JPS63278284A - Two-dimensional light-position detection device - Google Patents

Two-dimensional light-position detection device

Info

Publication number
JPS63278284A
JPS63278284A JP62112959A JP11295987A JPS63278284A JP S63278284 A JPS63278284 A JP S63278284A JP 62112959 A JP62112959 A JP 62112959A JP 11295987 A JP11295987 A JP 11295987A JP S63278284 A JPS63278284 A JP S63278284A
Authority
JP
Japan
Prior art keywords
electrodes
detection device
electrode
input
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62112959A
Other languages
Japanese (ja)
Inventor
Masuji Sato
佐藤 万寿治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62112959A priority Critical patent/JPS63278284A/en
Publication of JPS63278284A publication Critical patent/JPS63278284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To form a simply constituted two-dimensional light-position detection device which can obtain a big output voltage in proportion to a position of the incident light by forming a photoconductive film between a square transparent resistive film which is equipped with input electrodes at two sets of opposite edge parts at right angles to each other and a common output electrode composed of a conductive film formed directly on an insulating substrate. CONSTITUTION:Out of two sets of facing input electrodes on a detection device 1 by keeping a distance X0 and another distance Y0, one set, i.e., the electrodes 6a, 6c as grounding electrodes to a negative side of a power supply 82 and the other electrodes 6b, 6d are connected to a positive side via a switch S1. If this switch is changed over, an input voltage V0 is impressed on the input electrode 6b for X- coordinates use and on the input electrode 6d for Y-coordinates use alternately. If a luminous spot is incident on a point P inside a detection region in this state, a photoconductive film 4 becomes conductive in this point; a common output electrode 3 formed as a lower layer is connected to a transparent resistive film 5 on the surface via the conductive part; output voltages Vx, Vy in proportion to x, y are generated between the grounding electrodes and the common output electrode 2 synchronously with a changeover cycle of the switch. The signals are separated into two systems by using a switch S2 and can be taken out easily as independent signals.

Description

【発明の詳細な説明】 〔概 要〕 直交する2組の対向縁部に入力電極を備えた四角の透明
抵抗膜と、絶縁基板上に形成された導体膜の出力電極と
の間に、光により導通する光導電膜を形成し、光スポッ
トが照射されたX、Y座標を、ポテンショメータの出力
電圧として取り出す二次元光位置検出装置である。
[Detailed Description of the Invention] [Summary] Light is transmitted between two sets of orthogonal rectangular transparent resistive films with input electrodes on opposing edges and an output electrode of a conductive film formed on an insulating substrate. This is a two-dimensional optical position detection device in which a conductive photoconductive film is formed and the X and Y coordinates of a light spot irradiated are extracted as an output voltage of a potentiometer.

〔産業上の利用分野〕[Industrial application field]

本発明は、光導電膜を用いた二次元の光位置検出装置に
関する。
The present invention relates to a two-dimensional optical position detection device using a photoconductive film.

平面上での光スポットの位置座標が求まる検出装置は、
被接触で被計測物体の空間的な位置座標を計測して、移
動する物体の運動解析などを行う測定装置の検出手段と
して用いられている。
A detection device that determines the position coordinates of a light spot on a plane is
It is used as a detection means in a measuring device that measures the spatial position coordinates of an object to be measured in contact with it and performs motion analysis of a moving object.

また最近では、図面などの座標を電気信号に変換してコ
ンピュータシステムに入力するデジタイザなどで、出力
が大きく、簡易な検出回路と共に使用できるこの種の検
出装置への要望が高まっている。
Recently, there has been an increasing demand for this type of detection device that has a large output and can be used with a simple detection circuit, such as a digitizer that converts the coordinates of drawings etc. into electrical signals and inputs them into a computer system.

〔従来の技術〕[Conventional technology]

従来、光学的な二次元位置検出装置として半導体の光起
電力効果を用いたものが知られている。
2. Description of the Related Art Conventionally, optical two-dimensional position detection devices that use the photovoltaic effect of semiconductors are known.

