的に
中板の不要な光変調装置を実現することを可能としてい
る。従来型の格子方向平行配向型素子を格子方向を互い
に直交させて中板を挟まずに直接組み合わせる構成にお
いては配向方向が互いに直交する液晶の境界領域におけ
る配向の乱れ、施先の発生、及び電極間距離が2倍にな
ることによる駆動電圧の上界といフた問題があり、あま
り好ましくなかった。
By combining the lattice direction orthogonal alignment type element shown in the figure with the conventional lattice direction parallel alignment type element, it is possible to realize an optical modulation device that structurally does not require an intermediate plate. In a conventional configuration in which lattice-direction parallel alignment type elements are directly combined with the lattice directions perpendicular to each other without sandwiching an intermediate plate, the alignment may be disturbed in the boundary area of the liquid crystal whose alignment directions are orthogonal to each other, the occurrence of dispersion, and electrode problems may occur. There were problems such as an upper limit of the driving voltage due to the doubling of the distance between the two, which was not very desirable.

第6図は第3図(C)に示す構成を基本構成とする表示
素子を2つ相対する市松模様状の回折格子2,2′の格
子方向を同一とし、各有限長格子単位を格子方向に牛゛
周期ずらし格子部と凹部とが一致するように組み合わせ
た構成をとっている。
FIG. 6 shows two display elements having the basic configuration shown in FIG. The structure is such that the periodically shifted lattice portion and the recessed portion are combined so as to coincide with each other.

そして液晶の充填部を互いに孤立させ、配向方向の異る
液晶同志1.1′の接触する境界をなくし、又回折椅子
のパターニング、ドライエツチング工程前に格子上部に
透明電極4′及び配向膜3′を形成することにより各孤
立した液晶の充填部の上下面、即ち格子部上及び凹部の
底に各々透明電極4.4’、4”及び配向膜3’、3゜
3″、3″′を存する構造をとフでいる。
Then, the filled portions of liquid crystals are isolated from each other, and there is no boundary where liquid crystals 1.1' with different alignment directions come into contact with each other. Also, before the patterning and dry etching processes of the diffraction chair, a transparent electrode 4' and an alignment film 3 are placed on the upper part of the grating. ' By forming transparent electrodes 4.4', 4'' and alignment films 3', 3゜3'', 3'' on the upper and lower surfaces of each isolated liquid crystal filling part, that is, on the grid part and the bottom of the recess, respectively. The structure in which the structure exists is removed.

これにより従来型における前述の問題点を解決した中板
不要の直接組み合わせ型の光変調装置を達成している。
As a result, a direct combination type optical modulation device that does not require an intermediate plate is achieved, which solves the above-mentioned problems of the conventional type.

尚、第6図において各配向膜のラビング方向は格子後方
に対して配向膜3,3”は垂直方向、配向膜3 ’ 、
 3”’は平行配向であり、又格子部の上方の透明を極
パターン4′の導通な確保する為に各回折格子単位の凹
部の角は線でつなげるのではなく、ある曲率な有した曲
面、又は平面によってつながる構造としている。
In FIG. 6, the rubbing direction of each alignment film is perpendicular to the rear of the grating for the alignment films 3, 3'', and the rubbing direction for the alignment films 3',
3"' is parallel alignment, and in order to ensure transparency above the grating part and conduction of the polar pattern 4', the corners of the concave parts of each diffraction grating unit are not connected by lines, but are curved surfaces with a certain curvature. , or a structure connected by a plane.

第6図において入射光6のうち偏光成分7は第1層(1
’、 2’)によって回折され、第1層を通過した偏光
成分7′は第2層(1,2)によって回折され、これに
より全体として任意の偏光成分に対して光変調を行って
いる。
In FIG. 6, the polarized light component 7 of the incident light 6 is in the first layer (1
The polarized light component 7' that has been diffracted by the first layer (1, 2') and passed through the first layer is diffracted by the second layer (1, 2), thereby optically modulating any polarized light component as a whole.

