JPS6327942Y2 - - Google Patents

Info

Publication number
JPS6327942Y2
JPS6327942Y2 JP1982068118U JP6811882U JPS6327942Y2 JP S6327942 Y2 JPS6327942 Y2 JP S6327942Y2 JP 1982068118 U JP1982068118 U JP 1982068118U JP 6811882 U JP6811882 U JP 6811882U JP S6327942 Y2 JPS6327942 Y2 JP S6327942Y2
Authority
JP
Japan
Prior art keywords
electrode
machining
temperature
heat
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982068118U
Other languages
Japanese (ja)
Other versions
JPS58173437U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6811882U priority Critical patent/JPS58173437U/en
Publication of JPS58173437U publication Critical patent/JPS58173437U/en
Application granted granted Critical
Publication of JPS6327942Y2 publication Critical patent/JPS6327942Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【考案の詳細な説明】 この考案は被加工体をキヤビテイ状に3次元加
工する電気加工用電鋳又はプレス成形電極の構成
に係る。
[Detailed Description of the Invention] This invention relates to the configuration of an electroforming or press forming electrode for electrical machining that three-dimensionally processes a workpiece into a cavity shape.

従来から複雑な3次元形状の放電加工等の電気
加工用電極を作成するのに、電鋳により電極材の
電鋳殻として製作すること及び板状体から放電圧
力成形法等のプレス法によりプレス成形製作する
ことが行なわれているが、3次元形状の加工用電
極としては、当然に種々の、例えば大小、尖鋭状
突出状等の凹凸形状が含まれていて、特に突出し
た尖鋭状の部分等は、歪による応力を受けている
上に、放電加工等の電気加工用電極に使用される
場合には、当該部分に熱が集中して作用して電極
が形崩れする恐れがあり、複数ある突出尖鋭部の
うち1個所でも形くずれしてしまえば、この電極
は使えなくなり、再び別の電極を電鋳やプレス成
形で新たに作成し直さなければならないことにな
る。このような場合の対応として、電極を冷却す
ることは、例えば特公昭53−46519号公報に記載
されている。
Traditionally, in order to create electrodes for electrical machining such as electric discharge machining with complex three-dimensional shapes, it is necessary to produce an electroformed shell of the electrode material by electroforming and press it from a plate-shaped body using a pressing method such as discharge pressure forming. Molding is carried out, but as a three-dimensional shaped processing electrode, it naturally includes a variety of irregular shapes, such as large and small, sharp protrusions, etc., and in particular protruding sharp parts. etc. are subjected to stress due to strain, and when used as an electrode for electrical machining such as electrical discharge machining, there is a risk that heat will concentrate on the relevant part and cause the electrode to lose its shape. If even one of the protruding sharp parts loses its shape, the electrode becomes unusable, and a new electrode must be created again by electroforming or press molding. As a countermeasure to such a case, cooling the electrode is described, for example, in Japanese Patent Publication No. 46519/1983.