まず、第4図の従来の一次元光位置検出装置の模式断面
図により動作原理を説明する。
First, the principle of operation will be explained with reference to a schematic cross-sectional view of a conventional one-dimensional optical position detection device shown in FIG.

第4図において、高抵抗半導体基板(シリコン)91の
上にP型シリコンよりなる均一な抵抗層92が形成され
ており、該抵抗層92の両端に信号取り出し用の一対の
電極93a、93bが設けられており、またシリコン9
1の下面にはn土層よりなる共通電極94が形成されて
いる。
In FIG. 4, a uniform resistance layer 92 made of P-type silicon is formed on a high-resistance semiconductor substrate (silicon) 91, and a pair of electrodes 93a and 93b for signal extraction are provided at both ends of the resistance layer 92. It is also provided with silicon 9
A common electrode 94 made of an n-soil layer is formed on the lower surface of the substrate 1 .

シリコン91と抵抗層92との接合面はPN接合され、
光電池を形成している。
The bonding surface between the silicon 91 and the resistance layer 92 is a PN junction,
forming a photovoltaic cell.

両電極93a、93b間の距離をし、抵抗をRLとし、
電極93aからの光スポツl−Hの入射点までの距離を
X、その部分の抵抗をRxとする。光入射位置で発生し
た光生成電荷は、光の入射エネルギに比例する光電流I
Oとして抵抗層92に到達し、それぞれの電極までの抵
抗値に逆比例するように分割され、電極93a、93b
から取り出される。
Let the distance between both electrodes 93a and 93b be, and let the resistance be RL,
Let X be the distance from the electrode 93a to the point of incidence of the light spot l-H, and let Rx be the resistance of that portion. The photogenerated charge generated at the light incident position is a photocurrent I that is proportional to the incident energy of the light.
It reaches the resistance layer 92 as O, and is divided inversely proportional to the resistance value to each electrode, and is divided into electrodes 93a and 93b.
taken from.

これらの電流をそれぞれIa、 Ibとすると、となる
。抵抗層92は均一で長さと抵抗値が比例するとすれば
、上式は で表される。 Ia、IbO比を求めると、となりIa
、IbO値から入射エネルギに無関係に光の入射位置を
知ることができる。
Let these currents be Ia and Ib, respectively. Assuming that the resistance layer 92 is uniform and its length and resistance value are proportional, the above equation can be expressed as follows. When calculating the Ia and IbO ratio, it becomes Ia
, the incident position of light can be known from the IbO value regardless of the incident energy.

第5図は、上記の原理を用いて、二次元計測を行うため
の、従来の二次元光位置検出装置を示す図である。
FIG. 5 is a diagram showing a conventional two-dimensional optical position detection device for performing two-dimensional measurement using the above principle.

図において、四角の平面状に形成された抵抗層92の上
に、直交座標軸に対応して四辺におのおのX1X゛およ
びY、 Y’電極が設けられている。上述の説明はX軸
のみを有する一次元の場合を述べたが、電極がこのよう
に配置された二次元の場合、入射スポット光による光電
流IOは四つの電極に分割して流入する。 これらの電
流は、入射点と電極との距離によりその値が変化する、
すなわち位置の情報を含んだものであるから、対向電極
からの2組の出力電流対Ix、lx’およびIy、Iy
′を用いてそれぞれの対の中で演算を行うことによって
、光スポツト入射点のX座標、Y座標を検出することが
できる。
In the figure, on a resistance layer 92 formed in a rectangular planar shape, X1X', Y, and Y' electrodes are provided on each of the four sides corresponding to the orthogonal coordinate axes. Although the above description has been made for a one-dimensional case having only the X axis, in a two-dimensional case where the electrodes are arranged in this manner, the photocurrent IO due to the incident spot light is divided and flows into the four electrodes. The value of these currents changes depending on the distance between the point of incidence and the electrode.
In other words, since it contains position information, two sets of output current pairs Ix, lx' and Iy, Iy from opposing electrodes
By performing calculations in each pair using ', it is possible to detect the X and Y coordinates of the point of incidence of the light spot.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の検出装置では、入射光のエネルギを光起電力
効果により電流に変換して、出力信号として用いている
。光電流は通常、数10nA程度と極めて微弱であり、
その後の演算処理を行うには、高感度の前置増幅器を必
要とした。
In the conventional detection device described above, the energy of incident light is converted into a current by the photovoltaic effect and used as an output signal. The photocurrent is usually extremely weak, on the order of several tens of nanoamps.
A highly sensitive preamplifier was required to perform subsequent calculations.

