JPS63278281A - Light detector - Google Patents

Light detector

Info

Publication number
JPS63278281A
JPS63278281A JP62111715A JP11171587A JPS63278281A JP S63278281 A JPS63278281 A JP S63278281A JP 62111715 A JP62111715 A JP 62111715A JP 11171587 A JP11171587 A JP 11171587A JP S63278281 A JPS63278281 A JP S63278281A
Authority
JP
Japan
Prior art keywords
light
type
diffusion region
impurity diffusion
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62111715A
Other languages
Japanese (ja)
Inventor
Masao Makiuchi
正男 牧内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62111715A priority Critical patent/JPS63278281A/en
Publication of JPS63278281A publication Critical patent/JPS63278281A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make the integration easy by a method wherein a waveguide is formed collectively at a light detector and the light is made easily incident so that the efficiency to couple with an optical fiber can be enhanced and that the light can be made incident from a cleavage face. CONSTITUTION:This detector is constituted in such a way that semiinsulating compound semiconductor waveguide layers, e.g., semiinsulating AlGaAs light waveguide layers 12A, and compound semiconductor light-absorption layers whose conductivity type is an i-type or a type close to the i-type, e.g. n-type GaAs light-absorption layers 12B, are laminated alternately. If the light L is incident in a state that a reverse bias voltage from a power supply E is impressed between a region 14 and a region 15, an electron and hole pair is generated in the light-absorption layers 12B. In the light waveguide layers 12A, the light which is incident from an oblique direction advances while it is reflected between the light- absorption layers 12B whose refractive index is small as compared with that of the light waveguide layers 12A; it generates the electron and hole pair when it enters the light- absorption layers 12B. The light is hardly detected at a tapered part 16A from the electron and hole pair generated in this manner. Because a distance from the p-type impurity diffusion region 14 to the n-type impurity diffusion region 15 is short at a straight part 16B, an electric field is sufficiently high and the electron and hole pair is separated; the light is then detected.

Description

【発明の詳細な説明】 〔概要〕 本発明は、光検出器に於いて、光導波層と光吸収層とを
交互に積層して光導波及び吸収層を形成し、その光導波
層及び吸収層に一導電型不純物拡散領域と反対導電型不
純物拡散領域とを形成することで一方の劈開面から他方
の劈開面に向かう漏斗状の不純物非拡散領域を画成し、
その漏斗状の不純物非拡散領域に於けるテーパ部分で入
射光の集光を行い、その集光された光を同じく直状部分
に入射させて光検出を行うようにしたことに依り、光フ
ァイバとの光結合効率を向上させ、また、高速の光検出
、即ち、高速光パルスの検出も可能にしたものである。
Detailed Description of the Invention [Summary] The present invention provides a photodetector in which an optical waveguide layer and an optical absorption layer are alternately laminated to form an optical waveguide layer and an absorption layer. By forming an impurity diffusion region of one conductivity type and an impurity diffusion region of the opposite conductivity type in the layer, a funnel-shaped impurity non-diffusion region extending from one cleavage plane to the other cleavage plane is defined,
By concentrating the incident light at the tapered part of the funnel-shaped impurity non-diffusion region, and by making the condensed light enter the straight part for optical detection, the optical fiber This improves the optical coupling efficiency with the optical fiber, and also enables high-speed optical detection, that is, detection of high-speed optical pulses.

〔産業上の利用分野〕[Industrial application field]

本発明は、光結合効率が良好で、且つ、集積化するのに
好適な構成をもった光検出器に関する。
The present invention relates to a photodetector with good optical coupling efficiency and a configuration suitable for integration.

〔従来の技術〕[Conventional technology]

従来、光検出器としてピン(p i n)  ・フォト
・ダイオード、アバランシェ・フォト・ダイオード((
avalanche  photo  di。
Conventionally, a pin photodiode, an avalanche photodiode ((
avalanche photo di.

de:APD)などが知られている。de:APD) and the like are known.

第5図は従来のpinフォト・ダイオードを説明する為
の要部切断側面図を表している。
FIG. 5 shows a cutaway side view of a main part of a conventional PIN photodiode.

