JPS63279502A - Conductive fine powder - Google Patents

Conductive fine powder

Info

Publication number
JPS63279502A
JPS63279502A JP11389887A JP11389887A JPS63279502A JP S63279502 A JPS63279502 A JP S63279502A JP 11389887 A JP11389887 A JP 11389887A JP 11389887 A JP11389887 A JP 11389887A JP S63279502 A JPS63279502 A JP S63279502A
Authority
JP
Japan
Prior art keywords
fine powder
conductivity
less
grain size
average grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11389887A
Other languages
Japanese (ja)
Inventor
Nobuyuki Okuma
信行 大隈
Koichi Yamada
山田 紘一
Tsuneo Funahashi
舟橋 恒男
Shinji Ezaki
江崎 慎二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11389887A priority Critical patent/JPS63279502A/en
Publication of JPS63279502A publication Critical patent/JPS63279502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the fine powder very excellent in conductivity and having the desired average grain size by using the fine powder having the average grain size of 5mum or less and formed with a coating layer practically made of carbon with the specific thickness on the surface. CONSTITUTION:The fine powder has the average grain size of 5mum or less, and a coating layer practically made of carbon with the thickness of 1-200Angstrom is formed on the surface. A metal compound of zinc, tin, titanium, copper, etc. having the average grain size of 5mum or less is preferable as the fine powder, if the average grain size exceeds 5mum, the conductivity is remarkably deteriorated. If the thickness of the coating layer is less than 1Angstrom , sufficiently excellent conductivity is not obtained. On the other hand, if it exceeds 200Angstrom , excellent conductivity is not obtained, the color of a fine powder substrate is lost, and the coloring of the film on the conductive fine powder thus obtained is made remarkable. The fine powder very excellent in conductivity and having the average grain size of several mum or less or 0.1mum or less is thereby obtained.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は、導電性に優れた微粉末に関するものである。[Detailed description of the invention] [Industrial use parts] The present invention relates to a fine powder with excellent conductivity.

〔従来の技術〕[Conventional technology]

平均粒子径が5μm以下で、導電性を有する、酸化亜鉛
、シリカ、アルミナ、酸化錫、酸化チタンなどの酸化物
、銅、アルミニウム、亜鉛、錫、ニッケルなどの金属、
炭化物、珪化物、金属間化合物などの微粉末は、電子電
気機器に生じる静電気障害の防止のため絶縁性物質に添
加する分散剤、ファクシミリ用その他の情報記録紙を製
造する際のコーティング剤などとして種々の用途に用い
られている。
Oxides such as zinc oxide, silica, alumina, tin oxide, and titanium oxide, and metals such as copper, aluminum, zinc, tin, and nickel, which have an average particle diameter of 5 μm or less and have conductivity;
Fine powders such as carbides, silicides, and intermetallic compounds are used as dispersants added to insulating materials to prevent static electricity damage in electronic and electrical equipment, and as coating agents when manufacturing facsimile and other information recording papers. It is used for various purposes.

このような導電性微粉末は優れた導1性を有することが
必要であるが、従来1導電性に優れた微粉末としては、
粉末にAl、 Ga、Inなどの活性化剤を添加(ドー
プ)してなるものが知られている。
Such conductive fine powder must have excellent conductivity, but conventional fine powders with excellent conductivity include:
It is known that the powder is doped with an activator such as Al, Ga, or In.