また、出力電流は位置の情仰は含むが、電流値自体は位
置に比例していないため、複雑な演算処理を行い位置に
比例した値に変換する必要があり、さらに、入射光のエ
ネルギ変動が出力電流に直接影響するので正規化する処
理も必要となる。
In addition, although the output current includes information about the position, the current value itself is not proportional to the position, so it is necessary to perform complex arithmetic processing to convert it into a value proportional to the position. Since this directly affects the output current, normalization processing is also required.

これらの処理として、例えば、対向電極からの出力の差
および和を求め、その比をとる演算などが行われるが、
この演算のためにX軸、Y軸用の加算、減算および除算
を行うアナログ演算系を必要とした。
These processes include, for example, calculating the difference and sum of outputs from opposing electrodes and calculating the ratio.
This calculation required an analog calculation system that performs addition, subtraction, and division for the X and Y axes.

以上のように、半導体を用いた従来の二次元光位置検出
装置は、信号処理回路が複雑になり、装置が大がかりに
なるため、高価になるという問題点があった。
As described above, the conventional two-dimensional optical position detection device using a semiconductor has the problem that the signal processing circuit becomes complicated and the device becomes large-scale and expensive.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明に係る二次元光位置検出装置の平面図、
第2図は第1図におけるA−A’断面図である。
FIG. 1 is a plan view of a two-dimensional optical position detection device according to the present invention;
FIG. 2 is a sectional view taken along the line AA' in FIG.

本発明は上記問題点を解決するため、直交する2組の対
向縁部に入力電極6a 、 6bおよび6c、6dを備
えた四角の透明抵抗膜5と、絶縁基板直上に形成された
導電膜よりなる共通出力電極3との間に、光導電膜4を
形成してなる二次元光位置検出装置を提供するものであ
る。
In order to solve the above-mentioned problems, the present invention uses a rectangular transparent resistive film 5 having input electrodes 6a, 6b and 6c, 6d on two sets of orthogonal opposing edges, and a conductive film formed directly above an insulating substrate. A two-dimensional optical position detection device is provided in which a photoconductive film 4 is formed between a common output electrode 3 and a common output electrode 3.

〔作用〕 光導電膜4は光の照射がない状態での抵抗値(暗抵抗)
が高く、はぼ絶縁体であり、光が照射されるとその抵抗
値(明抵抗)が5〜7桁減少し導電性を示す。
[Function] The resistance value of the photoconductive film 4 in the absence of light irradiation (dark resistance)
It is a highly insulating material, and when irradiated with light, its resistance value (bright resistance) decreases by 5 to 7 orders of magnitude, indicating conductivity.

従って上記の如く構成された検出装置の表面に、第2図
のように、スポット光Hが入射すると透明抵抗膜5を通
過して、下層の光導電膜4に達し、その部分が導通部4
aとなって透明抵抗膜5と最下層の共通出力電極3とが
接続される。
Therefore, as shown in FIG. 2, when the spot light H is incident on the surface of the detection device configured as described above, it passes through the transparent resistive film 5 and reaches the photoconductive film 4 in the lower layer, and the spot light H passes through the transparent resistive film 5 and reaches the photoconductive film 4 in the lower layer.
a, the transparent resistive film 5 and the common output electrode 3 at the bottom layer are connected.

ところで、透明抵抗膜5上の対向する入力電極間(例え
ば6a、6b間)に入力電圧が印加されてい電流が流れ
ている。透明抵抗膜上は全面にわたって一様な比抵抗分
布を有するので、その内部では電極からの距離に比例し
た電圧降下が生じている。
By the way, an input voltage is applied between opposing input electrodes on the transparent resistive film 5 (for example, between 6a and 6b), and a current flows. Since the transparent resistive film has a uniform resistivity distribution over the entire surface, a voltage drop occurs inside the transparent resistive film in proportion to the distance from the electrode.

