JPS63279772A - Method for freezing food in loosened state and apparatus therefor - Google Patents

Method for freezing food in loosened state and apparatus therefor

Info

Publication number
JPS63279772A
JPS63279772A JP11319687A JP11319687A JPS63279772A JP S63279772 A JPS63279772 A JP S63279772A JP 11319687 A JP11319687 A JP 11319687A JP 11319687 A JP11319687 A JP 11319687A JP S63279772 A JPS63279772 A JP S63279772A
Authority
JP
Japan
Prior art keywords
freezing
food
cold air
processing space
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11319687A
Other languages
Japanese (ja)
Other versions
JPH06104050B2 (en
Inventor
Atsushi Yamazaki
淳 山崎
Kazuo Takemura
加州男 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP11319687A priority Critical patent/JPH06104050B2/en
Publication of JPS63279772A publication Critical patent/JPS63279772A/en
Publication of JPH06104050B2 publication Critical patent/JPH06104050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

PURPOSE:To reduce the size and power cost for the preparation of frozen food and to obtain a frozen food of loosened state at a low cost, by supplying a cooling gas from the lower part to the upper part of a cylindrical apparatus having plural partition sections and successively transferring a food from the partition section of upper state to that of lower stage. CONSTITUTION:Chilled gas for cooling is passed upward through a cylindrical apparatus 21 having plural partition sections 22a-22d vertically divided with gas-permeable trays 22. Separately, granules or small pieces of a food A to be cooled are supplied from the upper feeding port 29 of the cylindrical apparatus 21 and successively and intermittently transferred to the lower partition sections 22a-22d. If necessary, the food is agitated in each partition section. The frozen food is taken out of the cylindrical apparatus through the lower delivery port 30.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は粒状野菜、粒状果物、粒状肉、米飯、小エビ
などの食品を個別に付着することなく、各個体がバラ状
態を保持して凍結するためのバラ状凍結方法とその装置
に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention allows foods such as granular vegetables, granular fruits, granular meat, cooked rice, and small shrimp to be kept in a separate state without being individually attached. This invention relates to a method for freezing bulk pieces and an apparatus therefor.

「従来の技術」 冷凍食品には、グリンピース、コーン、ポテト、人参等
の粒状野菜や粒状果物、粒状肉、米飯、小エビなどの粒
状あるいは小片状のものがあり、このような粒状あるい
は小片状の冷凍食品では、必要量だけ小分けして調理が
行えるようにしたり、あるいは適宜量を配分して計量可
能なようにするため、互いに固着しないようバラ状に凍
結処理が施されている。
``Prior art'' Frozen foods include granular or small pieces of granular vegetables and fruits such as green peas, corn, potatoes, and carrots, granular meat, cooked rice, and small shrimp. Frozen foods in the form of pieces are frozen in pieces to prevent them from sticking to each other, so that they can be divided into the required amount for cooking, or distributed and measured appropriately.

そして、このような粒状あるいは小片状のものをバラ状
に凍結処理するための方法として、従来例えば米飯の如
き粒状物では、蒸煮後40℃程度の温度に予冷した後、
平板状にならし、−40°C以下の低温下でブロック状
に凍結し、続いてハンマー等で衝撃を与えてバラ状にほ
ぐす方法や、回転している回転ドラム中に蒸煮され予冷
された米1飯と共に雪状ドライアイスを投下し、冷却し
ながら攪拌してバラ状に凍結する方法がある。
Conventionally, as a method for freezing such granular or small pieces into pieces, for example, for granular materials such as cooked rice, after steaming, pre-cooling to a temperature of about 40 ° C.
It can be flattened into a flat plate, frozen in a block shape at a low temperature of -40°C or lower, and then broken up into pieces by impact with a hammer, or pre-cooled by being steamed in a rotating rotating drum. There is a method of dropping snow-like dry ice along with a bowl of rice, stirring it while cooling, and freezing it in pieces.

また、第4図に示すような構造の凍結装置を使用した方
法が知られている。この図において凍結装置lは、内部
に処理空間を有する直方体状の装置本体2の対向する壁
面にそれぞれ供給口3と排出口4とを形成したものであ
り、その装置本体2内には、流動床5が上記供給口3と
排出口4との間で排出口4側が下方に位置するように傾
斜して架設されている。さらに、上記供給口3側の側部
には供給筒6が、また排出口4側の側部には排出筒7が
それぞれ装置本体2外に臨んで取り付けられている。な
お、流動床5は、米飯等の被処理物Aを通過せしめるこ
とのない多数の小径な通気孔8.8・・を有したもので
あって、図示しない加振機構により加振されて水平ある
いは垂直方向に微振動するものである。また流動床5の
下方には装置本体2外の冷媒源9から冷媒を導入し循環
する熱交換器10が配置されており、これに上り熱交換
器10の下方に配設された送風機11,11から送られ
た風が冷却されるようになっている。
Furthermore, a method using a freezing device having a structure as shown in FIG. 4 is known. In this figure, the freezing device 1 has a rectangular parallelepiped-shaped device main body 2 with a processing space inside, and a supply port 3 and a discharge port 4 are formed on opposing walls, respectively. A floor 5 is installed between the supply port 3 and the discharge port 4 in an inclined manner so that the discharge port 4 side is located downward. Further, a supply tube 6 is attached to the side on the supply port 3 side, and a discharge tube 7 is attached to the side on the discharge port 4 side so as to face outside of the apparatus main body 2. The fluidized bed 5 has a large number of small-diameter ventilation holes 8,8, which do not allow the processed material A such as cooked rice to pass through, and is vibrated by a vibration mechanism (not shown) to keep it horizontal. Or it vibrates slightly in the vertical direction. Further, a heat exchanger 10 is disposed below the fluidized bed 5, which introduces and circulates a refrigerant from a refrigerant source 9 outside the apparatus main body 2, and a blower 11 disposed below the upstream heat exchanger 10, The air sent from No. 11 is designed to cool the room.