即ち、前記公報には、板、筒等をプレス加工し
た成形体、又は電鋳成形体等の成形体を加工用電
極とするもので、電極加工面の裏面に近接させ
て、加工面形状に近似するスパイラル状、蛇行彎
曲状等に成形した冷却液流パイプを設け、かつ裏
面側にパイプの液流入、流出口を突出させて低融
点合金でパイプを埋設した状態に充填して固定し
たものが記載されているが、このように電極全体
を平均的に冷却する方法では熱が集中作用する電
極の尖鋭状突出部を充分に冷却することが困難で
ある。又特開昭55−70528号公報にはヒートパイ
プを用い、加工用電極を取付け支承するスピンド
ルの途中の絶縁体のやや上方或は下方に前記ヒー
トパイプの吸熱端を接触配置して、電極の温度上
昇を防ぐことも提案されているが、ヒートパイプ
をこのように電極に接続される部分につけるので
は、加工用電極先端、特にその突出した尖鋭端に
対する熱集中のような場合には到底間に合わず形
がくずれてしまつて役にたたない。
That is, the above-mentioned publication discloses that a molded object such as a press-formed plate, cylinder, etc., or an electroformed molded object is used as a machining electrode, and the electrode is brought close to the back surface of the machined surface and shaped into the shape of the machined surface. A cooling liquid flow pipe formed into an approximate spiral shape, serpentine curved shape, etc. is provided, the liquid inflow and outflow ports of the pipe are made to protrude from the back side, and the pipe is filled with a low melting point alloy and fixed. However, in this method of cooling the entire electrode evenly, it is difficult to sufficiently cool the sharp protrusion of the electrode where heat is concentrated. Furthermore, in Japanese Patent Application Laid-Open No. 55-70528, a heat pipe is used, and the end of the heat pipe is placed in contact with an insulator in the middle of a spindle on which a processing electrode is attached and supported. It has also been proposed to prevent temperature rise, but attaching a heat pipe to the part connected to the electrode in this way is unlikely to prevent heat from concentrating on the tip of the processing electrode, especially its protruding sharp end. It is not used in time and its shape collapses.

叙上の点に鑑み、本考案は、電鋳加工又はプレ
ス加工により所望の3次元形状に成形された殻状
電極の表面突出部を選択的局部的に冷却すると共
に該表面突出部の温度を検知して過熱による形崩
れを確実に防止し得るようにすることを目的とす
るものであつて、殻状電極の表面突出部に対応す
る裏面凹陥部にヒートパイプの吸熱端を密着させ
て配置すると共に、前記殻状電極の裏面側に前記
ヒートパイプの放熱端を突出させた状態で充填材
を充填し、該充填材から突出した前記ヒートパイ
プの放熱端の冷却手段を設けると共に、前記放熱
端近傍のヒートパイプの温度を検出する温度検出
器を設けてなることを特徴とするものである。
In view of the above points, the present invention selectively and locally cools the surface protrusion of a shell-shaped electrode formed into a desired three-dimensional shape by electroforming or press working, and also reduces the temperature of the surface protrusion. The purpose of this is to detect and reliably prevent deformation due to overheating, and the end of the heat pipe is placed in close contact with the recessed part on the back surface corresponding to the protruding part on the surface of the shell-like electrode. At the same time, a filler is filled on the back side of the shell-shaped electrode with the heat dissipation end of the heat pipe protruding, and a cooling means for the heat dissipation end of the heat pipe protruding from the filler is provided, and the heat dissipation The heat pipe is characterized by being provided with a temperature detector that detects the temperature of the heat pipe near the end.

以下図面に基づき本考案を具体的に説明する。
図面の第1図、第2図、第3図は本考案の実施例
を示す側断面図である。
The present invention will be explained in detail below based on the drawings.
1, 2 and 3 of the drawings are side sectional views showing embodiments of the present invention.