図に於いて、1はn型A6GaAs層、2はi型GaA
s層、3はn型A6GaAs層、3Aはp型領域、4は
二酸化シリコン(SiOz)からなる絶縁膜、5はp側
電極、6はn側電極、7は電源、Lは入射する光をそれ
ぞれ示している。因に、n型Aj2GaAs層1の厚さ
は2〔μm〕、i型GaAs層2の厚さは3乃至4 (
、cam) 、n型AβGaAs層3の厚さは1 〔μ
m〕としである。尚、構造に依っては、光りを裏面から
入射させるものもある。
In the figure, 1 is an n-type A6GaAs layer, 2 is an i-type GaA layer
s layer, 3 is an n-type A6GaAs layer, 3A is a p-type region, 4 is an insulating film made of silicon dioxide (SiOz), 5 is a p-side electrode, 6 is an n-side electrode, 7 is a power source, and L is an incoming light are shown respectively. Incidentally, the thickness of the n-type Aj2GaAs layer 1 is 2 [μm], and the thickness of the i-type GaAs layer 2 is 3 to 4 (
, cam), the thickness of the n-type AβGaAs layer 3 is 1 [μ
m] Toshishita. Note that, depending on the structure, there are some that allow light to enter from the back surface.

このpinフォト・ダイオードに於いては、図示のよう
に逆バイアス電圧を印加しておき、光りを入射させると
、空乏化されているi型GaAs層2に於いて光りが吸
収されて電子・正孔対が発生し、電子はp型領域3Aに
、また、正孔はn型AffGaAs層1に流れ込み、所
謂、光電流が流れ、光が検出されるものである。
In this pin photodiode, when a reverse bias voltage is applied as shown in the figure and light is incident, the light is absorbed in the depleted i-type GaAs layer 2 and electrons and positive Hole pairs are generated, electrons flow into the p-type region 3A, and holes flow into the n-type AffGaAs layer 1, so that a so-called photocurrent flows and light is detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、第5図に見られるpinフォト・ダイオード
に光を入射させる場合、光伝送路として光ファイバを用
いるのが一般的であるが、取り扱う光の波長λを0.8
〔μm〕とした場合、光ファイバのコア径は、シングル
・モードのもので、6〔μm〕乃至10〔μm〕である
By the way, when light is incident on the pin photodiode shown in Figure 5, it is common to use an optical fiber as the optical transmission path, but the wavelength λ of the light to be handled is 0.8.
When expressed as [μm], the core diameter of the optical fiber is 6 [μm] to 10 [μm] for a single mode.

また、pinフォト・ダイオードを高速化するには、極
低容量化(〜0.01  (pF))する必要があり、
受光径も6〜10 〔μm〕と小さくしなければならな
い。
In addition, in order to increase the speed of the pin photodiode, it is necessary to reduce the capacitance to an extremely low value (~0.01 (pF)).
The receiving diameter must also be as small as 6 to 10 μm.

従って、このようなpinフォト・ダイオードに対し、
高い結合効率をもって光を入射させることは困難である
。尚、レンズを用いて光りを集束させることも行われて
いるが、pinフォト・ダイオードとレンズとの整合を
高精度で維持することや集積化が難しく、また、光りを
入射させる方向が、表面側或いは裏面側に限定されると
集積化は更に困難となる。
Therefore, for such a pin photodiode,
It is difficult to make light enter with high coupling efficiency. Lenses have also been used to focus the light, but it is difficult to maintain high precision alignment between the pin photodiode and the lens, and integration is difficult, and the direction in which the light is incident is If it is limited to the side or back side, integration becomes even more difficult.