第3図(D)は上限基板面側にポリイミド等の平行配向
剤を塗布した後、各々どちらか一方の面を格子方向に平
行な方向と直交する方向に各々ラビング処理を施し、凹
部の液晶のツイストモートを実現している。回折格子の
上方、下方の矢印D1は各々上下の各配向膜の規制力の
方向を示している。
Figure 3 (D) shows that after applying a parallel alignment agent such as polyimide to the upper substrate side, one side of each side is rubbed in a direction parallel to the lattice direction and in a direction perpendicular to the lattice direction. The twist mote is realized. Arrows D1 above and below the diffraction grating indicate the direction of the regulating force of the upper and lower alignment films, respectively.

液晶として正の銹電性を持つネマチック液晶中に液晶分
子なラセン状に回転させる物質、例えばカイラル剤を添
加し、自発カイラルピッチをセルキャップと整合させる
ことにより所望のライス1−角を得ている。
A substance that rotates liquid crystal molecules in a helical shape, such as a chiral agent, is added to a nematic liquid crystal that has positive galvanicity as a liquid crystal, and the desired Rice 1-angle is obtained by aligning the spontaneous chiral pitch with the cell cap. There is.

例えば、自発カイラルピッチをセルキャップの4倍に設
定すればツイスト角1/2πとなり、又、473倍に設
定すれば3/2πのツイスト角を得ることができる。こ
のように回折格子中に前記平行ツイストモードを導入す
ることにより零時回折効率η0の印加電圧特性のしきい
値電圧が上昇し、立ち上がりの急峻性が増加する為、従
来型の格子方向のホモジニアス配向素子で問題であった
マルチプレックス性の向上を図っている。
For example, if the spontaneous chiral pitch is set to 4 times the cell cap, the twist angle will be 1/2π, and if it is set to 473 times, the twist angle will be 3/2π. In this way, by introducing the parallel twist mode into the diffraction grating, the threshold voltage of the applied voltage characteristic of the zero diffraction efficiency η0 increases, and the steepness of the rise increases. The aim is to improve multiplex performance, which was a problem with alignment elements.

尚、以上の各実施例においては2つの基板面側に各々配
向膜を施した場合を示したが一方の基板面側にのみ設け
ても良い。
In each of the above embodiments, the alignment film is provided on each of the two substrate surfaces, but the alignment film may be provided on only one substrate surface.

尚、本実施例における有限長格子単位を配置するパター
ンは市松模様に限定されずに格子方向において、各有限
長格子単位同志が同一方向で、充填される液晶の配向方
向が一軸性であればどのようなパターンであっても良い
Note that the pattern in which the finite length lattice units are arranged in this example is not limited to a checkerboard pattern, but as long as the finite length lattice units are in the same direction in the lattice direction and the orientation direction of the liquid crystal to be filled is uniaxial. Any pattern is acceptable.

例えば第7図に示す様に0.5μm以下程度の厚みを持
つ隔壁81によって回折格子の凹部82の長さを限定す
るような構成であっても良い。
For example, as shown in FIG. 7, the length of the recess 82 of the diffraction grating may be limited by a partition wall 81 having a thickness of approximately 0.5 μm or less.