このような構造の凍結処理装置lにより被処理物Aを凍
結するには、供給筒6を介して流動床5上に被処理物A
を連続的に供給し、装置本体2の上面に配設された攪拌
機12.12により被処理物Aを攪拌してこれらの固着
を防ぎつつ、送風機11.11により熱交換器10を介
して冷風を被処理物Aに通気しかつ装置本体2内を循環
させて該被処理物Aを凍結せしめる。また、これと同時
に流動床5を微振動させ、これにより被処理物Aを流動
床5の傾斜に沿って排出筒7に導き、装置本体2外に凍
結し製品化した被処理物Aを連続的に排出する。
In order to freeze the processed material A with the freezing treatment apparatus l having such a structure, the processed material A is placed onto the fluidized bed 5 via the supply cylinder 6.
is continuously supplied, and the agitator 12.12 disposed on the top surface of the apparatus main body 2 stirs the material to be treated A to prevent it from sticking, while the blower 11.11 blows cold air through the heat exchanger 10. The material to be processed A is vented and circulated within the apparatus main body 2 to freeze the material to be processed A. At the same time, the fluidized bed 5 is slightly vibrated, thereby guiding the processed material A along the slope of the fluidized bed 5 to the discharge pipe 7, and continuously transporting the processed material A, which has been frozen and made into a product, outside the main body 2 of the apparatus. to be discharged.

さらに、従来の別の凍結方法を第5図に示す。Furthermore, another conventional freezing method is shown in FIG.

この方法で使用する装置は、第5図に示した如く一3= のちので、凍結装置13の装置本体14内には、メツシ
ュ状の可動部を有するベルトコンベヤ式の流動床15.
16がそれぞれの一方の側端部】5a、16aを装置本
体14外に位置せしめて配設されている。これら流動床
15.16は、第5図中矢印Bで示す移送゛方向に沿っ
て配列され、かつ段差をもって配置されたものであって
、上方に位置する流動床15の装置本体14内の側端部
15bが下方に位置する流動床16の装置本体14内の
側端部16bの直上に配置されたものである。
The apparatus used in this method is as shown in FIG.
16 is disposed such that one side end portion 5a, 16a of each is located outside the main body 14 of the device. These fluidized beds 15 and 16 are arranged along the transfer direction shown by arrow B in FIG. The end 15b is disposed directly above the side end 16b of the fluidized bed 16 in the apparatus main body 14, with the end 15b located below.

このような構造の凍結装置13により被処理物Aを凍結
処理するには、流動床15の側端部15aに被処理物A
を連続的に供給し、該被処理物Aを移送方向Bに沿って
流動床15から流動床16に移送すると同時に、羽根車
状の攪拌機17.17・・により攪拌して被処理物Aの
固着を防ぎつつ、送風機18.18・・・により熱交換
器19.19を介して冷風を被処理物Aに通気しかつ装
置本体14内を循環させて該被処理物Aを凍結せしめる
In order to freeze the processed material A using the freezing device 13 having such a structure, the processed material A is placed at the side end 15a of the fluidized bed 15.
is continuously supplied, and the material to be processed A is transferred from the fluidized bed 15 to the fluidized bed 16 along the transfer direction B. At the same time, the material to be processed A is stirred by impeller-shaped stirrers 17, 17, etc. While preventing sticking, the blowers 18, 18, . . . blow cold air through the heat exchangers 19, 19 to the object A to be processed, and circulate it within the apparatus main body 14 to freeze the object A.

そして、この凍結し製品化した被処理物Aを流動床16
より装置本体12外に連続的に排出する。
Then, this frozen product A is placed in a fluidized bed 16.
It is continuously discharged outside the main body 12 of the apparatus.

「発明が解決しようとする問題点」 ところで、上記の如き従来の凍結方法にあっては、以下
に述べるような不都合がある。
"Problems to be Solved by the Invention" By the way, the conventional freezing method described above has the following disadvantages.

即ち、薄平板状にならした後ハンマー等で衝撃を加えて
バラ状にする方法にあっては、一度ブロック状に凍結し
た後に衝撃を与えることによって、粒子等の小片を破傷
することとなり、製品の品質を損なうばかりでなく、破
傷粉末が生じてバラ状製品としての生産高の歩留りが悪
くなるという問題がある。また、回転ドラム中に被冷却
物と共に雪状ドライアイス等の寒剤を導入して攪拌しな
がら冷却する方法では、その冷却が回転ドラムの如き一
区画室内で凍結すること、また粘結を防ぐため表面を急
速に凍結する必要から、被冷却物に寒冷を伝え易い冷気
体より雪状ドライアイスの如き軟質な固体寒剤が良好な
製品を得ることとなって好ましいが、高価である。
That is, in the method of flattening the material into a thin plate and then applying an impact with a hammer or the like to break it into pieces, the impact is applied after the material has been frozen into a block, which may damage small pieces such as particles. There is a problem in that not only the quality of the product is impaired, but also broken powder is generated and the yield of bulk products is reduced. In addition, in the method of introducing a cold agent such as snow-like dry ice into a rotating drum together with the object and cooling it while stirring, it is necessary to prevent the cooling agent from freezing in a compartment like the rotating drum and from caking. Since it is necessary to rapidly freeze the surface, a soft solid refrigerant such as snow-like dry ice is preferable to a cold gas that easily transmits cold to the object because it yields a good product, but it is expensive.