(特開昭60−11226号公報) しかしながらこのような微粉末の導電性は、100〜伽
の加圧下で測定して数百Ω・薗程度であり、まだ充分で
はないうえに、その微粉末の平均粒子径は精々O,nμ
m程度に止まるものである。
(Japanese Unexamined Patent Publication No. 11226/1983) However, the conductivity of such fine powder is only a few hundred ohms when measured under a pressure of 100 to 300 ohms, which is still not sufficient, and the conductivity of such fine powder is The average particle size of is at most O, nμ
It stays at about m.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、以上の点に鑑み、導電性が可及的に優
れ平均粒子径が5μm以下の所望の大きざを有する微粉
末を提供することにある。
In view of the above points, an object of the present invention is to provide a fine powder having as good conductivity as possible and a desired average particle size of 5 μm or less.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の導電性微粉末は、上記目的を達成するものとし
て、5μm以下の平均粒子径を有し、その表面に実質的
に炭素からなる被覆層が1〜200Xの層厚で形成され
てなるものである。
The conductive fine powder of the present invention achieves the above object, and has an average particle diameter of 5 μm or less, and has a coating layer substantially made of carbon formed on its surface with a layer thickness of 1 to 200×. It is something.

〔作用〕[Effect]

本発明の導電性微粉末は、微粉末の表面に実質的に炭素
からなる被覆層が形成されている。この微粉末としては
、亜鉛、錫、チタン、銅、アルミニウムなどの金属、金
属の酸化物、炭化物などの金属化合物、金属間化合物で
、平均粒子径が5μm以下のものが挙げられる。平均粒
子径が5μmを超えると、前記用途に好適な微粉末とな
り難く、これを粉砕して所望の粒度に下ると導電性が著
しく低下下る。
In the conductive fine powder of the present invention, a coating layer made essentially of carbon is formed on the surface of the fine powder. Examples of the fine powder include metals such as zinc, tin, titanium, copper, and aluminum, metal compounds such as metal oxides and carbides, and intermetallic compounds having an average particle size of 5 μm or less. When the average particle size exceeds 5 μm, it is difficult to obtain a fine powder suitable for the above-mentioned uses, and when the powder is pulverized to a desired particle size, the conductivity is significantly reduced.

この微粉末の表面に形成される実質的に炭素からなる被
覆層の層厚は、1x未満では充分に優れた導電性が発揮
され得ず、一方、200xを超えるとより優れた導電性
が望めなくなるうえに、微粉末基材の色が失なわれ、得
られる導電性微粉末に被膜の色の着色が著しくなる。こ
の膜厚の好ましい範囲は、5〜100Rである。
If the thickness of the coating layer made essentially of carbon formed on the surface of this fine powder is less than 1x, sufficiently excellent conductivity cannot be exhibited, while if it exceeds 200x, better conductivity can be expected. In addition, the color of the fine powder base material is lost, and the color of the coating on the resulting conductive fine powder becomes significant. The preferred range of this film thickness is 5 to 100R.

〔実施例〕 以下、本発明の実施例を比較例と共に説明する。〔Example〕 Examples of the present invention will be described below along with comparative examples.

実施例1 平均粒径0.03μm(比表面積28.8m/g)の酸
化亜鉛微粉末10 gを入れた磁製ボートを、プロパン
50容量%、残部Arからなる混合ガスが31/分の流
量で流れている500Cに保持した磁製管に速やかに装
入し、そこで2分間静置した。その後、磁製ボートを常
温の磁製管端に速かに移動すると同時にプロパンの供給
を止め、Ar流量を増加することによって雰囲気をAr
に置換しながら酸化亜鉛微粉末を急冷した。こうして得
られた酸化亜鉛微粉末は青灰色で、平均粒径0.04μ
m(比表面積25.0 m 7g) 、100 kg/
cm(D加圧下で測定L/ 7j N気伝導度0.52
Ω−1・cm−1であった。なおこの処理前における電
気伝導度は0.8X10=Ω″″1・薗″″1であった
Example 1 A porcelain boat containing 10 g of zinc oxide fine powder with an average particle size of 0.03 μm (specific surface area 28.8 m/g) was heated to a mixed gas of 50% by volume propane and the balance Ar at a flow rate of 31/min. The sample was immediately placed in a porcelain tube maintained at 500C, and allowed to stand there for 2 minutes. After that, the porcelain boat was quickly moved to the end of the porcelain tube at room temperature, the propane supply was stopped at the same time, and the Ar flow rate was increased to change the atmosphere to Ar.
The zinc oxide fine powder was quenched while replacing with The zinc oxide fine powder thus obtained has a blue-gray color and an average particle size of 0.04 μm.
m (specific surface area 25.0 m 7g), 100 kg/
cm (D measured under pressure L/7j N conductivity 0.52
It was Ω-1·cm-1. The electrical conductivity before this treatment was 0.8×10=Ω″″1·Sono″″1.