すなわち、透明抵抗膜車上の各点は電極からの距離に比
例した電位を有する。
That is, each point on the transparent resistive film wheel has a potential proportional to the distance from the electrode.

この状態で上記スポット光Hが入射すると、導通部4a
を通じて入射点の電位が共通出力電極3に現れる。
When the spot light H enters in this state, the conductive portion 4a
The potential at the point of incidence appears on the common output electrode 3 through.

すなわち、第2図で示す本検出装置では、スポット光が
照射された部分4aが、透明抵抗膜+上の位置に比例す
る電圧を取り出す作用、すなわち、あたかもポテンショ
メータにおけるブラシ(摺動子)と同等の作用をするの
で、入射点の位置に比例した電圧を共通出力電極から取
り出すことができる。
That is, in this detection device shown in Fig. 2, the portion 4a irradiated with the spot light has the effect of extracting a voltage proportional to the position on the transparent resistive film +, that is, it is equivalent to a brush (slider) in a potentiometer. Therefore, a voltage proportional to the position of the incident point can be extracted from the common output electrode.

この際、ブラシ抵抗に相当する導通部の抵抗は数百Ω程
度であり、スポット光の強度変動で若干変化するが、M
Ωオーダの入力インピーダンスを有する通常の検出回路
で電圧だけを測定するので、抵抗値の変動の影響は無視
できる。
At this time, the resistance of the conductive part, which corresponds to the brush resistance, is about several hundred Ω, and it changes slightly depending on the intensity fluctuation of the spot light, but M
Since only the voltage is measured with a normal detection circuit having an input impedance on the order of Ω, the influence of resistance variation can be ignored.

そして、例えば、X座標、Y座標検出用の2組の対向電
極間に、同一入力端子をスイッチにより切換えて交互に
印加し、共通出力電極からの電圧を、該スイッチの切換
えタイミングに同期させて、2系統に分割することによ
り、二つの座標軸に関する位置情報を時分割で別個に取
り出すことができる。
Then, for example, the same input terminal is alternately applied between two sets of opposing electrodes for X-coordinate and Y-coordinate detection by switching with a switch, and the voltage from the common output electrode is synchronized with the switching timing of the switch. By dividing the system into two systems, position information regarding the two coordinate axes can be extracted separately in a time-sharing manner.

以上の如く、光導電膜を用いた本発明による二次元光位
置検出装置は、非接触型のポテンショメ電圧を、外部か
ら供給する入力電圧に比例して大きくすることができ、
かつ、出力電圧は入射光の位置に比例しているので、前
記半導体の光起電力効果を用いた従来の検出装置の如く
前置増幅器や複雑なアナログ演算回路を必要としない。
As described above, the two-dimensional optical position detection device according to the present invention using a photoconductive film can increase the non-contact potentiometer voltage in proportion to the input voltage supplied from the outside.
In addition, since the output voltage is proportional to the position of the incident light, there is no need for a preamplifier or a complicated analog calculation circuit as in the conventional detection device using the photovoltaic effect of the semiconductor.

〔実施例〕〔Example〕

以下添付図により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to the accompanying drawings.

第1図は本発明に係る二次元光位置検出装置の平面図、
第2図は第1図におけるA−A”断面図、第3図は検出
回路接続図である。
FIG. 1 is a plan view of a two-dimensional optical position detection device according to the present invention;
FIG. 2 is a sectional view taken along the line A-A'' in FIG. 1, and FIG. 3 is a detection circuit connection diagram.

第1図、第2図において、2はアルミナなどからなる絶
縁基板で、その上にNiCr−Auなとの導電性薄膜か
らなる共通出力電極3が形成されている。
In FIGS. 1 and 2, reference numeral 2 denotes an insulating substrate made of alumina or the like, on which a common output electrode 3 made of a conductive thin film such as NiCr-Au is formed.