さらに、第4図、第5図に示した方法では、いずれも被
処理物を水平方向に移動させつつ凍結処理を行うことか
ら、流動床の面積を大きくする必要があり、よって装置
の床面積が大きくなることから大きな設置面積を必要と
する。また、被処理物が移送される流動床の全域に亙っ
て送風通気する必要があり、よって凍結処理に必要な線
速で送風通気を行うには大きな風量が必要となり、した
がって送風機等の動力費が嵩む。また、冷風は一過性の
利用であることから、その保有する寒冷を十分に使用す
ることなく装置より排出されるので不経済であり、それ
故これを有効に利用するため排出冷気を循環使用できる
ように熱交換器を備えるなどしているが、このため凍結
処理装置全体が大型化し、運転コストが高価になるばか
りでなく、循環されて被処理物を伴った冷風が熱交換器
を再度通過することなどにより、熱交換器中の伝熱管が
閉塞されて風量が落ち凍結処理が不十分になる恐れがあ
り、また洗浄等のメンテナンスを行うのに非常に手間が
かかるなどの不都合がある。
Furthermore, in both of the methods shown in Figures 4 and 5, the object to be treated is moved horizontally while freezing, so it is necessary to increase the area of the fluidized bed. Because of the large size, a large installation area is required. In addition, it is necessary to ventilate the entire area of the fluidized bed where the material to be processed is transferred, and therefore a large amount of air is required to carry out the ventilating at the linear velocity required for freezing processing, and therefore the power of the blower etc. Expenses increase. In addition, since cold air is used only temporarily, it is uneconomical as it is discharged from the equipment without fully using the cold air it possesses.Therefore, in order to make effective use of this, the discharged cold air is recycled. However, this not only increases the size of the entire freezing treatment equipment and increases operating costs, but also causes the cold air with the material to be circulated to pass through the heat exchanger again. This may cause the heat exchanger tubes in the heat exchanger to become clogged, resulting in a decrease in air volume and insufficient freezing treatment, and there are other inconveniences such as maintenance such as cleaning being very time-consuming. .

「問題点を解決するための手段」 そこでこの発明では、通気性棚板によって上下方向に仕
切られた少なくとも2室あるいはそれ以上の区画室を有
する筒装置に冷却用低温気体を下部より上部に向けて供
給通気せしめる一方、粒子の如き小片状の被冷却食品を
前記筒装置の上部に供給して、間欠的に下方段の区画室
に順次移行せしめるとともに各区画室にて必要に応じて
適宜攪拌し、筒装置下部より導出することを特徴とする
食品のバラ状凍結方法、およびこれを実施するための装
置本体の処理空間の鉛直方向に該処理空間を仕切る複数
段の通気可能かつ開閉可能な棚板を設け、該棚板を開閉
装置により開閉自在にせしめ、上記処理空間に冷風を導
入するようにした凍結装置により上記問題点の解決を図
った。
"Means for Solving the Problem" Therefore, in this invention, low-temperature gas for cooling is directed from the bottom to the top in a cylindrical device having at least two or more compartments vertically partitioned by breathable shelves. At the same time, the food to be cooled in the form of small pieces such as particles is supplied to the upper part of the tube device, and is intermittently transferred to the compartments in the lower stage, and is stirred as necessary in each compartment. A method for freezing foods in bulk form, which is characterized in that food is frozen in bulk form, and the food is brought out from the bottom of a cylindrical device, and for carrying out this method, a plurality of stages that partition the processing space in the vertical direction of the device body are ventilable and openable and closable. The above-mentioned problem was solved by a freezing device which is provided with a shelf board, which can be opened and closed by an opening/closing device, and which introduces cold air into the processing space.

「実施例」 第1図はこの発明を実施するための凍結処理装置の一例
を示すもので、図中符号20は凍結処理装置である。こ
の凍結処理装置1は、内部に処理空間を有する装置本体
21と、上記処理空間の鉛直方向に該処理空間を仕切っ
て区画室22a、22b、 22c、 22dを形成す
るように配設された複数段の開閉可能な棚板22.22
.22と、これら棚板22.22.22を開閉自在にせ
しめる開閉装置23.23.23と、被処理物Aを攪拌
する攪拌機24と、上記処理空間に冷風を導入するため
の送風機構25とから構成されている。
Embodiment FIG. 1 shows an example of a freezing processing apparatus for carrying out the present invention, and reference numeral 20 in the figure indicates the freezing processing apparatus. This freezing processing apparatus 1 includes an apparatus main body 21 having a processing space therein, and a plurality of compartments 22a, 22b, 22c, and 22d arranged to partition the processing space in the vertical direction of the processing space. Openable shelf board 22.22
.. 22, an opening/closing device 23.23.23 that allows these shelf boards 22.22.22 to open and close freely, an agitator 24 that stirs the object to be processed A, and a blower mechanism 25 that introduces cold air into the processing space. It consists of