第1図に於いて、1は例えば銅、ニツケル等を
材料として電鋳加工により作製された3次元総型
形状の電鋳殻からなる電気加工用電極であり、第
1図では電鋳型2が未だ取外されていない状態を
示している。3は胴部の内部に図示しないウイツ
クを有するヒートパイプで、電極1の加工面の突
出部1a附近に対応する内面凹陥部にその一端吸
熱部3aを挿入密着して配置するが、半田付又は
低融点合金を流し込んで固定し、その他端放熱部
3bを、冷却用の水や空気が流通する冷却パイプ
6内に配している。4は殻電極1の電鋳成形によ
りできた加工面背後の凹部に充填される低融点合
金又は合成樹脂等で、殻電極1を補強するもので
あり、ヒートパイプ3もこの充填に際して又は予
め前述の如く取りつけ配置する。5は殻電極1の
取付プレートで、第2図のようにモータや油圧等
による電気加工の電極送りサーボ機構に接続され
るスピンドル7の先端側に適宜の図示しない取付
機構を介してとりつけられる。尚第2図では殻電
極1をみる方向をかえて、その形態の複雑さを示
しており、殻電極1は電鋳型2から剥離されて、
プレート5にねじ止めされ、ヒートパイプ3の冷
却フイン3cが取りつけられている。又、第3図
に示すように本考案の電気加工用電極は、放熱部
3b近傍のヒートパイプの温度を検出する温度検
出器8を具備しており、9は温度検出器8による
検出温度を判別する判別装置、10は判別装置9
の判別信号の出力端子である。
In Fig. 1, reference numeral 1 denotes an electrode for electrical machining consisting of an electroformed shell with a three-dimensional overall shape produced by electroforming using copper, nickel, etc. as a material, and in Fig. 1, an electroforming mold 2 is shown. It shows the state that it has not been removed yet. Reference numeral 3 denotes a heat pipe having a not-shown heat pipe inside the body, and one end of the heat pipe 3a is inserted into the inner recess corresponding to the vicinity of the protrusion 1a on the machined surface of the electrode 1, and is placed in close contact with the heat pipe. A low melting point alloy is poured and fixed, and the other end heat radiation part 3b is placed in a cooling pipe 6 through which cooling water and air flow. Reference numeral 4 denotes a low melting point alloy or synthetic resin that is filled into the recess on the back of the machined surface created by electroforming of the shell electrode 1, and is used to reinforce the shell electrode 1. Install and arrange as shown. Reference numeral 5 designates a mounting plate for the shell electrode 1, which is mounted via an appropriate mounting mechanism (not shown) on the tip end side of a spindle 7, which is connected to an electrode feed servo mechanism for electric machining using a motor, hydraulic pressure, etc., as shown in FIG. In addition, in FIG. 2, the direction in which the shell electrode 1 is viewed is changed to show the complexity of its form, and the shell electrode 1 is peeled off from the electroforming mold 2.
The cooling fins 3c of the heat pipe 3 are attached to the plate 5 by screws. Further, as shown in FIG. 3, the electrode for electrical processing of the present invention is equipped with a temperature detector 8 that detects the temperature of the heat pipe near the heat radiation part 3b, and 9 detects the temperature detected by the temperature detector 8. A discriminating device for discriminating, 10 is a discriminating device 9
This is the output terminal for the discrimination signal.

しかして、ヒートパイプ3の吸熱端3aを殻状
電極1の表面突出部1aに対応する裏面凹陥部に
密着させて配置したことにより、該突出部1aを
選択的局部的に充分に冷却することができ、この
ため高電流を流して高負荷で加工を行つても電極
の突出部1aが過熱して熱変形することがなく、
精度のよい加工を高精度で行うことが可能とな
る。
By arranging the endothermic end 3a of the heat pipe 3 in close contact with the recess on the back surface corresponding to the surface protrusion 1a of the shell-like electrode 1, the protrusion 1a can be sufficiently cooled selectively and locally. Therefore, even if high current is applied and machining is performed under high load, the protruding part 1a of the electrode will not overheat and be thermally deformed.
It becomes possible to perform highly accurate machining.