又、この微粉末の被膜の組成分析と厚み測定を行なった
。組成分析では、CNコーダーで測定したC量が試料導
電性微粉末1000 gにつき0.115gであったこ
と、熱重量分析で測定した重量減少が同じ微粉末100
0 gにつ! 0.121 gであること、及びEPM
Aによって検出された元素がZn、 (!、 0以外は
殆ど認められなかったことにより、実質的にCであった
。そして、厚み測定では走査型電子顕微鏡による観察で
Cが粒状で固着している状態が認められなかったので均
一、層状に固着しており1このCが無定形のものである
として、被膜の(1000−0,115) gX28.
8X10の7gとした。
In addition, the composition analysis and thickness measurement of this fine powder coating were performed. In the composition analysis, the amount of C measured with a CN coder was 0.115 g per 1000 g of the sample conductive fine powder, and the weight loss measured by thermogravimetric analysis was found to be 0.115 g per 1000 g of the fine powder sample.
0 g! 0.121 g and EPM
The elements detected by A were Zn, (!, and almost no elements other than 0 were observed, so it was essentially C. In the thickness measurement, observation using a scanning electron microscope showed that C was fixed in granular form. As the C was not observed to be in a uniform layer, it was assumed that the C was amorphous.
It was set to 7g of 8x10.

実施例2 平均粒径0.03μm(比表面積28.8m/g)の実
施例1で使用したものと同じ酸化亜鉛微粉末10 gと
、同じ容量のメタン列の脂肪族炭化水素(Cの数10〜
14)とをボールミルに入れ、30分間攪拌した。次に
、この混合物を残留している上記炭化水素を水切程度に
濾過分離した後、ステンレス鋼製オートクレーブに装入
し、窒素ガスを封入して密栓した。その後、オートクレ
ーブ内の温度を400Cに上げ、その温度に30分間保
持した。30分後のオートクレーブ内の圧力は、20気
圧であった。最後に、オートクレーブ内を排気して放冷
した。こうして得られた酸化亜鉛微粉末は灰白色で、平
均粒径0.03μm(比表面積27.4 m 7g )
、電気伝導度0.28Ω−1・cn−’であった。
Example 2 10 g of the same zinc oxide fine powder used in Example 1 with an average particle size of 0.03 μm (specific surface area 28.8 m/g) and the same volume of methane series aliphatic hydrocarbon (number of C 10~
14) was placed in a ball mill and stirred for 30 minutes. Next, after filtering and separating the remaining hydrocarbons from this mixture to the extent of draining water, the mixture was placed in a stainless steel autoclave, which was then filled with nitrogen gas and sealed tightly. Thereafter, the temperature inside the autoclave was raised to 400C and maintained at that temperature for 30 minutes. The pressure inside the autoclave after 30 minutes was 20 atm. Finally, the autoclave was evacuated and allowed to cool. The zinc oxide fine powder thus obtained is grayish white and has an average particle size of 0.03 μm (specific surface area: 27.4 m 7 g).
, and the electrical conductivity was 0.28 Ω-1·cn-'.

又、この微粉末の被膜の組成分析と厚み測定を実施例1
と同様に行なった。そして、組成分析では被膜が実質的
にCであり、厚み測定では均一、層状の被膜が91 K
の厚みで固着していることを確認した。
In addition, the composition analysis and thickness measurement of this fine powder coating were carried out in Example 1.
I did the same thing. Compositional analysis showed that the coating was essentially C, and thickness measurements showed that the coating was uniform and layered at 91 K.
It was confirmed that it was firmly fixed with a thickness of .

