JPS6327745A - Apparatus for measuring residual chlorine - Google Patents

Apparatus for measuring residual chlorine

Info

Publication number
JPS6327745A
JPS6327745A JP61171023A JP17102386A JPS6327745A JP S6327745 A JPS6327745 A JP S6327745A JP 61171023 A JP61171023 A JP 61171023A JP 17102386 A JP17102386 A JP 17102386A JP S6327745 A JPS6327745 A JP S6327745A
Authority
JP
Japan
Prior art keywords
solution
test liquid
hypochlorous acid
electrode
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61171023A
Other languages
Japanese (ja)
Inventor
Jinkichi Miyai
宮井 迅吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
DKK Corp
Original Assignee
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Denki Kagaku Kogyo KK filed Critical DKK Corp
Priority to JP61171023A priority Critical patent/JPS6327745A/en
Publication of JPS6327745A publication Critical patent/JPS6327745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure residual chlorine simply and accurately without requiring operation, by a method wherein a solution to be inspected is adjusted to pH3-5 by a pH control mechanism and the concn. of hypochlorous acid in the solution to be inspected is measured by an electrode for measuring the concn. of hypochlorous acid. CONSTITUTION:The solution to be inspected flowing through a flow pipe 1 flows in a pH control mechanism 3 to be adjusted to pH3-5 without being substantially diluted. Whereupon, the OCl<-> ion in the solution to be inspected is entirely converted to HOCl. Therefore, by detecting the concn. of HOCl in the solution to be inspected after the adjustment of pH by using an HOCl electrode 4, the total concn. of free available chlorine can be detected. Since the pH of the solution to be inspected is adjusted without substantially diluting said solution, the total concn. of free available chlorine in the solution to be inspected can be directly calculated without requiring operation based on a dilution rate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は残留塩素測定装置に関し、更に詳述すると、被
検液中の全遊雛有効塩素濃度を簡便かつ正確に測定する
ことができる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a residual chlorine measuring device, and more specifically, to a device capable of simply and accurately measuring the total free available chlorine concentration in a test liquid.

の技術及び発Iが解決しようとする問題点従来、被検液
中の遊離有効塩素(塩素CQ2、次亜塩素酸HOCfl
、次亜塩素酸イオン0CQ−)を測定する目的で種々の
手段が提案されており、例えば次亜塩素酸を測定するた
めに隔膜式残留塩素電極が使用されている。この残留塩
素電極は、揮発性を持つ次亜塩素酸が透過する隔膜を備
えたもので、小型で簡易に作ることができ、かつ駆動部
がなく、しかも特別の試薬を必要としない上、連続的に
測定できるなど、種々の利点を有するため広く実用化さ
れている。
Conventionally, free available chlorine (chlorine CQ2, hypochlorous acid HOCfl) in the test liquid
Various means have been proposed for the purpose of measuring hypochlorous acid ion 0CQ-), and for example, a diaphragm-type residual chlorine electrode is used to measure hypochlorous acid. This residual chlorine electrode is equipped with a diaphragm that allows volatile hypochlorous acid to pass through, and is small and easy to make. It also has no driving parts, does not require special reagents, and can be used continuously. It has been widely put into practical use because it has various advantages such as being able to be measured visually.

ところで、被検液のpHは通常6〜8であるが、遊離有
効塩素はpH6〜8の範囲では次亜塩素酸と次亜塩素酸
イオンとが平衡し、両者が共存している(下記式(1)
 、 (2)参照)。
By the way, the pH of the test solution is usually 6 to 8, and free available chlorine is in equilibrium with hypochlorous acid and hypochlorite ions in the pH range of 6 to 8, and both coexist (as shown in the following formula) (1)
, see (2)).