本発明は、光検出器に導波路を一体的に形成して光の入
射を容易にすることで光ファイバとの結合効率を向トし
、また、劈開面からも光の入射を可能にし、集積化を容
易にしようとする。
The present invention improves coupling efficiency with an optical fiber by integrally forming a waveguide in a photodetector to facilitate light entry, and also allows light entry from a cleavage plane. Try to facilitate integration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光検出器では、半絶縁性化合物半導体光導波層
(例えば半絶縁性Aj2GaAs光導波層12A)と導
電型がi型若しくはi型に近い化合物半導体光吸収層(
例えばn型GaAs光吸収層12B)とを交互に積層し
て構成された光導波及び吸収層(例えば光導波及び吸収
層12)と、該光導波及び吸収層を表面で見て一方の劈
開面から他方の劈開面に向かい次第に狭幅化されるテー
バ部分(例えばテーバ部分16A)及びそれに連なり一
定の幅をもって延在する直状部分(例えば直状部分16
B)からなるパターンを画成する為に該パターンの一方
の外側に形成された一導電型不純物拡散領域(例えばp
型不純物拡散領域14)及び同じく他方の外側に形成さ
れた反対導電型不純物拡散領域(例えばn型不純物拡散
領域15)とを備えている。
In the photodetector of the present invention, a semi-insulating compound semiconductor optical waveguide layer (for example, the semi-insulating Aj2GaAs optical waveguide layer 12A) and a compound semiconductor optical absorption layer whose conductivity type is i-type or close to i-type (
For example, an optical waveguide and absorption layer (for example, an optical waveguide and absorption layer 12) formed by alternately laminating n-type GaAs light absorption layers 12B) and one cleavage plane when the optical waveguide and absorption layer is viewed from the surface. A tapered portion (for example, the tapered portion 16A) that gradually becomes narrower toward the other cleavage plane, and a straight portion (for example, the straight portion 16A) that continues with the tapered portion and extends with a constant width.
B) One conductivity type impurity diffusion region (for example, p
type impurity diffusion region 14) and an opposite conductivity type impurity diffusion region (for example, n-type impurity diffusion region 15) formed on the outside of the other one.

〔作用〕[Effect]

前記手段を採ることに依り、光導波及び吸収層と光ファ
イバとは高い光結合効率をもって結合させることができ
、そして、テーバ部分で効率良く集光された光は幅が狭
い直状部分に確実に入射され、そこで高速の光検出を行
うことが可能であり、また、光の入射は劈開面、表面、
裏面の何れでも良いから、集積化する際には有利である
By adopting the above means, the optical waveguide/absorption layer and the optical fiber can be coupled with high optical coupling efficiency, and the light efficiently focused at the Taber part is reliably focused on the narrow straight part. The light is incident on the cleavage plane, surface, and can be detected at high speed.
Since it can be placed on either back side, it is advantageous for integration.

〔実施例〕〔Example〕

第1図は本発明一実施例の要部切断斜面図を表している
。尚、図では簡明にする為、電極などを省略しである。
FIG. 1 shows a cutaway perspective view of essential parts of an embodiment of the present invention. Note that electrodes and the like are omitted in the figure for the sake of clarity.

図に於いて、11は半絶縁性のA7!GaAsハソファ
層、12は多重量子井戸(multiquanturn
  we I I :MQW)光導波及び吸収層、13
は半絶縁性のA#GaAsキャンプ層、14はp型不純
物拡散領域、15はn型不純物拡散領域、16Aは不純
物非拡散領域のテーバ部分、16Bは不純物非拡散領域
の直状部分、17は直状部分の幅、Eは電源、Lは入射
する光をそれぞれ示している。
In the figure, 11 is semi-insulating A7! GaAs haphazard layer, 12 is a multi-quantum well (multi-quantum well)
we I I: MQW) optical waveguide and absorption layer, 13
14 is a p-type impurity diffusion region, 15 is an n-type impurity diffusion region, 16A is a tapered portion of the impurity non-diffusion region, 16B is a straight portion of the impurity non-diffusion region, and 17 is a semi-insulating A#GaAs camp layer. The width of the straight portion, E indicates the power supply, and L indicates the incident light.

第2図は光導波及び吸収層12を拡大して詳細に表した
要部切断正面図であり、第1図に於いて用いた記号と同
記号は同部分を示すか或いは同じ意味を持つものとする
FIG. 2 is an enlarged and detailed cutaway front view of the main parts of the optical waveguide and absorption layer 12, and the same symbols as those used in FIG. 1 indicate the same parts or have the same meanings. shall be.

図に於いて、12Aは半絶縁性Aj2GaAs光導波層
、12Bはn型GaAs光吸収層をそれぞれ示している
。尚、n型GaAs光吸収層12Bに於ける不純物濃度
は極めて低いので、実質的にはi型と呼んで差支えない
In the figure, 12A indicates a semi-insulating Aj2GaAs optical waveguide layer, and 12B indicates an n-type GaAs optical absorption layer. Note that since the impurity concentration in the n-type GaAs light absorption layer 12B is extremely low, it can essentially be called i-type.

本実施例に於ける各部分の主要データを例示すると次の
通りである。
Examples of main data of each part in this embodiment are as follows.