装置本体21は、鉛直方向に延びる中心軸を有する大径
の円筒部26と、この円筒部26の下端に形成された円
錐台部27と、この円錐台部27の下端に形成された小
径の円筒部28からなるものであって、大径の円筒部2
6の上部開口部を被処理物Aの供給口29とし、小径の
円筒部28の開口部を排出口30としたものである。こ
の装置本体21の大径の円筒部26内には処理空間31
が設けられており、小径の円筒部28にはロータリーバ
ルブ等からなる取出弁32が気密に取り付けられている
。また、この装置本体21の大径の円筒部26には、鉛
直方向に所定の間隔を置いて棚板取り付は用のスリット
(以下取り付はスリットとする)33.33.33が、
それぞれ円筒部26の周方向に沿いかつ半周に亙って形
成されている。これら取り付はスリット33.33.3
3には、棚板22.22.22が図示しないパツキンを
介して気密に、そして第1図中矢印C方向に移動可能に
取り付けられている。これら棚板22.22.22は、
いずれもパンチングメタル、メツシュ板などの多数の通
気孔34.34・・・を有する板材からなるものであり
、第2図に示すように円筒部26の中心部から取り付は
スリット33と反対側に向かって攪拌機24の軸よけ用
スリット35を形成したものでる。この場合に、通気孔
34.34・・・はその径が被処理物Aの径より十分に
小さくなっており、また軸よけ用スリット35の下方に
は被処理物Aの落下を防止するための受は板35 a−
、358% 35 aが配置されている。このような構
成により棚板22.22.22は、鉛直方向への通気を
可能とし、かつ第1図中矢印C方向に移動することによ
り鉛直方向への仕切りの開閉を可能にしている。また、
取り付はスリット33を棚板22の上下両面に摺接する
間隙とすると、棚板22の開閉摺動によって冷却時に生
ずる霜を除去することができ、冷却効率の向上と円滑な
運転を可能とする。
The device main body 21 includes a large diameter cylindrical portion 26 having a central axis extending in the vertical direction, a truncated conical portion 27 formed at the lower end of this cylindrical portion 26, and a small diameter cylindrical portion 27 formed at the lower end of this truncated conical portion 27. It consists of a cylindrical part 28, which is a large diameter cylindrical part 2.
The upper opening of 6 is used as a supply port 29 for the object to be processed A, and the opening of the small diameter cylindrical portion 28 is used as a discharge port 30. A processing space 31 is provided within the large diameter cylindrical portion 26 of this device main body 21.
A take-out valve 32 made of a rotary valve or the like is airtightly attached to the small diameter cylindrical portion 28. Further, in the large diameter cylindrical portion 26 of this device main body 21, slits 33, 33, 33 for mounting shelves (hereinafter referred to as slits) are provided at predetermined intervals in the vertical direction.
They are each formed along the circumferential direction of the cylindrical portion 26 and over half the circumference. These installations are slit 33.33.3
3, shelf boards 22, 22, 22 are attached airtightly and movably in the direction of arrow C in FIG. 1 via gaskets (not shown). These shelf boards 22.22.22 are
All of them are made of a plate material such as punched metal or mesh plate having a large number of ventilation holes 34, 34, etc., and as shown in FIG. A slit 35 for protecting the shaft of the stirrer 24 is formed toward the shaft. In this case, the diameter of the ventilation holes 34, 34, etc. is sufficiently smaller than the diameter of the workpiece A, and there is a hole below the shaft shielding slit 35 to prevent the workpiece A from falling. The receiver is plate 35 a-
, 358% 35 a are located. With such a configuration, the shelf boards 22, 22, 22 allow ventilation in the vertical direction, and also allow opening and closing of the partition in the vertical direction by moving in the direction of arrow C in FIG. Also,
When the slit 33 is installed as a gap that slides into both the upper and lower surfaces of the shelf board 22, frost generated during cooling can be removed by sliding the shelf board 22 open and close, thereby improving cooling efficiency and making smooth operation possible. .

棚板22.22.22の取り付はスリット33.33.
33側の端部にはそれぞれにエアーシリンダーなどから
なる開閉装置23.23.23が接続されており、これ
によって棚板22.22.22が移動自在に制御され、
したがって仕切りの開閉が自在に制御される。装置本体
21の処理空間3Iには攪拌機24が配設されている。
The shelf boards 22.22.22 are attached using the slits 33.33.
Opening/closing devices 23.23.23 consisting of air cylinders etc. are connected to the ends on the 33 side, respectively, and the shelf boards 22.22.22 are controlled to be movable by this.
Therefore, opening and closing of the partition can be freely controlled. A stirrer 24 is disposed in the processing space 3I of the apparatus main body 21.