)−I OCfl   H”+○cQ−・−(1)従っ
て、上記残留塩素電極を用いてpH6〜8の被検液中の
遊離塩素を測定する場合、その隔膜は次亜塩素酸のみを
透過し、次亜塩素酸イオンを透過しないので、電極は次
!IM塩素酸のみに感応し、このため上記電極によって
はpH6〜8における全遊離有効塩素濃度、即ち次亜塩
素酸と次亜塩素酸イオンとの合計濃度を直接測定するこ
とができない。この場合、次亜塩素酸と次亜塩素酸イオ
ンとの平衡はPHに依存するためpHが一定の被検液で
あれば次亜塩素酸濃度から簡単な演算によって全遊離塩
素濃度を求めることができるが、PHが変動する被検液
ではそれに伴って平衡が移動するため、この方法を採用
することが不可能である。
)-I OCfl H”+○cQ-・-(1) Therefore, when measuring free chlorine in a test liquid with pH 6 to 8 using the residual chlorine electrode, the diaphragm will only allow hypochlorous acid to pass through. However, since it does not permeate hypochlorite ions, the electrode is sensitive only to IM chloric acid, and therefore, depending on the electrode, the total free available chlorine concentration at pH 6 to 8, i.e., hypochlorous acid and hypochlorous acid. It is not possible to directly measure the total concentration of hypochlorous acid and ions.In this case, the equilibrium between hypochlorous acid and hypochlorite ions depends on the pH, so if the pH of the test solution is constant, the hypochlorous acid concentration Although the total free chlorine concentration can be determined by a simple calculation from , it is impossible to use this method in a test liquid where the pH changes because the equilibrium shifts accordingly.

これに対し、次亜塩素酸電極により全遊離塩素を測定す
る手段として、上記解離平衡がp Hに依存すると共に
、そのMt定数は温度が既知となれば定まることに着目
し、次亜塩素酸電極で被検液中の次亜塩素酸濃度を測定
すると同時に被検液のPH及び温度を検出し、下記式(
3)、即ち〔○ CQ−3=K(T)X[ト■ ○ C
Q )XIOPII  ・・・ (3)により演算で(
OCQ−)(次亜塩素酸イオン濃度)を求め、これによ
り次亜塩素酸と次亜塩素酸イオンとの合計濃度を検出す
ることが提案されている(特公昭59−42693号公
報)。
On the other hand, as a means of measuring total free chlorine using a hypochlorous acid electrode, we focused on the fact that the above dissociation equilibrium depends on pH and that its Mt constant is determined once the temperature is known. The hypochlorous acid concentration in the test liquid is measured with an electrode, and at the same time the pH and temperature of the test liquid are detected, and the following formula (
3), that is, [○ CQ-3=K(T)
Q)XIOPII... (3)
It has been proposed to obtain OCQ-) (hypochlorite ion concentration) and thereby detect the total concentration of hypochlorous acid and hypochlorite ions (Japanese Patent Publication No. 59-42693).

しかしながら、上記特公昭59−42693号公報記載
の方法は、電極以外にPR及び温度の測定機構、更には
演算機構を必要とし、このため装置が′6i雑になると
共に、測定項目が多いのでシステムの結合精度が低下す
るなど、実用上採用するには種々の問題点を有している
However, the method described in the above-mentioned Japanese Patent Publication No. 59-42693 requires a PR and temperature measurement mechanism as well as a calculation mechanism in addition to the electrodes, which makes the device complicated and requires a large number of measurement items. There are various problems in practical use, such as a decrease in the coupling accuracy.

本発明は、上記事情に鑑みなされたもので、上述した従
来技術の有する問題点を解消し、隔膜式の次亜塩素酸電
極によって簡便かつ正確に被検液中の全遊離塩素濃度を
測定することができる残留塩素測定装置を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and solves the problems of the prior art described above, and measures the total free chlorine concentration in a test liquid simply and accurately using a diaphragm-type hypochlorous acid electrode. The purpose of the present invention is to provide a residual chlorine measuring device that can measure residual chlorine.

問題点を解決するための手段 本発明者は、上記目的を達成するために鋭意研究を行っ
ているうち、下記■〜■の事項を知見した。
Means for Solving the Problems The inventor of the present invention discovered the following matters (1) to (2) while conducting intensive research to achieve the above object.