(1)ハソファ層11について 厚さ:3〜4 〔μm〕 (2)光導波及び吸収層12について 厚さ:2〜6 〔μm〕 (3)光導波層12Aについて 厚さ:0.01〜0.2 〔μm〕 (4)光吸収層12Bについて 厚さ:0.01〜0.2 〔μm〕 不純物濃度: I X 10 ”  (cn+−”)以
下(5)  キャップ層13について 厚さ1.5Cμm〕 (6)n型不純物拡散領域14について不純物:Zn 拡散手段:熱拡散 (7)n型不純物拡散領域15について不純物j G 
a A s系の場合は5iInP系の場合はCd 拡散手段:熱拡散 (8)直状部分16Bについて 幅17:3Cμm〕以下 図から判るように、光導波及び吸収層I2は、光導波層
12Aと光吸収層12Bを交互に積層したものからなっ
ていて、n型不純物拡散領域14とn型不純物拡散領域
15との間に電源Eから逆バイアス電圧を印加した状態
で、第1図に示しであるように光りが入射すると、光吸
収層12Bに於いては電子・正孔対が発生し、また、光
導波層12Aに於いては、直進するものもあるが、斜め
に入射したものは光導波層12Aに比較して屈折率が小
さい光吸収層12Bの間を反射しながら進行し、光吸収
層12Bに入った場合には、前記同様、電子・正孔対を
発生する。尚、n型不純物拡散領域14及びn型不純物
拡散領域15は、多結晶化して屈折率が低くなっている
ことから、光導波及び吸収層12に入射した光に対する
横方向の閉じ込め効果があり、また、勿論、上下方向の
閉し込めも行われているから、光はテーパ部分16Aで
集光されて直状部分16Bに達する。
(1) Thickness of the optical waveguide layer 11: 3 to 4 [μm] (2) Thickness of the optical waveguide and absorption layer 12: 2 to 6 [μm] (3) Thickness of the optical waveguide layer 12A: 0.01 to 0.2 [μm] (4) Thickness of light absorption layer 12B: 0.01 to 0.2 [μm] Impurity concentration: I x 10” (cn+-”) or less (5) Thickness of cap layer 13: 1 .5Cμm] (6) Impurity for n-type impurity diffusion region 14: Zn Diffusion means: thermal diffusion (7) Impurity j G for n-type impurity diffusion region 15
a A 5i for s system Cd for InP system Diffusion means: Thermal diffusion (8) Width 17:3Cμm for straight portion 16B] As can be seen from the figure below, the optical waveguide and absorption layer I2 is similar to the optical waveguide layer 12A. and light absorbing layers 12B are alternately laminated, and when a reverse bias voltage is applied from a power source E between the n-type impurity diffusion region 14 and the n-type impurity diffusion region 15, as shown in FIG. When light is incident as shown in FIG. When the light propagates through the light absorption layer 12B, which has a lower refractive index than the light guide layer 12A while being reflected, and enters the light absorption layer 12B, it generates electron-hole pairs as described above. In addition, since the n-type impurity diffusion region 14 and the n-type impurity diffusion region 15 are polycrystalline and have a low refractive index, they have a lateral confinement effect on the light incident on the optical waveguide and absorption layer 12. Moreover, of course, since confinement in the vertical direction is also performed, the light is condensed at the tapered portion 16A and reaches the straight portion 16B.

前記のようにして発生した電子・正札対は、テーパ部分
16Aに於けるn型不純物拡散領域14とn型不純物拡
散領域15との間の距離が長く、そこでの電界が直状部
分16Bに比較して小さいことから再結合するものが多
く、従って、テーパ部分16Aでは殆ど光検出は行われ
ない。然しながら、直状部分16Bに於いては、n型不
純物拡散領域14とn型不純物拡散領域15との距離が
約3 〔μm〕程度と極めて短い為、電界は充分に高(
、従って、電子・正孔対の分離が行われ、電子はn型不
純物拡散領域14に、また、正孔はn型不純物拡散領域
15に流れ込み、それ等p型不純物拡散領域14とn型
不純物拡散領域15との間にはフォト電流が流れ、光検
出が行われるものである。
The electron/genuine tag pair generated as described above has a long distance between the n-type impurity diffusion region 14 and the n-type impurity diffusion region 15 in the tapered portion 16A, and the electric field there is larger than that in the straight portion 16B. Since the light beams are small, many of them are recombined, and therefore, almost no optical detection is performed in the tapered portion 16A. However, in the straight portion 16B, the distance between the n-type impurity diffusion region 14 and the n-type impurity diffusion region 15 is extremely short, about 3 [μm], so the electric field is sufficiently high (
Therefore, the electron-hole pairs are separated, and the electrons flow into the n-type impurity diffusion region 14 and the holes flow into the n-type impurity diffusion region 15, and the p-type impurity diffusion region 14 and the n-type impurity A photocurrent flows between the diffusion region 15 and light detection.