この攪拌機24は、駆動部36と攪拌軸37と攪拌器3
8.38.38とからなり、攪拌軸37が回転すること
により攪拌動作をするものであって、・装置本体21の
上方の図示しない取付板に駆動部36が取り付けられ、
かつ最下段の棚板22の下方に配設された軸受け39に
攪拌軸37が回転可能に取り付けられて固定されたもの
である。攪拌軸37は棚板22.22.22の軸よけ用
スリット35.35.35に回転可能に挿通されたもの
であり、攪拌器38.38.38はそれぞれ棚板22の
上に僅かな間隙をもって配置されたものである。また、
攪拌器38は、複数本の攪拌器40.40・・・をそれ
ぞれが攪拌軸37より非等距離になるように配置せしめ
たものであって、これにより攪拌を行った際に被処理物
Aがブロック状になるのを防ぎ、効率良く攪拌が行える
ようにしたものである。
This stirrer 24 includes a drive section 36, a stirring shaft 37, and a stirrer 3.
8.38.38, the stirring operation is performed by rotating the stirring shaft 37, and the drive unit 36 is attached to a mounting plate (not shown) above the device main body 21,
A stirring shaft 37 is rotatably attached and fixed to a bearing 39 disposed below the lowest shelf board 22. The stirring shaft 37 is rotatably inserted into the shaft-protecting slit 35.35.35 of the shelf board 22.22.22, and the stirrer 38.38. They are arranged with gaps. Also,
The stirrer 38 has a plurality of stirrers 40, 40, etc. arranged at non-equidistant distances from the stirring shaft 37, so that when stirring is performed, the object to be processed A This prevents the mixture from forming into blocks and allows for efficient stirring.

装置本体21の大径の円筒部26の下部には、処理空間
31に連通ずる送気管41を介して該処理空間31に冷
風を導入するための送風機構25が配設されている。こ
の送風機構25は、例えば水分や油分等が除去された圧
縮空気を膨張タービンを通して膨張せしめて寒冷を得、
この冷気を上記送気管41を介して供給する機構や、そ
の他に公知の冷気発生装置、低温窒素ガス等が適宜使用
される。
A blower mechanism 25 for introducing cold air into the processing space 31 via an air pipe 41 communicating with the processing space 31 is disposed at the lower part of the large-diameter cylindrical portion 26 of the apparatus body 21 . The blower mechanism 25 obtains cold air by expanding compressed air from which moisture, oil, etc. have been removed through an expansion turbine, and
A mechanism for supplying this cold air through the air supply pipe 41, a known cold air generator, low-temperature nitrogen gas, etc. are used as appropriate.

このような構造の凍結処理装置20により被処理物Aを
凍結処理するには、まず供給口29より被処理物Aを投
入して最上部に位置する棚板22の上に供給し、かつ開
閉装置23.23.23によって所定時間毎に下から順
次棚板22.22.22を開閉せしめ、これにより被処
理物Aを順次=11− 下段の区画室22cより22d 、’22bより22c
、22aより22bへとそれぞれの棚板22および取出
弁32の上に落下せしめて滞留させる。
In order to freeze the processed material A using the freezing processing apparatus 20 having such a structure, the processed material A is first introduced through the supply port 29 and supplied onto the shelf board 22 located at the top, and then opened and closed. The device 23.23.23 opens and closes the shelf boards 22.22.22 sequentially from the bottom at predetermined time intervals, thereby sequentially disposing the workpieces A = 11-22d from the lower compartment 22c and 22c from '22b.
, 22a and 22b onto the respective shelf boards 22 and take-out valves 32, and are retained therein.

また、これと同時に、攪拌器24を駆動して棚板22.
22.22上の被処理物Aの固着を防ぎつつ、送風機構
25を駆動して冷風を処理空間31の下部に設けた送気
管41より処理空間31に導入する。すると被処理物A
は、各区画室22a、22b、22cの各棚板22上で
それぞれ所定時間滞留し、下方から送気された冷風と接
触して冷却され、凍結して取出弁32上に溜まる。一方
、導入された冷風は、各区画室22’a、 22b、 
22Cの棚板22.22.22上の被処理物Aと接触し
てこれを冷却し、自身は加温されて供給口29より図示
しない排気ダクト等を介して排気されて屋外に排出され
る。その後、取出弁32を開き、凍結して製品化された
被処理物Aを排出口30から排出せしめる。
At the same time, the agitator 24 is driven to remove the shelves 22.
The blower mechanism 25 is driven to introduce cold air into the processing space 31 through the air pipe 41 provided at the lower part of the processing space 31 while preventing the object A to be processed from sticking on the processing space 22.22. Then, the object to be processed A
The air remains on each shelf board 22 of each compartment 22a, 22b, and 22c for a predetermined time, is cooled by contact with the cold air blown from below, freezes, and accumulates on the take-out valve 32. On the other hand, the introduced cold air flows through each compartment 22'a, 22b,
It comes into contact with the object to be processed A on the shelf board 22. . Thereafter, the take-out valve 32 is opened, and the frozen product A is discharged from the discharge port 30.