■ 上記(1)式の平衡は、被検液のp I−1が6〜
8の範囲では上述したようにHOCQと○CQ−とが共
存し、p Hのわずかな変動によってその比率は変化す
るが、pH3〜5の範囲では○CQ−は全てHOCfl
態に移行し、従って被検液のp Hを3〜Sに調整する
ことにより、全遊離塩素をHOCQとしてHOCQ電極
により検出できる。
■ The equilibrium of equation (1) above means that the p I-1 of the test solution is 6 to
In the pH range of 8, HOCQ and ○CQ- coexist as mentioned above, and the ratio changes with slight fluctuations in pH, but in the pH range of 3 to 5, ○CQ- is completely replaced by HOCfl.
Therefore, by adjusting the pH of the test liquid to 3 to S, all free chlorine can be detected as HOCQ by the HOCQ electrode.

■ ■のように被検液のP Hを3〜5にすればI]○
CQ電極で全遊離塩素を測定することができ、このため
例えば連続測定においてP H3〜5の緩衝液をポンプ
を用いて被検液の流れに連続的に注入することも考えら
れるが、このP H調整方法では被検液が緩衝液で希釈
されるため、PII調整前の被検液と調整後の被検液と
では全遊歴有効塩素温度が異なってしまい、PH調整前
の測定すべき濃度を直接検出できない。
■ If the pH of the test solution is set to 3 to 5 as shown in ■, I]○
Total free chlorine can be measured with a CQ electrode, and for this reason it is conceivable, for example, to continuously inject a pH 3-5 buffer solution into the flow of the test solution using a pump in continuous measurements; In the H adjustment method, the test solution is diluted with a buffer solution, so the total free available chlorine temperature will be different between the test solution before PII adjustment and the test solution after adjustment, and the concentration to be measured before pH adjustment will be different. cannot be detected directly.

■ ■のpH調整方法を採用した場合、希釈比率を正確
に求め、演算によって補正することも考えられるが、そ
のためには被検液及び緩衝液をそれぞれ精密なポンプを
用いて正確に一定の流量で送液する必要があり、従って
装置が複雑かつ高価となって実用的でなくなる。また、
緩衝液の使用量が多くなり、試薬の交換頻度が人きくな
る。
When adopting the pH adjustment method described in Therefore, the device becomes complicated and expensive, making it impractical. Also,
This increases the amount of buffer used and requires more frequent reagent replacement.

■ 従って、被検液を実質的に希釈することなくPHを
3〜5に調整すれば、被検液は希釈されないので、被検
液中の全遊離有効塩素濃度を直接求めることができ、か
つ高価な精密ポンプを使用する必要がなく、しかも試薬
の使用量を可及的に減らすことができるため、実用的で
簡易な全遊離有効塩素測定用のシステムを得ることがで
きる。
■ Therefore, if the pH is adjusted to 3 to 5 without substantially diluting the test solution, the test solution will not be diluted, and the total free available chlorine concentration in the test solution can be directly determined. Since there is no need to use an expensive precision pump and the amount of reagents used can be reduced as much as possible, a practical and simple system for measuring total free available chlorine can be obtained.

即ち、本発明者は、被検液のpHを3〜5に調整するこ
とにより、全遊離塩素濃度をHOCQ濃度としてHOC
Q電極を用いて測定し得ること、この場合被検液を実質
的に希釈することなく p Hを調整することにより、
演算等を要することなく簡便かつ正確に測定を行うこと
ができることを見い出し、本発明をなすに至ったもので
ある。
That is, by adjusting the pH of the test solution to 3 to 5, the inventor determined that the total free chlorine concentration was converted to the HOCQ concentration by
can be measured using a Q electrode, in which case by adjusting the pH without substantially diluting the test solution;
The inventors have discovered that measurements can be carried out easily and accurately without the need for calculations, leading to the present invention.