その上に、Cd (SeS)などを主成分とする厚さ1
〜4μmの光導電膜4と、該光導電膜4の形成領域をは
み出さない範囲にSnO2、ITOなどよりなの四辺に
接して(図は上面の場合を示すが端面でもよい)、互い
に直交する2対の入力電極6a、6bおよび6c、6d
がNiCr−Auなどの導体膜のパターン形成により配
設され、それぞれX座標、Y座標用の電極として用いら
れる。
On top of that, a thickness of 1 mm containing Cd (SeS) etc. as the main component is added.
A photoconductive film 4 with a thickness of ~4 μm and a layer of SnO2, ITO, etc., which does not extend beyond the formation area of the photoconductive film 4, are in contact with the four sides (the figure shows the top surface, but the end surfaces may also be used) and are perpendicular to each other. Two pairs of input electrodes 6a, 6b and 6c, 6d
are arranged by patterning a conductive film such as NiCr-Au, and are used as electrodes for the X and Y coordinates, respectively.

人力電極6a、6bおよび6c、6dの長さは、直交す
る他の座標軸用の電極が透明抵抗膜上に存在することに
よる抵抗膜内の電位勾配の非直線性(エツジエフェクト
による)を除くため、他座標用電極対間の距離に対して
適当に短く定められる。
The lengths of the manual electrodes 6a, 6b, 6c, and 6d are determined in order to eliminate nonlinearity of the potential gradient within the resistive film (due to edge effect) due to the presence of electrodes for other orthogonal coordinate axes on the transparent resistive film. , is set to be appropriately short compared to the distance between the electrode pairs for other coordinates.

図の点線で囲まれた範囲7は上記の如く形成された検出
装置の光スボソドの検出領域を示し、この内部ではx、
y方向とも光スポットの入射位置の座標と出力電圧との
関係は直線性を保っている。
The area 7 surrounded by the dotted line in the figure shows the detection area of the optical sensor of the detection device formed as described above, and inside this area, x,
In both the y direction, the relationship between the coordinates of the incident position of the light spot and the output voltage maintains linearity.

次に、第3図により、上記の如く構成された二次元光位
置検出装置の動作を説明する。
Next, with reference to FIG. 3, the operation of the two-dimensional optical position detection device configured as described above will be explained.

図において8は検出回路で、連動する2組の切換えスイ
ッチSl 、S2からなる座標軸切換回路81と、検出
装置1に入力電圧VOを供給する電源82を備えている
In the figure, reference numeral 8 denotes a detection circuit, which includes a coordinate axis switching circuit 81 consisting of two sets of interlocking changeover switches Sl and S2, and a power source 82 for supplying an input voltage VO to the detection device 1.

検出装置1上で距離XOおよびYOを隔てで対向する2
組の入力電極のそれぞれの一方すなわち6a、6cはア
ース電極として電源82のマイナス側に、また他の一方
6.b、6dはスイッチSlを介してプラス側に接続さ
れており、スイッチの切換えにより、入力電圧vOがX
座標用入力電極6bとY座標用入力電極6dに交互に印
加されるようになっている。
2 facing each other at distances XO and YO on the detection device 1
One of each pair of input electrodes 6a, 6c is connected to the negative side of the power supply 82 as a ground electrode, and the other one 6. b and 6d are connected to the positive side via switch Sl, and by switching the switch, the input voltage vO becomes
The voltage is applied alternately to the coordinate input electrode 6b and the Y coordinate input electrode 6d.