このような凍結方法にあっては、被処理物Aを上から下
の鉛直方向に移送するので、装置の床面積を小さくする
ことができ、よって必要な設置面積を小さくすることが
できる。そして、冷却処理にあたって被処理物Aの移送
は、自重による重力落下であるので移送装置を必要とせ
ず、よって省エネルギーとなる。また、この凍結方法で
は、冷風が被処理物層Aと複数の区画室で通気接触する
ことからその寒冷が十分有効に利用され、冷風と被処理
物Aとの熱交換が大きく、供給冷気温度と排出気体温度
との温度差ΔTが大となり、よって良好な冷熱の利用効
率が得られる。それ故、冷風を循環させる必要もなく排
気し得るので、被処理物Aの粉末等が冷風に同伴されて
排出され、よって装置本体21内に上記粉末等が溜まっ
て固着することがなく、食品衛生上極めて好都合である
ばかりでなく、洗浄等のメンテナンスが容易となる。
In such a freezing method, since the object to be processed A is transferred vertically from top to bottom, the floor area of the apparatus can be reduced, and the required installation area can therefore be reduced. Further, during the cooling process, the object to be processed A is transferred by falling by gravity due to its own weight, so a transfer device is not required, and therefore energy is saved. In addition, in this freezing method, since the cold air comes into ventilation contact with the layer A of the object to be processed in a plurality of compartments, the cold air is used effectively, and the heat exchange between the cold air and the object A is large, and the temperature of the supplied cold air increases. The temperature difference ΔT between the temperature of the exhaust gas and the temperature of the exhaust gas becomes large, and therefore, good cooling efficiency can be obtained. Therefore, it is possible to exhaust the air without the need to circulate cold air, so that the powder etc. of the object to be processed A is discharged together with the cold air, so that the powder etc. do not accumulate and stick inside the device main body 21, and the food Not only is this extremely convenient from a sanitary standpoint, but maintenance such as cleaning becomes easy.

また、本方法に使用する装置本体21を縦型の略円筒状
にしであるので、処理空間31の横断面形状が円形にす
れば回転式の攪拌機24により効果的に攪拌することが
でき、よって被処理物Aの固着を十分に防止することが
できる。
Furthermore, since the apparatus main body 21 used in this method is vertical and approximately cylindrical, if the cross-sectional shape of the processing space 31 is circular, it can be effectively stirred by the rotary stirrer 24. It is possible to sufficiently prevent the object A from sticking.

また、上記例の凍結装置では、第2図に示すように棚板
22.22.22をそれぞれ単一の板材から形成したが
、他に例えば、第3図に示すように個々の棚板22を一
対の半円状板22a、22aから構成し、これら半円状
板22a、22aに対応して一対の開閉装置23’a、
23aを配設し、これにより半円状板22a、22aを
それぞれ左右両方に開閉する両開き機構としてもよく、
その場合には第2図に示した棚板22の軸よけ用スリッ
ト35およびこれに対応する受は板35aを設ける必要
がない。
Further, in the freezing device of the above example, the shelf boards 22, 22, and 22 are each formed from a single plate material as shown in FIG. 2, but in addition, for example, as shown in FIG. is composed of a pair of semicircular plates 22a, 22a, and a pair of opening/closing devices 23'a, corresponding to these semicircular plates 22a, 22a.
23a, which opens and closes the semicircular plates 22a, 22a both to the left and right, respectively.
In that case, it is not necessary to provide the plate 35a in the shaft-shielding slit 35 of the shelf board 22 shown in FIG. 2 and the corresponding support.

なお、上記例においては、棚板を3段にしたが、被処理
物Aの必要連結度に応じて適宜段数を増減してもよく、
2段あるいは4段以上であってもよい。
In the above example, the number of shelves is three, but the number of shelves may be increased or decreased as appropriate depending on the required degree of connectivity of the object to be processed A.
There may be two stages or four or more stages.

また、上記例では、被処理物Aの固着を防ぐため攪拌機
を用いて攪拌を行ったが、被処理物Aの含水量、粘着性
などの諸性状により固着の恐れがない場合などには攪拌
を行わなくてもよい。
In addition, in the above example, stirring was performed using a stirrer to prevent the object A from sticking, but if there is no risk of sticking due to various properties of the object A, such as moisture content or stickiness, stirring may be performed. It is not necessary to do this.

さらに、攪拌機を用いる場合にも、流動床全段に攪拌を
行なわずに、例えば連結度の少ない最上段の流動床の被
処理物のみを攪拌するようにしてもよい。
Furthermore, even when using a stirrer, it is possible to stir only the material to be treated in the uppermost fluidized bed, which has a low degree of connectivity, without stirring all stages of the fluidized bed.

[実験例] 本発明を実施するため、第1図に示した凍結処理装置で
、大径の円筒部の内径が190mmのものを用い、調味
炊飯米の凍結処理実験を行った。この場合の凍結処理条
件としては、送風機構からの冷風の温度を一40℃、風
量を35 Q m”/hrとし、また調味炊飯米の流動
床での滞留時間(凍結処理時間)を各段毎に40秒(ト
ータルの凍結処理時間としては40秒×3段で120秒
となる)とし、流動床一段当たりの処理量を約750g
とした。
[Experimental Example] In order to carry out the present invention, an experiment was conducted on freezing seasoned cooked rice using the freezing processing apparatus shown in FIG. 1, in which the inner diameter of the large diameter cylindrical portion was 190 mm. In this case, the freezing treatment conditions are as follows: The temperature of the cold air from the blower mechanism is -40℃, the air volume is 35 Q m"/hr, and the residence time (freezing treatment time) of seasoned cooked rice in the fluidized bed is set at each stage. 40 seconds for each stage (total freezing treatment time is 120 seconds for 40 seconds x 3 stages), and the processing amount per stage of the fluidized bed is approximately 750 g.
And so.

このような条件のもとて約+50℃の調味炊飯米を装置
本体内に断続的に供給して凍結処理を施した結果、得ら
れた調味炊飯米の温度は約−30℃で十分な連結度を有
し、かつ互いに固着せずにその粒状を保っていた。また
、このときの処理量は約67.5kg/hrであった。
Under these conditions, seasoned cooked rice at about +50°C was intermittently fed into the device body and frozen, resulting in a temperature of about -30°C with sufficient connection. It had a certain degree of graininess and maintained its granular shape without sticking to each other. Moreover, the throughput at this time was about 67.5 kg/hr.