(発明の効果) 本発明によれば回折格子の凹部に液晶を充填し、該液晶
の配向状態を制御して光変調を行う際、前述の如く凹部
の寸法を特定し、形状配向規制力を弱め、上下基板面側
若しくは一方の基板面側に設けた配向膜による規制力を
支配的にすることにより、従来の回折格子の凹部に液晶
を充填する型の表示素子において困難であフた自然配向
状態の制御を容易にし、例えば垂直配向によるノーマリ
−オープン型(電界ONの時表示、OFFの時消去)表
示の実現や、平行ツイスト配向によるマルチプレックス
性の向上、そして格子方向直交方向平行配向による中板
不要直接組み合わせ型素子の実現による低コスト化を図
った光変調装置を達成することができる。
(Effects of the Invention) According to the present invention, when the concave portion of a diffraction grating is filled with liquid crystal and the orientation state of the liquid crystal is controlled to perform light modulation, the dimensions of the concave portion are specified as described above, and the shape and orientation regulating force is controlled. By weakening the regulating force and making the regulating force by the alignment films provided on the upper and lower substrate surfaces or on one substrate surface dominant, it is possible to solve the problem naturally, which is difficult in conventional display elements in which liquid crystal is filled in the recesses of the diffraction grating. It is easy to control the orientation state, for example, it is possible to realize a normally open display (display when the electric field is ON, disappear when the electric field is OFF) by vertical alignment, improve multiplex performance by parallel twist orientation, and achieve parallel orientation in the direction orthogonal to the lattice direction. By realizing a direct combination type element that does not require an intermediate plate, it is possible to achieve a low-cost optical modulation device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略図、第2図は本発明に
係る回折格子の有限長格子単位の説明図、第3図(A)
 、 (B) 、 (に) 、 (D)は本発明に係る
表示素子における有限長格子単位と配向膜との組み合わ
せによる凹部中の液晶の自発配向状態を示す説明図、第
4図(A) 、 (B) 、 (C)は形状規制力の剛
体壁カモデルの説明図、第5図は第4図に示すモデルに
よる形状規制力の高さ方向成分F V s格子方向成分
Fpの凹部の長さしとの関係を示す説明図、第6図は本
発明の他の一実施例の概略図、第7図は本発明に係る有
限長格子単位の他の一実施例の説明図である。 図中、1は液晶、2は回折格子、3.3’。 3 // 、 311/は配向膜、4,4′は透明電極
、5゜5′は透明基板、6は入射光である。 特許出願人  キャノン株式会社 高1図 第2図 0cL 格子ビ、ツ予 第 十 図 (A) 窮  6 7
FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a finite length grating unit of a diffraction grating according to the present invention, and FIG. 3 (A)
, (B), (D), and (D) are explanatory diagrams showing a spontaneous alignment state of liquid crystal in a recessed portion due to a combination of a finite length lattice unit and an alignment film in a display element according to the present invention, FIG. 4(A) , (B) and (C) are explanatory diagrams of the rigid wall model of the shape regulating force, and FIG. 5 is the length of the recess of the height direction component F V s lattice direction component Fp of the shape regulating force according to the model shown in FIG. FIG. 6 is a schematic diagram of another embodiment of the present invention, and FIG. 7 is an explanatory diagram of another embodiment of the finite length lattice unit according to the present invention. In the figure, 1 is a liquid crystal, 2 is a diffraction grating, and 3.3'. 3 // and 311/ are alignment films, 4 and 4' are transparent electrodes, 5°5' is a transparent substrate, and 6 is incident light. Patent Applicant: Canon Co., Ltd. High School 1st Figure 2 Figure 0cL Lattice B, Tsuyo Figure 10 (A) 6 7

Claims (5)