第3図は光導波及び吸収層12の一部を更に拡大して詳
細に表した要部切断正面図であり、第1図及び第2図に
於いて用いた記号と同記号は同部分を示すか或いは同じ
意味を持つものとする。
FIG. 3 is a further enlarged and detailed cutaway front view of a part of the optical waveguide and absorption layer 12, and the same symbols as those used in FIGS. 1 and 2 refer to the same parts. or have the same meaning.

図に於いて、hは正札、eは電子をそれぞれ示している
In the figure, h indicates a genuine bill, and e indicates an electron.

図から判るように、n型不純物拡散領域14、n (i
)型GaAs光吸収層12B、n型不純物拡散領域15
のそれぞれは一層でpinフォト・ダイオードを成し、
それが多数積層された構成になっている。そして、直状
部分16Bに於ける光吸収層12Bで発生した正孔h・
電子eの対は分離され、電子eはn型不純物拡散領域1
4に、また、正孔りはn型不純物拡散領域X5にそれぞ
れ流れ込んでいる。既に説明したように、直状部分16
Bに於いては、キャリヤが走行する距離は極めて短いこ
とから、高速の光パルスであっても容易に検出すること
ができる。
As can be seen from the figure, n-type impurity diffusion region 14, n (i
) type GaAs light absorption layer 12B, n type impurity diffusion region 15
each constitutes a pin photodiode in one layer,
It has a structure in which many of them are laminated. Then, the holes h generated in the light absorption layer 12B in the straight portion 16B are
The pair of electrons e is separated, and the electron e is transferred to the n-type impurity diffusion region 1.
4, the holes flow into the n-type impurity diffusion region X5. As already explained, the straight portion 16
In B, since the distance traveled by the carrier is extremely short, even high-speed optical pulses can be easily detected.

第4図は本発明の他の実施例を説明する為の要部切断斜
面図であり、第1図乃至第3図に於いて用いた記号と同
記号は同部分を示すか或いは同じ意味を持つものとする
FIG. 4 is a cutaway perspective view of essential parts for explaining another embodiment of the present invention, and the same symbols as those used in FIGS. 1 to 3 indicate the same parts or have the same meanings. Shall have.

本実施例が第1図乃至第3図について説明した実施例と
相違する点は、図示のように、溝18を形成し、テーパ
部分16Aと直状部分16Bとを切り離したことにある
This embodiment differs from the embodiments described with reference to FIGS. 1 to 3 in that, as shown, a groove 18 is formed to separate the tapered portion 16A and the straight portion 16B.

このような構成にすると、直状部分16Bの側に関連す
る電極領域が小面積となり、従って、容量が小さくなる
ので高速化の面で有利である。また、動作時には、テー
パ部分16Aの側に関連する電極領域にもバイアス電圧
を印加しておくと、テーパ部分16Aに於ける光導波効
果や集光効果は更に向上する。
With this configuration, the area of the electrode region related to the straight portion 16B becomes small, and therefore the capacitance becomes small, which is advantageous in terms of speeding up. Further, during operation, if a bias voltage is also applied to the electrode region related to the tapered portion 16A side, the optical waveguide effect and the light focusing effect in the tapered portion 16A are further improved.

前記説明した何れの実施例に於いても、光導波及び吸収
層12の厚さを約2〜6 〔μm〕程度に選択すること
ができる。
In any of the embodiments described above, the thickness of the optical waveguide and absorption layer 12 can be selected to be about 2 to 6 μm.

また、同じく何れの実施例に於いても、光りはpinフ
ォト・ダイオードのテーパ部分16A側に於ける劈開面
から入射させているが、光導波層12Aの間隔、従って
、光吸収層12Bの厚さを入射する光りの波長程度以下
にしであるから、前記のような手段に限らず、テーパ部
分16A側の表面或いは裏面からも入射させることが可
能である。
Similarly, in both embodiments, light is incident from the cleavage plane on the tapered portion 16A side of the pin photodiode, but the distance between the optical waveguide layers 12A, and therefore the thickness of the optical absorption layer 12B Since the wavelength of the incident light is approximately equal to or lower than the wavelength of the incident light, it is possible to make the incident light not only by the above-mentioned means but also from the front surface or back surface of the tapered portion 16A side.