この状態で光スポットが検出領域内の点P (アース電
極からのX、Y方向の距離がそれぞれx、yの点)に入
射すると、その点で光導電膜体が導通し、下層として形
成されている共通出力電極合が表面の透明抵抗膜÷と導
通部を介して接続し、アース電極と共通出力電極2との
間にx、yに比例した出力電圧v×、Vyがスイッチの
切換周期に同期して交互に発生する。この信号をスイッ
チSlに同期して動作するスイッチS2により2系統に
分離し独立した二つの出力として容易に取り出すことが
できる。
In this state, when a light spot enters a point P within the detection area (a point where the distances in the X and Y directions from the ground electrode are x and y, respectively), the photoconductive film becomes conductive at that point and is formed as a lower layer. The common output electrode 2 is connected to the transparent resistive film on the surface through the conductive part, and the output voltage v×, Vy proportional to x, y is applied between the ground electrode and the common output electrode 2 at the switching period of the switch. occur alternately in sync with This signal can be separated into two systems by a switch S2 operating in synchronization with the switch Sl, and can be easily taken out as two independent outputs.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、入射光の位置に比例した、大きな出力
電圧が得られる構造が簡単な二次元光位置検出装置を提
供することが可能となり、検出回路を簡単な構成とする
こができ、その経済的効果は顕著である。
According to the present invention, it is possible to provide a two-dimensional optical position detection device with a simple structure that can obtain a large output voltage proportional to the position of incident light, and the detection circuit can have a simple configuration. Its economic effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る二次元光位置検出装置の平面図
、 第2図は、第1図におけるA−A”断面図、第3図は、
検出回路接続図、 第4図は、従来の一次元光位置検出装置の模式第5図は
、従来の二次元光位置検出装置を示す図・ である。 図において、 1−二次元光位置検出装置、2−絶縁基板、3−共通電
極、     4−光導電膜、4a−導通部、    
   5−透明抵抗膜、6a、6b、6c、6cl−−
一人力電極、7−検出領域、8−検出回路、     
81−座標軸切換回路、82−電源、       9
1− シリコン、92−抵抗層、      93a、
93b −電極、94−共通電極、 で菖る。 第1層
FIG. 1 is a plan view of a two-dimensional optical position detection device according to the present invention, FIG. 2 is a sectional view taken along line A-A'' in FIG. 1, and FIG.
Detection circuit connection diagram: FIG. 4 is a schematic diagram of a conventional one-dimensional optical position detection device; FIG. 5 is a diagram showing a conventional two-dimensional optical position detection device. In the figure, 1-two-dimensional optical position detection device, 2-insulating substrate, 3-common electrode, 4-photoconductive film, 4a-conducting part,
5-Transparent resistive film, 6a, 6b, 6c, 6cl--
Single power electrode, 7-detection area, 8-detection circuit,
81-coordinate axis switching circuit, 82-power supply, 9
1- silicon, 92- resistance layer, 93a,
93b - electrode, 94 - common electrode; 1st layer

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板(2)上に、導体膜よりなる共通出力電極(
3)と、光導電膜(4)と、四角の透明抵抗膜(5)を
順次に層形成し、該透明抵抗膜(5)の相対する2辺の
縁部と、該2辺に直交する他の2辺の縁部とに該透明抵
抗膜(5)に接続する2組の入力電極(6_a、6_b
および6_c、6_d)を設け、該2組の入力電極(6
_a、6_bおよび6_c、6_d)に入力電圧を印加
してある状態で検出領域(7)に光スポットを照射し、
該光スポットにより照射部の光導電膜(4)が導通状態
となり、前記2組の入力電極(6_a、6_bおよび6
_c、6_d)と共通出力電極(3)との間に発生する
電圧値から光スポットの位置を求めることを特徴とする
二次元光位置検出装置。
On the insulating substrate (2), a common output electrode (
3), a photoconductive film (4), and a rectangular transparent resistive film (5) are sequentially formed in layers, and the edges of two opposing sides of the transparent resistive film (5) are perpendicular to the two sides. Two sets of input electrodes (6_a, 6_b) connected to the transparent resistive film (5) are connected to the edges of the other two sides.
and 6_c, 6_d), and the two sets of input electrodes (6_c, 6_d) are provided.
_a, 6_b and 6_c, 6_d), a light spot is irradiated on the detection area (7),
The light spot brings the photoconductive film (4) of the irradiation part into a conductive state, and the two sets of input electrodes (6_a, 6_b and 6_a) become conductive.
_c, 6_d) and a common output electrode (3) to determine the position of a light spot from the voltage value generated between the common output electrode (3).
JP62112959A 1987-05-09 1987-05-09 Two-dimensional light-position detection device Pending JPS63278284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62112959A JPS63278284A (en) 1987-05-09 1987-05-09 Two-dimensional light-position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112959A JPS63278284A (en) 1987-05-09 1987-05-09 Two-dimensional light-position detection device