実施例3 平均粒径0,03 μm (比表面積28.8m/g)
の実施例1で使用したものと同じ酸化亜鉛微粉末10g
を入れた磁製ボートをプロピレン20容量%、残部N 
からなる混合ガスが317分の流量で流れている450
1:’に保持した磁製管に速かに装入し、そこで5分間
静置した。その後、磁製ボートを常温の磁製管端に速か
に移動すると同時に、プロピレンの供給を止め、N 流
量を増加することによって雰囲気をN に置換しながら
酸化亜鉛微粉末を急冷した。こうして得られた酸化亜鉛
微粉末は青灰色で、平均粒径0.035μm(比表面積
27.8m2/g) 、100 by/m の加圧下で
測定した電気伝導度0.55Ω−1・薗−1であった。
Example 3 Average particle size 0.03 μm (specific surface area 28.8 m/g)
10 g of the same zinc oxide fine powder used in Example 1 of
A porcelain boat containing 20% propylene by volume, the balance N
A mixed gas consisting of 450 is flowing at a flow rate of 317 minutes.
It was quickly placed into a porcelain tube maintained at 1:' and left there for 5 minutes. Thereafter, the porcelain boat was quickly moved to the end of the porcelain tube at room temperature, the supply of propylene was stopped, and the zinc oxide fine powder was rapidly cooled while replacing the atmosphere with N 2 by increasing the N 2 flow rate. The zinc oxide fine powder thus obtained has a blue-gray color, an average particle size of 0.035 μm (specific surface area 27.8 m2/g), and an electrical conductivity of 0.55 Ω-1 when measured under a pressure of 100 by/m2. It was 1.

又・この微粉末の被膜の組成分析と厚み測定を実施例1
と同様に行なった。その結果は、被膜厚みが25 Rで
あった以外は実施例1と同様であった0 実施例4 平均粒径0.4μm(比表面積3.8 m /g )の
酸化亜鉛微粉末10 gを磁製ボートに入れ、次にこの
磁製ボートをエタン3容量%、残部N からなる混合ガ
スが211分の流量で流れている600Cに保持した磁
製管に装入し、そこで20分間静置した。
In addition, the composition analysis and thickness measurement of this fine powder coating were carried out in Example 1.
I did the same thing. The results were the same as in Example 1 except that the coating thickness was 25 R.Example 4 10 g of zinc oxide fine powder with an average particle size of 0.4 μm (specific surface area 3.8 m /g) was This porcelain boat was then placed in a porcelain tube maintained at 600C in which a gas mixture consisting of 3% ethane by volume and the balance N was flowing at a flow rate of 211 min, and left there for 20 min. did.

その後、磁製ポートを常温の磁製管端に速かに移。Then, quickly transfer the porcelain port to the end of the porcelain tube at room temperature.

動すると同時にエタンの供給を止め、N 流量を増加す
ることによって雰囲気をN に置換しながら゛  酸化
亜鉛微粉末を急冷した。こうして得られた酸化亜鉛微粉
末は灰白色で、平均粒径0.7μm(比表面積2.2 
m /g ) 、電気伝導度8.5Ω−1・薗−1であ
った。なお処理前の電気伝導度は1.2X10−6Ω−
1・川 であった。
At the same time, the supply of ethane was stopped and the flow rate of N was increased to replace the atmosphere with N while rapidly cooling the fine zinc oxide powder. The zinc oxide fine powder thus obtained is grayish white in color with an average particle size of 0.7 μm (specific surface area of 2.2 μm).
m/g), and the electrical conductivity was 8.5Ω-1·Sono-1. The electrical conductivity before treatment is 1.2X10-6Ω-
1. It was a river.

また、この微粉末の被膜の組成分析と厚み測定を実施例
1と同様に行なった。その結果は、被膜厚みが64 K
であった以外は実施例1と同様であった。
In addition, the composition analysis and thickness measurement of this fine powder coating were performed in the same manner as in Example 1. The result was a film thickness of 64 K.
It was the same as Example 1 except that.