上記の凍結処理装置を用い、凍結処理条件として冷風の
温度を一60℃、風量を350 m3/ hr。
Using the above freezing processing equipment, the freezing processing conditions were a cold air temperature of -60°C and an air volume of 350 m3/hr.

調味炊飯米の流動床での滞留時間を各段毎に30秒、流
動床一段当たりの処理量を約750gとして凍結処理実
験を行った。
A freezing treatment experiment was conducted by setting the residence time of seasoned cooked rice in the fluidized bed for 30 seconds in each stage and the amount of processing per fluidized bed being approximately 750 g.

この条件のもとて約+50°Cの調味炊飯米に凍結処理
を施した結果、得られた調味炊飯米の温度は約−33℃
で十分な連結度を有し、かつ粒状を保っていた。また、
このときの処理量は約90kg/hrであった。
As a result of freezing the seasoned cooked rice at approximately +50°C under these conditions, the temperature of the seasoned cooked rice obtained was approximately -33°C.
It had a sufficient degree of connectivity and maintained a granular shape. Also,
The throughput at this time was approximately 90 kg/hr.

また、第1図に示した凍結処理装置で、大径の円筒部の
内径が960mmのものを用い、同様にして約+50℃
の調味炊飯米の凍結処理実験を行った。この場合の処理
条件としては、冷風の温度を一60℃、風景を9000
 m3/ hr、調味炊飯米の流動床での滞留時間を各
段毎に30秒(トータルの凍結処理時間としては30秒
×3段で90秒となる)、流動床一段当たりの処理量を
約19.2kgとした。
In addition, using the freezing treatment apparatus shown in Fig. 1 with an inner diameter of 960 mm in the large diameter cylindrical part, the temperature was raised to approximately +5°C in the same manner.
An experiment was conducted on freezing seasoned cooked rice. In this case, the processing conditions are as follows: the temperature of the cold air is -60℃, and the landscape is 9000℃.
m3/hr, the residence time of seasoned cooked rice in the fluidized bed is 30 seconds for each stage (the total freezing processing time is 30 seconds x 3 stages is 90 seconds), and the processing amount per fluidized bed is approximately The weight was 19.2 kg.

この結果、得られた調味炊飯米の温度は約−33℃で十
分な連結度を有し、かつ粒状を保ってい=16− た。また、このときの処理量は約2300 kg/hr
であった。
As a result, the temperature of the seasoned cooked rice was approximately -33°C, it had a sufficient degree of connectivity, and maintained a granular shape. In addition, the processing amount at this time is approximately 2300 kg/hr
Met.

なお、上記の実験において冷風の被処理物との熱交換後
の排気温度は、いずれも約+lO℃であった。
In the above experiments, the temperature of the exhaust gas after heat exchange with the object to be treated by the cold air was approximately +10° C. in all cases.

「発明の効果」 以上説明したように、この発明によれば、通気性棚板に
よって上下方向に仕切られた少なくとも2室あるいはそ
れ以上の区画室を有する筒装置に冷却用低温気体を下部
より上部に向けて供給通気せしめる一方、粒子の如き小
片状の被冷却食品を前記筒装置の上部に供給して、間欠
的に下方段の区画室に順次移行せしめるとともに各区画
室にて必要に応じて適宜攪拌し、筒装置下部より導出す
るので、被処理物を上から下の鉛直方向に移送すること
から、筒装置の床面積が小さくなり、よって必要な設置
面積を小さくすることができ、また送風機構等を装置本
体外部に配設することができることなどから、例えば送
風機構を建物外に設置することにより、建物内の狭所等
にも設置することができる。さらに、この凍結方法およ
びこれを実施するための装置では、冷風が被処理物層と
複数回通過接触することから、冷風と被処理物Aとの熱
交換が大きく、よって熱効率が良いため送風機構の駆動
源の動力費を低減することができる。
``Effects of the Invention'' As explained above, according to the present invention, low-temperature gas for cooling is supplied from the lower part to the upper part of a cylindrical device having at least two or more compartments vertically partitioned by breathable shelves. At the same time, the food to be cooled in the form of small pieces such as particles is supplied to the upper part of the tube device, and is intermittently transferred to the compartments in the lower stage. Since the material to be treated is stirred appropriately and taken out from the bottom of the tube device, the material to be treated is transferred vertically from top to bottom, which reduces the floor area of the tube device, thereby reducing the required installation area. Since the blower mechanism and the like can be disposed outside the main body of the device, for example, by installing the blower mechanism outside the building, it can be installed in a narrow space inside the building. Furthermore, in this freezing method and the apparatus for carrying out the freezing method, since the cold air passes through and comes into contact with the layer of the object to be processed multiple times, heat exchange between the cold air and the object to be processed A is large, and therefore thermal efficiency is high. The power cost of the drive source can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明を実施するための凍結装
置の一例を示す図であって、第1図は凍結装置の該略構
成図、第2図は第1図の■−■ 線矢視図、第3図はこ
の発明を実施するための凍結装置の他の例を説明するた
めの要部断面図、第4図および第5図はいずれも従来の
凍結処理装置の例を示す該略構成図である。 20・・・・・・凍結装置、21・・・・・・装置本体
、22・・・・・・棚板、22a、 22b、 22c
、 22d−区画室、23・・・・・・開閉装置、25
・・・・・・送風機構、31・・・・・・処理空間。
1 and 2 are diagrams showing an example of a freezing device for carrying out the present invention, FIG. 1 is a schematic configuration diagram of the freezing device, and FIG. 2 is a line taken along the line ■-■ in FIG. 1. The arrow view and FIG. 3 are main part sectional views for explaining another example of a freezing device for carrying out the present invention, and FIGS. 4 and 5 both show examples of conventional freezing processing devices. FIG. 2 is a schematic configuration diagram. 20...Freezing device, 21...Device body, 22...Shelf board, 22a, 22b, 22c
, 22d-compartment, 23...Switching device, 25
...Blower mechanism, 31...Processing space.