〔発明の効果〕〔Effect of the invention〕

本発明に依る光検出器に於いては、光導波層と光吸収層
とを交互に積層して光導波及び吸収層を形成し、その先
導波層及び吸収層に一導電型不純物拡散領域と反対導電
型不純物拡散領域とを形成することで一方の劈開面から
他方の劈開面に向かう漏斗状の不純物非拡散領域を画成
し、その漏斗状の不純物非拡散領域に於けるテーパ部分
で入射光の集光を行い、その集光された光を同じく直状
部分に入射させて光検出を行うようにしている。
In the photodetector according to the present invention, optical waveguide and absorption layers are formed by alternately stacking optical waveguide layers and optical absorption layers, and one conductivity type impurity diffusion region is formed in the waveguide layer and the absorption layer. By forming an impurity diffusion region of opposite conductivity type, a funnel-shaped impurity non-diffusion region is defined from one cleavage plane to the other cleavage plane. Light is focused, and the focused light is made incident on the same straight portion for optical detection.

この構成を採ることに依り、光導波及び吸収層と光ファ
イバとは高い光結合効率をもって結合させることができ
、そして、テーパ部分で効率良く集光された光は幅が狭
い直状部分に確実に入射され、そこは容量が極めて小さ
い光検出器として動作するので、高速の光検出を行うこ
とが可能であり、また、光の入射は劈開面、表面、裏面
の何れでも良いから、集積化する際には有利である。
By adopting this configuration, the optical waveguide/absorption layer and the optical fiber can be coupled with high optical coupling efficiency, and the light that is efficiently focused at the tapered part is reliably focused on the narrow straight part. Since the light is incident on the cleavage plane, it operates as a photodetector with an extremely small capacity, and high-speed light detection is possible.Also, since the light can be incident on the cleavage plane, the front surface, or the back surface, integration is possible. It is advantageous when doing so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の要部切断斜面図、第2図は光
導波及び吸収層12を拡大して詳細に表した要部切断正
面図、第3図は光導波及び吸収層12の一部を更に拡大
して詳細に表した要部切断正面図、第4図は本発明の他
の実施例を説明する為の要部切断斜面図、第5図は従来
例の要部切断側面図をそれぞれ表している。 図に於いて、11は半絶縁性のAβGaAsβGaAs
バッフは多重量子井戸(multiquantum  
well:MQW)光導波及び吸収層、13は半絶縁性
のA#GaAsキャンプ層、14はp型不純物拡散領域
、15はn型不純物拡散領域、16Aは不純物非拡散領
域のテーパ部分、16Bは不純物非拡散領域の直状部分
、17は直状部分の幅、Eは電源、Lは入射する光をそ
れぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 実施例の要部切断正面図 第2図 r1 光専波及び吸収層の要部切断正面図 第3図
FIG. 1 is a cut-away oblique view of the main part of an embodiment of the present invention, FIG. 2 is a cut-away front view of the main part showing the optical waveguide and absorption layer 12 in enlarged detail, and FIG. 3 is a cut-away front view of the main part showing the optical waveguide and absorption layer 12 in detail. FIG. 4 is a cut-away front view of the main part showing another embodiment of the present invention in detail, and FIG. 5 is a cut-away front view of the main part of the conventional example. Each represents a side view. In the figure, 11 is semi-insulating AβGaAsβGaAs.
The buffer is a multi-quantum well.
well: MQW) optical waveguide and absorption layer, 13 is a semi-insulating A#GaAs camp layer, 14 is a p-type impurity diffusion region, 15 is an n-type impurity diffusion region, 16A is a tapered portion of the impurity non-diffusion region, 16B is a The straight portion of the impurity non-diffusion region, 17 is the width of the straight portion, E is the power source, and L is the incident light. Patent Applicant: Fujitsu Ltd. Representative Patent Attorney Akira Aitani Representative Patent Attorney Hiroshi Watanabe - Cutaway front view of essential parts of the embodiment Figure 2 r1 Cutaway front view of essential parts of optical special wave and absorption layer Figure 3