Publications (1)

Publication Number Publication Date
JPS63278284A true JPS63278284A (en) 1988-11-15

Family

ID=14599817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112959A Pending JPS63278284A (en) 1987-05-09 1987-05-09 Two-dimensional light-position detection device

Country Status (1)

Country Link
JP (1) JPS63278284A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324929A (en) * 1991-02-26 1994-06-28 Nippondenso Co., Ltd. Device for detecting position and intensity of light and position detecting element to be employed therein
US5517017A (en) * 1992-08-21 1996-05-14 Nippondenso Co., Ltd. Photosensor for detecting the position of incident light in two dimensions using a pair of film resistors and a photoconductive element sandwiched therebetween
US5602384A (en) * 1992-11-06 1997-02-11 Nippondenso Co., Ltd. Sunlight sensor that detects a distrubition and amount of thermal load
CN102759327A (en) * 2012-06-30 2012-10-31 东南大学 Sensor for detecting two-dimensional light-spot position
CN104819686A (en) * 2015-05-04 2015-08-05 陈超 High-precision displacement positioning device
CN106767361A (en) * 2016-12-27 2017-05-31 陕西科技大学 A kind of accurate measurement position and the apparatus and method of change in location

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324929A (en) * 1991-02-26 1994-06-28 Nippondenso Co., Ltd. Device for detecting position and intensity of light and position detecting element to be employed therein
US5517017A (en) * 1992-08-21 1996-05-14 Nippondenso Co., Ltd. Photosensor for detecting the position of incident light in two dimensions using a pair of film resistors and a photoconductive element sandwiched therebetween
US5602384A (en) * 1992-11-06 1997-02-11 Nippondenso Co., Ltd. Sunlight sensor that detects a distrubition and amount of thermal load
CN102759327A (en) * 2012-06-30 2012-10-31 东南大学 Sensor for detecting two-dimensional light-spot position
WO2014000352A1 (en) * 2012-06-30 2014-01-03 东南大学 Sensor for detecting two-dimensional light-spot position
CN104819686A (en) * 2015-05-04 2015-08-05 陈超 High-precision displacement positioning device
CN106767361A (en) * 2016-12-27 2017-05-31 陕西科技大学 A kind of accurate measurement position and the apparatus and method of change in location

Similar Documents

Publication Publication Date Title
TWI387908B (en) Device and method for detecting position of object and image display system using the same device
TWI433014B (en) Display device
TWI566150B (en) High-precision force-touch sensor with multilayered electrodes
KR860006729A (en) Electrostatic Pattern Combined Digitizer
CN109470386A (en) A kind of power/position touch sensor detection system and detection method
JPS63278284A (en) Two-dimensional light-position detection device
JP4168537B2 (en) Diagonal coordinate detection system
JP2505862Y2 (en) Transmissive coordinate detector
US20170068358A1 (en) Touch panel device
CN110275647A (en) Touch-control structure and preparation method thereof, touch device and touch localization method
US20180267650A1 (en) Single-surface position sensor and positioning methd thereof
JPS62134717A (en) Method and device for detecting position
CN108874223A (en) Display panel and display device
JPH0413718Y2 (en)
TW201642097A (en) Touch panel and touch detection circuit
CN104298415B (en) Touch panel, method for determining touch point and display device
JPS648370B2 (en)
JPS6117493Y2 (en)
JPS58211241A (en) Touch type coordinate detecting panel
JPH01161520A (en) Tablet
JPH0113124B2 (en)
JPH06187084A (en) Coordinate input device
JPS62130420A (en) Coordinate detector
JPH0624733Y2 (en) Phase discrimination type capacitance detector
JPH04162122A (en) Position detector