又ヒートパイプは、その特性として吸熱部3a
と放熱部3bとが略同じ温度になるものであるか
ら、放熱部近傍のヒートパイプの温度を検出する
温度検出器8を設けたことにより吸熱部と密着す
る電極の突出部1aの温度を検知することがで
き、従つて、検出器8により検出された温度に応
じて放熱部3bを冷却する水や空気の流量を変更
制御することにより突出部1aの温度を所望の温
度に維持することができ、又、水や空気の流量を
増大させても検出温度が所定値を上回るときは、
加工の一旦停止、加工電流の低減、あるいは加工
送りの減速等の制御をして加工負荷を減少させる
ことにより突出部1aの温度を低下させて所望の
温度とすることができる。そして、これ等の制御
は作業者の手作業により行うことも、あるいは温
度検出器8の検出温度を判別する判別装置9の出
力信号により自動的に行うことも可能である。
In addition, the heat pipe has a heat absorption part 3a as its characteristic.
Since the heat dissipation section 3b and the heat dissipation section 3b have approximately the same temperature, a temperature detector 8 is provided to detect the temperature of the heat pipe near the heat dissipation section, thereby detecting the temperature of the protruding section 1a of the electrode that is in close contact with the heat absorption section. Therefore, the temperature of the protruding portion 1a can be maintained at a desired temperature by changing and controlling the flow rate of water or air for cooling the heat radiating portion 3b according to the temperature detected by the detector 8. If the detected temperature exceeds the specified value even if the flow rate of water or air is increased,
By reducing the machining load by temporarily stopping the machining, reducing the machining current, or slowing down the machining feed, the temperature of the protruding portion 1a can be lowered to a desired temperature. These controls can be performed manually by an operator, or automatically using an output signal from a discrimination device 9 that discriminates the temperature detected by the temperature detector 8.

又、電極突出部1aの温度を制御し得ることに
より、該突出部の熱による形崩れを防止できるだ
けでなく、例えば放電加工の場合にはアーク放電
の発生を防止したり電極の消耗を防止して精度の
よい加工を能率よく行うことができる。即ち、電
極の温度が300〜600℃になると、アーク放電状態
となつて加工速度が低下したり加工面を傷つけた
りすることになり、又、電極低消耗あるいは無消
耗の加工条件で加工を行つても、電極の温度が電
極と被加工体の材質、加工パルス、加工液等の加
工条件によつて種々異なる或る温度よりも低くな
ると、電極消耗が生じて加工精度を低下させるこ
とになるが、本考案によれば電極突出部1aを充
分に冷却し得ると共に冷却し過ぎるということも
なく、所望の温度に維持制御することができるた
め、精度のよい加工を能率よく行うことができ
る。又電解加工や電解研削加工の場合にも、電極
突出部の温度が例えば高い場合で約200〜400℃と
なると、加工液の蒸発、ガス化、更には放電が発
生して加工状態が不安定となり、加工能率や加工
精度を悪化させることになるが、本考案によれば
電極突出部を充分に冷却するこができるため、高
い電解電流で高負荷加工を行つても電極突出部を
所望の良好な温度に維持制御することができ、精
度の良い加工を能率よく行うことができる。
Furthermore, by being able to control the temperature of the electrode protrusion 1a, it is possible not only to prevent the protrusion from deforming due to heat, but also to prevent the occurrence of arc discharge and wear of the electrode in the case of electrical discharge machining, for example. This enables efficient machining with high precision. In other words, when the temperature of the electrode reaches 300 to 600℃, arc discharge occurs, which reduces the machining speed and damages the machined surface.Also, it is difficult to perform machining under machining conditions with low or no electrode consumption. However, if the temperature of the electrode drops below a certain temperature, which varies depending on the materials of the electrode and workpiece, machining pulses, machining fluid, etc., the electrode will wear out and reduce machining accuracy. However, according to the present invention, the electrode protrusion 1a can be sufficiently cooled and not overcooled, and the temperature can be maintained at a desired temperature, so that accurate machining can be performed efficiently. Also, in the case of electrolytic machining and electrolytic grinding, if the temperature of the electrode protrusion is high, for example, about 200 to 400°C, the machining fluid will evaporate, gasify, and even discharge will occur, making the machining state unstable. However, according to the present invention, the electrode protrusion can be sufficiently cooled, so even when performing high-load machining with a high electrolytic current, the electrode protrusion can be kept at the desired level. It is possible to maintain and control the temperature at a good level, allowing efficient processing with high precision.