実施例5 平均粒径0.01μm(比表面積80.2 m 7Ωン
の酸化チタン微粉末10 gを使用した以外は、実施例
1と同様に操作した。こうして得られた酸化チタン微粉
末は青灰色で、平均粒径0.02μm(比表面積50.
2 m /g ) 、電気伝導度0.10Ω−1・薗−
1であった。なお処理前の電気伝導度G!5.0X10
”−’Ω−1・鋸であった。
Example 5 The same procedure as in Example 1 was carried out except that 10 g of titanium oxide fine powder with an average particle size of 0.01 μm (specific surface area 80.2 m and 7Ω) was used.The titanium oxide fine powder thus obtained had a blue color. Gray, average particle size 0.02 μm (specific surface area 50.
2 m/g), electrical conductivity 0.10Ω-1・Sono-
It was 1. In addition, the electrical conductivity G before treatment! 5.0X10
”-'Ω-1・It was a saw.

また、この微粉末の被膜の組成分析と厚み測定を実施例
1と同様に行なった。その結果は、被膜厚みが16λで
あった以外は実施例1と同様であった。
In addition, the composition analysis and thickness measurement of this fine powder coating were performed in the same manner as in Example 1. The results were the same as in Example 1 except that the coating thickness was 16λ.

比較例1 磁製ポートを2500に保持した磁製管に装入し、1時
間及び10時間静置した以外は実施例4と同様に操作し
た。こうして得られた酸化亜鉛微粉末はいずれも白色で
、いずれも平均粒径0.4μm(比表面積夫々3.8 
m /g、 3.9 m /g) 、電気伝導度夫夫0
.8X10−’Ω−’−773−’、7.2X10−’
Ω−’−m−’であツタ。
Comparative Example 1 The same procedure as in Example 4 was carried out, except that the tube was placed in a porcelain tube with a porcelain port held at 2500°C, and left to stand for 1 hour and 10 hours. The zinc oxide fine powders thus obtained were all white in color, with an average particle size of 0.4 μm (specific surface area of 3.8 μm, respectively).
m/g, 3.9 m/g), electrical conductivity 0
.. 8X10-'Ω-'-773-', 7.2X10-'
Ω-'-m-' and ivy.

比較例2 磁製管に流すガスをN ガスとした以外は、実施例4と
同様に操作した。こうして得られた酸化亜鉛微粉末は白
色で、平均粒径0.5μm(比表面積3.1 m /g
) 、電気伝導度1.2X10−6Ω−1・潴−1であ
った。
Comparative Example 2 The same procedure as in Example 4 was carried out except that N 2 gas was used as the gas flowing through the porcelain tube. The zinc oxide fine powder thus obtained is white and has an average particle size of 0.5 μm (specific surface area of 3.1 m/g).
), and the electrical conductivity was 1.2×10 −6 Ω−1·tan−1.

比較例3 磁製管に流すガスをN ガスとし、5時間静置した以外
は実施例4と同様に操作した。こうして得られた酸化亜
鉛微粉末は白色で、平均粒径0.7μm(比表面積2.
3m/g)、電気伝導度3.2X10−6Ω−1・偏−
1であった。
Comparative Example 3 The same procedure as in Example 4 was carried out except that N 2 gas was used as the gas flowing through the porcelain tube and the tube was allowed to stand for 5 hours. The zinc oxide fine powder thus obtained is white in color and has an average particle size of 0.7 μm (specific surface area of 2.0 μm).
3m/g), electrical conductivity 3.2X10-6Ω-1, polarized
It was 1.

なお、前記比較例1.2.3で得られた微粉末の被膜の
組成分析を実施例1と同様に行なった。
The composition analysis of the fine powder coating obtained in Comparative Example 1.2.3 was conducted in the same manner as in Example 1.