Claims (2)

【特許請求の範囲】[Claims] (1)通気性棚板によって上下方向に仕切られた少なく
とも2室あるいはそれ以上の区画室を有する筒状装置に
冷却用低温気体を下部より上部に向けて供給通気せしめ
る一方、粒子の如き小片状の被冷却食品を前記筒装置の
上部に供給して、間欠的に下方段の区画室に順次移行せ
しめるとともに各区画室にて必要に応じて適宜攪拌し、
筒装置下部より導出することを特徴とする食品のバラ状
凍結方法。
(1) Low-temperature cooling gas is supplied from the bottom to the top of a cylindrical device having at least two or more compartments vertically partitioned by air-permeable shelves, and is ventilated to prevent small particles such as particles. The food to be cooled is supplied to the upper part of the cylindrical device, and is intermittently transferred to the compartments in the lower stage, and is appropriately stirred in each compartment as necessary,
A method for freezing food in bulk form, characterized in that food is extracted from the lower part of a cylinder device.
(2)上部に被冷却品の投入口と排気口とを、また下部
に冷却品の排出口と冷気供給口を配して、前記上部と下
部との間を処理空間として形成した筒状装置に、前記処
理空間を鉛直方向に複数に区画する通気可能かつ開閉可
能な棚板と、該棚板を開閉するための棚板に連設してな
る開閉装置と、前記処理空間に冷気を供給するため前記
冷気供給口に連設せしめてなる送風機構とを配設せしめ
てなることを特徴とする食品のバラ状凍結装置。
(2) A cylindrical device in which an input port and an exhaust port for cooled products are arranged in the upper part, and a discharge port for cooled products and a cold air supply port are arranged in the lower part, and a processing space is formed between the upper part and the lower part. a ventilable and openable/closable shelf board that vertically divides the processing space into a plurality of sections; an opening/closing device connected to the shelf board for opening and closing the shelf board; and supplying cold air to the processing space. An apparatus for freezing foods in bulk, comprising: a blower mechanism connected to the cold air supply port.
JP11319687A 1987-05-09 1987-05-09 Method and apparatus for freezing loose food Expired - Lifetime JPH06104050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11319687A JPH06104050B2 (en) 1987-05-09 1987-05-09 Method and apparatus for freezing loose food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11319687A JPH06104050B2 (en) 1987-05-09 1987-05-09 Method and apparatus for freezing loose food

Publications (2)

Publication Number Publication Date
JPS63279772A true JPS63279772A (en) 1988-11-16
JPH06104050B2 JPH06104050B2 (en) 1994-12-21

Family

ID=14605985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11319687A Expired - Lifetime JPH06104050B2 (en) 1987-05-09 1987-05-09 Method and apparatus for freezing loose food

Country Status (1)

Country Link
JP (1) JPH06104050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191192U (en) * 1987-05-29 1988-12-09

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191192U (en) * 1987-05-29 1988-12-09
JPH053032Y2 (en) * 1987-05-29 1993-01-25

Also Published As

Publication number Publication date
JPH06104050B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US3169381A (en) Fluidized freezer
EP0481799B1 (en) Apparatus for conditioning divided or particulate material
NO335762B1 (en) CURRENT IMPROVED TUNNEL FREEZER
US5765381A (en) Multitier crossflow cryogenic freezer and method of use
US20080163640A1 (en) Impingement Freezer
KR101916714B1 (en) A rapid freezing device for a food
JPS63279772A (en) Method for freezing food in loosened state and apparatus therefor
JP2000083606A (en) Boiled rice freezing in loosened grains and apparatus therefor
JPH0449917Y2 (en)
US5906482A (en) Double wall vertical cooler
JP5021785B2 (en) Frozen cooked rice production apparatus and frozen cooked rice production method
JPH053032Y2 (en)
RU2036396C1 (en) Method and device for freezing fruit and vegetables
US5222363A (en) Fluidized bed air cooling system
US3372489A (en) Heat transfer apparatus using fluidization in both single bed and plural bed forms
JP3438164B2 (en) Food quick freezing method and equipment
US3270428A (en) Method of and apparatus for dehydrating foods or other products
JP2000171144A (en) Multistage freezing device and method
JPH07250614A (en) Method for individually freezing mince-like food and apparatus therefor
CN218048837U (en) Roller screening instant freezer
JPH0144304B2 (en)
JP2009296982A (en) Food processing apparatus, and method for processing food
JPH0737517Y2 (en) Freezing device for freezing foods
GB884346A (en) Method of refrigerating foodstuffs
JPH05126447A (en) Quenching machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 13