以上は殻電極1が電鋳によつて製作されたもの
について述べたが、例えば前記特公昭53−46519
号公報にも記載されているように、電気加工用の
電極材、例えば銅、ニツケル、黄銅等から成る板
状体やブロツク等から、放電圧力成形法やその他
適宜の板金プレス成形法、或いは又冷間若しくは
熱間鍛造によつて成形された3次元総型形状の殻
状電極1の場合にも同様に適用できて、かつ前述
の場合と同一の作用効果を奏し得ることは、さら
に詳述するまでもなく明らかである。
The shell electrode 1 has been described above as manufactured by electroforming, but for example,
As described in the publication, electrode materials for electrical machining, such as plate-shaped bodies or blocks made of copper, nickel, brass, etc., can be made by electric discharge pressure forming method, other appropriate sheet metal press forming method, or It will be further explained in detail that it can be similarly applied to the case of a shell-like electrode 1 having a three-dimensional overall shape formed by cold or hot forging, and that the same effects as in the above case can be achieved. It goes without saying.

また、上記殻電極1の形状としては、外周側面
に3次元総型加工面が形成された筒状、乃至は先
細テーパ状の筒状電極であつても良く、ヒートパ
イプ3の放熱冷却部3bは、電気加工機の被加工
体が配置される加工タンク内の加工液中に挿入配
置して、加工液供給装置から循環供給される流動
加工液により冷却するようにしても良い。また塊
状の電極材合金より、フライス加工等により切り
出し成形した電極にも突出部の背部側へ到る穴を
明け、該穴にヒートパイプを挿入することが考え
られ、それなりの効果を発揮するものと思惟され
るが、斯種電極は、殻状のものに比べ、熱容量や
例えばスピンドル等支持側への熱伝導路が一般的
に極めて大きいから、可成りの高負荷加工に耐え
る場合が多く、それ程必要としない場合が多い。
Further, the shape of the shell electrode 1 may be a cylindrical electrode with a three-dimensional machined surface formed on the outer peripheral side surface, or a cylindrical electrode with a tapered shape. may be inserted into a machining fluid in a machining tank in which a workpiece of an electric machining machine is disposed, and may be cooled by a fluid machining fluid that is circulated and supplied from a machining fluid supply device. It is also possible to create a hole in the electrode that is cut out from a block of electrode material alloy by milling, etc., and to insert a heat pipe into the hole, which would produce a certain effect. However, compared to shell-shaped electrodes, this type of electrode generally has an extremely large heat capacity and a heat conduction path to the supporting side such as the spindle, so it often withstands considerably high-load processing. In many cases, it is not necessary.

以上述べた通り、本考案によれば、電鋳加工又
はプレス加工により作製された3次元総型形状を
有する殻状電極の表面突出部を選択的局部的に充
分に冷却することができると共に該表面突出部の
温度を検知して所望の温度に維持制御することが
できるため、熱が集中的に作用する殻状電極突出
部の過熱による形崩れを確実に防止することがで
きると共に、高い加工電流で高負荷加工を行つて
も安定した加工状態で加工を行うことができ、精
度のよい加工を能率よく行うことができる。
As described above, according to the present invention, it is possible to selectively and locally sufficiently cool the surface protrusion of a shell-like electrode having a three-dimensional overall shape produced by electroforming or press processing, and Since the temperature of the surface protrusion can be detected and controlled to maintain it at a desired temperature, it is possible to reliably prevent the shell-shaped electrode protrusion, on which heat acts intensively, from deforming due to overheating, and also to allow for high processing speed. Even when performing high-load machining with electric current, machining can be performed in a stable machining state, and highly accurate machining can be performed efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本考案の実施例を示
す側断面図である。 図で1は電鋳成形による殻電極、3はヒートパ
イプ、4は補強充填材充填部分、5は取り付けプ
レート、6は冷却流体流通パイプ。
1, 2, and 3 are side sectional views showing an embodiment of the present invention. In the figure, 1 is an electroformed shell electrode, 3 is a heat pipe, 4 is a reinforcing filler filled part, 5 is a mounting plate, and 6 is a cooling fluid distribution pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電鋳加工又はプレス加工により所望の3次元形
状に成形された殻状電極の表面突出部に対応する
裏面凹陥部にヒートパイプの吸熱端を密着させて
配置すると共に、前記殻状電極の裏面側に前記ヒ
ートパイプの放熱端を突出させた状態で充填材を
充填し、該充填材から突出した前記ヒートパイプ
の放熱端の冷却手段を設けると共に、前記放熱端
近傍のヒートパイプの温度を検出する温度検出器
を設けてなる電気加工用電極。
The heat-absorbing end of the heat pipe is placed in close contact with the recess on the back surface corresponding to the surface protrusion of the shell-like electrode formed into a desired three-dimensional shape by electroforming or press processing, and the back side of the shell-like electrode is is filled with a filler with the heat dissipation end of the heat pipe protruding, a cooling means for the heat dissipation end of the heat pipe protruding from the filler is provided, and the temperature of the heat pipe near the heat dissipation end is detected. Electrode for electrical processing equipped with a temperature detector.
JP6811882U 1982-05-12 1982-05-12 Electrode for electrical processing Granted JPS58173437U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6811882U JPS58173437U (en) 1982-05-12 1982-05-12 Electrode for electrical processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6811882U JPS58173437U (en) 1982-05-12 1982-05-12 Electrode for electrical processing