その結果、いずれの比較例もCが検出されなかった0 〔発明の効果〕 本発明は導電性が非常に優れ、平均粒子径が数μm以下
もしくは0.1μm以下の微粉末を提供することができ
るものであり、その工業的価値は大さい。
As a result, no C was detected in any of the comparative examples. [Effects of the Invention] The present invention is capable of providing fine powder with extremely excellent conductivity and an average particle diameter of several μm or less or 0.1 μm or less. It can be done, and its industrial value is great.

Claims (1)

【特許請求の範囲】[Claims] (1)5μm以下の平均粒子径を有し、その表面に実質
的に炭素からなる被覆層が1〜200Åの層厚で形成さ
れてなる導電性微粉末。
(1) Conductive fine powder having an average particle diameter of 5 μm or less and having a coating layer substantially made of carbon formed on its surface with a layer thickness of 1 to 200 Å.
JP11389887A 1987-05-11 1987-05-11 Conductive fine powder Pending JPS63279502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11389887A JPS63279502A (en) 1987-05-11 1987-05-11 Conductive fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11389887A JPS63279502A (en) 1987-05-11 1987-05-11 Conductive fine powder

Publications (1)

Publication Number Publication Date
JPS63279502A true JPS63279502A (en) 1988-11-16

Family

ID=14623917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11389887A Pending JPS63279502A (en) 1987-05-11 1987-05-11 Conductive fine powder

Country Status (1)

Country Link
JP (1) JPS63279502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372003A (en) * 1989-08-11 1991-03-27 Central Glass Co Ltd Pressurized electric conductive metal powder and manufacture thereof
JP2008230915A (en) * 2007-03-20 2008-10-02 Mitsui Mining & Smelting Co Ltd Electrically conductive zinc oxide particle and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372003A (en) * 1989-08-11 1991-03-27 Central Glass Co Ltd Pressurized electric conductive metal powder and manufacture thereof
JP2008230915A (en) * 2007-03-20 2008-10-02 Mitsui Mining & Smelting Co Ltd Electrically conductive zinc oxide particle and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TW593203B (en) Aluminum nitride sintered bodies and semiconductor-producing members including the same
JP2001516142A (en) Nanocrystallite powder based varistor formed by mechanical grinding
JPS6096578A (en) Temperature balancing material
Asada et al. Superconductivity of niobium films
JPS61146769A (en) High heat conductivity ceramic body and manufacture
WO2018043680A1 (en) NON-MAGNETIC MATERIAL-DISPERSED Fe-Pt SPUTTERING TARGET
US6607836B2 (en) Material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors
JPS63279502A (en) Conductive fine powder
Gunjishima et al. Thermoelectric properties of single crystalline B4C prepared by a floating zone method
KR100259319B1 (en) Low permeability high strength target material for the formation of thin recording films
EP0251218A3 (en) Electrically insulating substrate material of polycrystalline silicon carbide and process of manufacture by not isostatic pressing
US5602062A (en) Method for preparing a boron nitride composite
JPS62105960A (en) Manufacture of aluminum nitride sintered body
Speight Structure and magnetic properties of rapidly quenched samarium-type alloys
EP1055641A3 (en) Silicon carbide powder and composite material made thereof and method for manufacturing the powder and material
Huang et al. Preparation and electrical properties of ZnO–glass ceramic films
US4973525A (en) Metal-insulator composites having improved properties and method for their preparation
JPS61119648A (en) Sintered composite target material
JPS61256701A (en) Oxide resistor
EP0431834B1 (en) Light-shielding aluminium nitride sintered body and method of manufacturing the same
JPS63295479A (en) Sintered aluminum nitride body and its production
Jia et al. The nature of the superconducting phase in yttrium palladium boride carbide
JPH01252573A (en) Target material for forming superconducting film
JPH04130064A (en) Aluminum nitride sintered body having light shielding property and high heat conductivity
JPH0320468B2 (en)