Claims (1)

【特許請求の範囲】 半絶縁性化合物半導体光導波層と導電型がi型若しくは
i型に近い化合物半導体光吸収層とを交互に積層して構
成された光導波及び吸収層と、該光導波及び吸収層を表
面で見て一方の劈開面から他方の劈開面に向かい次第に
狭幅化されるテーパ部分及びそれに連なり一定の幅をも
って延在する直状部分からなるパターンを画成する為に
該パターンの一方の外側に形成された一導電型不純物拡
散領域及び同じく他方の外側に形成された反対導電型不
純物拡散領域と を備えてなることを特徴とする光検出器。
[Scope of Claims] An optical waveguide and absorption layer constituted by alternately laminating a semi-insulating compound semiconductor optical waveguide layer and a compound semiconductor optical absorption layer whose conductivity type is i-type or close to i-type, and the optical waveguide. In order to define a pattern consisting of a tapered part whose width gradually becomes narrower from one cleavage plane to the other cleavage plane when looking at the absorbing layer from the surface, and a straight part which continues with the tapered part and extends with a constant width, A photodetector comprising an impurity diffusion region of one conductivity type formed on one side of a pattern and an impurity diffusion region of an opposite conductivity type formed on the other side of the pattern.
JP62111715A 1987-05-09 1987-05-09 Light detector Pending JPS63278281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62111715A JPS63278281A (en) 1987-05-09 1987-05-09 Light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62111715A JPS63278281A (en) 1987-05-09 1987-05-09 Light detector

Publications (1)

Publication Number Publication Date
JPS63278281A true JPS63278281A (en) 1988-11-15

Family

ID=14568324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62111715A Pending JPS63278281A (en) 1987-05-09 1987-05-09 Light detector

Country Status (1)

Country Link
JP (1) JPS63278281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446056A2 (en) * 1990-03-07 1991-09-11 Kabushiki Kaisha Toshiba Integrated optical semiconductor device
WO2004010183A1 (en) * 2002-07-23 2004-01-29 Intel Corporation Tapered waveguide photodetector apparatus and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446056A2 (en) * 1990-03-07 1991-09-11 Kabushiki Kaisha Toshiba Integrated optical semiconductor device
EP0446056A3 (en) * 1990-03-07 1994-01-05 Toshiba Kk
WO2004010183A1 (en) * 2002-07-23 2004-01-29 Intel Corporation Tapered waveguide photodetector apparatus and methods
US6819839B2 (en) 2002-07-23 2004-11-16 Intel Corporation Tapered waveguide photodetector apparatus and methods
JP2005534178A (en) * 2002-07-23 2005-11-10 インテル・コーポレーション Tapered waveguide photodetector device and method
CN1317572C (en) * 2002-07-23 2007-05-23 英特尔公司 Tapered waveguide photodetector apparatus and methods

Similar Documents

Publication Publication Date Title
US7575949B2 (en) Semiconductor photo-detector, semiconductor photo-detection device, and production method thereof
US5121182A (en) Integrated optical semiconductor device
JP5981086B2 (en) Photodetector
JPS61161759A (en) Integrated optoelectronics device
JP2005051039A (en) Waveguide type photodetector
JP2002151728A (en) Semiconductor photodetector
JP3285651B2 (en) Quantum well-based waveguide optical receivers of semiconductor materials, especially for coherent communication systems with variable polarization
JPS63278281A (en) Light detector
JPH03120876A (en) Semiconductor photosensitive element
JPS63269580A (en) Light detector
JPS63278280A (en) Light detector
JP4158197B2 (en) Light receiving element
JPH04286168A (en) Avalanche photo-diode
US6252251B1 (en) Raised photodetector with recessed light responsive region
JP2965139B2 (en) Waveguide type semiconductor photo detector
JP3708758B2 (en) Semiconductor photo detector
JP2003174186A (en) Semiconductor light receiving element
JP2843874B2 (en) Optical integrated device
JP2001320076A (en) Semiconductor photodetector
JP2002305319A (en) Semiconductor light receiving element and module for optical communication
JP2002026370A (en) Semiconductor light receiving device
JPH02246268A (en) Photoreceptor
JP2005086028A (en) Semiconductor light receiver
JPS6320398B2 (en)
JPH0427171A (en) Semiconductor device