【特許請求の範囲】[Claims] (1)2枚の基板と該2枚の基板間の相対する基板面の
一方に回折格子を設け、該回折格子と該基板との間に液
晶を充填し、該液晶の配向状態を制御する手段とを設け
た光変調装置において、前記回折格子の凹部の格子方向
の長さを格子ピッチの1/5〜100倍とし、該回折格
子の有限長格子単位を周期的に配置すると共に、前記相
対する基板面側の少なくとも一方の基板面側に前記液晶
の自発配向状態を規制する配向膜を設けたことを特徴と
する光変調装置。
(1) A diffraction grating is provided on one of the opposing substrate surfaces between two substrates, a liquid crystal is filled between the diffraction grating and the substrate, and the alignment state of the liquid crystal is controlled. In the light modulation device, the length of the concave portion of the diffraction grating in the grating direction is set to 1/5 to 100 times the grating pitch, and the finite length grating units of the diffraction grating are arranged periodically, and A light modulation device characterized in that an alignment film for regulating the spontaneous alignment state of the liquid crystal is provided on at least one of the opposing substrate surfaces.
(2)前記配向膜は垂直配向剤であることを特徴とする
特許請求の範囲第1項記載の光変調装置。
(2) The light modulation device according to claim 1, wherein the alignment film is a vertical alignment agent.
(3)前記配向膜は前記相対する基板面側の双方に設け
られており、該2つの配向膜の配向規制方向が互いに直
交するようにラビング処理の施された平行配向処理剤よ
り形成されており、かつ前記回折格子の凹部に充填され
た液晶の自発配向状態が(n+1/2)π、(n=0、
1、2、・・・)程ツイストされた平行配向であること
を特徴とする特許請求の範囲第1項記載の光変調装置。
(3) The alignment films are provided on both sides of the opposing substrate surfaces, and are formed from a parallel alignment treatment agent that has been subjected to a rubbing treatment so that the alignment regulating directions of the two alignment films are perpendicular to each other. and the spontaneous alignment state of the liquid crystal filled in the concave portion of the diffraction grating is (n+1/2)π, (n=0,
2. The light modulation device according to claim 1, wherein the light modulation device has a parallel orientation twisted by an amount of 1, 2, . . . .
(4)前記配向膜は前記相対する基板面側の双方に設け
られており、該2つの配向膜の配向規制方向が前記回折
格子の格子方向に対して共に直交するようにラビング処
理の施された平行配向剤により形成されており、前記回
折格子の凹部に充填された液晶の自発配向状態が前記回
折格子の格子方向に対して直交する方向の平行配向であ
ることを特徴とする特許請求の範囲第1項記載の光変調
装置。
(4) The alignment films are provided on both sides of the opposing substrate surfaces, and are subjected to a rubbing treatment so that the alignment regulating directions of the two alignment films are both perpendicular to the grating direction of the diffraction grating. the liquid crystal filled in the recesses of the diffraction grating is formed of a parallel alignment agent, and the spontaneous alignment state of the liquid crystal filled in the recessed portion of the diffraction grating is parallel alignment in a direction perpendicular to the grating direction of the diffraction grating. The light modulation device according to scope 1.
(5)前記有限長格子単位が市松模様に配置されている
ことを特徴とする特許請求の範囲第1、2、3、又は4
項記載の光変調装置。
(5) Claim 1, 2, 3, or 4, characterized in that the finite length lattice units are arranged in a checkered pattern.
The light modulation device described in .
JP11762487A 1987-05-14 1987-05-14 Optical modulator Pending JPS63281131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11762487A JPS63281131A (en) 1987-05-14 1987-05-14 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11762487A JPS63281131A (en) 1987-05-14 1987-05-14 Optical modulator

Publications (1)

Publication Number Publication Date
JPS63281131A true JPS63281131A (en) 1988-11-17

Family

ID=14716348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11762487A Pending JPS63281131A (en) 1987-05-14 1987-05-14 Optical modulator

Country Status (1)

Country Link
JP (1) JPS63281131A (en)

Similar Documents

Publication Publication Date Title
US5825448A (en) Reflective optically active diffractive device
JP5323013B2 (en) Liquid crystal display
JP4080245B2 (en) Liquid crystal display
JP4714187B2 (en) Liquid crystal display device
JPH10133224A (en) Display device
JPS63281131A (en) Optical modulator
JP4749391B2 (en) Liquid crystal display
JP4714188B2 (en) Liquid crystal display device
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JP2007249244A (en) Liquid crystal display device
Matsumoto et al. Phase grating using a ferroelectric liquid-crystal mixture with a photocurable liquid crystal
JPS63281130A (en) Optical modulator
JPS63250621A (en) Optical modulation element
JPS62235926A (en) Optical modulation element
KR102651004B1 (en) Privacy barrier optical film and manufacturing method of the privacy barrier optical film
JP2517589B2 (en) Light modulation element
JPS62238520A (en) Optical modulator
JPS63281129A (en) Optical modulator
JPH0527091B2 (en)
JPS62238528A (en) Optical modulation element
JPS62237423A (en) Light modulating element
JPS6230221A (en) Liquid crystal display element
JPS62235924A (en) Optical modulation element
JPH0652351B2 (en) Light modulator
JPS6338917A (en) Liquid crystal optical modulator