Publications (2)

Publication Number Publication Date
JPS58173437U JPS58173437U (en) 1983-11-19
JPS6327942Y2 true JPS6327942Y2 (en) 1988-07-28

Family

ID=30077914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6811882U Granted JPS58173437U (en) 1982-05-12 1982-05-12 Electrode for electrical processing

Country Status (1)

Country Link
JP (1) JPS58173437U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346519A (en) * 1976-10-07 1978-04-26 Acf Ind Inc Motor driven rotary fuel pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52171783U (en) * 1976-06-21 1977-12-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346519A (en) * 1976-10-07 1978-04-26 Acf Ind Inc Motor driven rotary fuel pump

Also Published As

Publication number Publication date
JPS58173437U (en) 1983-11-19

Similar Documents

Publication Publication Date Title
KR860001333B1 (en) Hot sprue valve and mold assembly for an injection molding machine and a method for controlling flow of molten material
US4652230A (en) Injection molding nozzle
US4266723A (en) Nozzle for injection molding machines
JP3017498B2 (en) Amorphous alloy production equipment and amorphous alloy production method
CN103551856A (en) Machining method for preventing high-precision large titanium alloy thin-wall casting mounting edge deformation
US3793169A (en) Small hole ecm drilling with controlled current
CN213560140U (en) Milling cutter blade disc based on processing usefulness is adjusted to multidirectionally
US5213824A (en) Adjustable hot sprue bushing
CN210996543U (en) Turning tool for machining inner hole of precision part
JPS6327942Y2 (en)
US5924471A (en) Method of fabricating lead bushings and batteries using same
US3783224A (en) Edm electrode construction and method of making same
JP2001071113A (en) Apparatus for producing amorphous alloy molded product
CN212823239U (en) Workpiece clamp base for machining of numerical control machine tool
CN211615049U (en) Cooling device for engraving and milling machine
US3547797A (en) Apparatus for simultaneously electrochemically machining a plurality of previously formed surfaces of a workpiece
US3584179A (en) Edm electrode construction and method of making same
JP3371013B2 (en) Injection molding machine
CN219949631U (en) Automatic centering and alloy flow controllable lens disc feeding machine
JPH0338102B2 (en)
CN216178421U (en) Metal product cutter jacket
JP3757324B2 (en) Molding equipment for forging
CN219133184U (en) Die head bolt adjusting structure for casting
CN115354290B (en) Method and system for manufacturing radioactive target
CN218362014U (en) Cooling mechanism for ultra-large die-casting die