従って、本発明は次亜塩素酸が透過する隔膜を備え、そ
の検出端を被検液に浸漬して上記隔膜を透過する被検液
中の次亜塩素酸を検出するようにした次亜塩素酸濃度測
定用電極と、被検液を実質的に希釈することなくこの被
検液のpHを調整するpH調整機構とを具備し、上記p
 H調整機構により被検液のpHを3〜5に調整すると
共に、この被検液中の次亜塩素酸濃度を上記次亜塩素酸
濃度測定用電極により測定するようにしたことを特徴と
する残留塩素測定装置を提供することを目的とする。
Therefore, the present invention provides a diaphragm through which hypochlorous acid permeates, and the detection end of the diaphragm is immersed in a test liquid to detect hypochlorous acid in the test liquid passing through the diaphragm. It is equipped with an electrode for measuring acid concentration and a pH adjustment mechanism that adjusts the pH of the test liquid without substantially diluting the test liquid,
The pH of the test liquid is adjusted to 3 to 5 by the H adjustment mechanism, and the hypochlorous acid concentration in the test liquid is measured by the hypochlorous acid concentration measuring electrode. The purpose is to provide a residual chlorine measuring device.

作用 本発明装置においては、通常p Hが6〜8で、HOC
Qと0CQ−イオンとが共存している被検液をp H3
〜5に調整するようにしたので、被検液中の00℃−イ
オンが全て)−(OCQに移行し、従ってこのpH調整
後における被検液中のHOCQfi度をHOC12電極
を用いて検出することにより、全遊離有効塩素濃度を検
出することができる。また、被検液を実質的に希釈する
ことなくそのpHを調整するようにしたので、希釈率に
基づく演算を要することなく直接被検液中の全遊離有効
塩素濃度を求めることができるものである。
Function In the device of the present invention, the pH is usually 6 to 8, and HOC
The test solution in which Q and 0CQ- ions coexist is adjusted to pH 3.
Since the pH was adjusted to ~5, all of the 00°C-ions in the test solution are transferred to -(OCQ), and therefore the HOCQfi degree in the test solution after this pH adjustment is detected using the HOC12 electrode. By this, the total free available chlorine concentration can be detected.Also, since the pH of the test solution is adjusted without substantially diluting it, it is possible to directly test the test solution without the need for calculations based on the dilution rate. The total free available chlorine concentration in the liquid can be determined.

この場合、被検液のpHを3よりも低くすると、液中の
HOCQがCQ2に移行し、電極の出力が不安定になる
ため、本発明の目的を達成し得ない。
In this case, if the pH of the test solution is lower than 3, HOCQ in the solution will shift to CQ2 and the output of the electrode will become unstable, making it impossible to achieve the object of the present invention.

次に実施例を示し1本発明を具体的に説明するが1本発
明は下記実施例に限定されるものではなり1゜ 実施例 第1図は本発明の一実施例に係る残留塩素濃度の連続測
定装置を示すもので、図中1は吸引ポンプ2の作動によ
り内部を被検液が所定流量で流れる被検液流通管である
。また、3は上記ポンプ2の上流側において被検液流通
管1に介装されたPH調整機構で、流通管1を流れる被
検液がこのpH調整機構3に流入し、この機構3によっ
て実質的に希釈されることなく p ?(3〜5に調整
された後、ここから流出するようになっている。更に、
4は上記pH調整機構3の下流側において流通管1に介
装された次亜塩素M電極装置で、この装置4においては
検出端に次亜塩素酸が配設された次亜塩素酸測定用電極
の上記検出端が流通管1を流れる被検液中に浸漬され、
この被検液中の次亜塩素酸tAf:、を検出するように
なっている。
Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples. This shows a continuous measuring device, and numeral 1 in the figure is a test liquid flow pipe through which the test liquid flows at a predetermined flow rate due to the operation of a suction pump 2. Reference numeral 3 denotes a pH adjustment mechanism interposed in the test liquid distribution pipe 1 on the upstream side of the pump 2. The test liquid flowing through the distribution pipe 1 flows into this pH adjustment mechanism 3, and the pH adjustment mechanism 3 allows the test liquid to flow through the flow pipe 1. p without being diluted? (After being adjusted to 3 to 5, it will flow out from here. Furthermore,
4 is a hypochlorite M electrode device installed in the flow pipe 1 on the downstream side of the pH adjustment mechanism 3; The detection end of the electrode is immersed in the test liquid flowing through the flow pipe 1,
Hypochlorous acid tAf: in this test liquid is detected.

上記装置によって被検液中の遊離有効塩素濃度を連続測
定する場合、ポンプ2を作動させて流通管1に被検液を
流すものである。これにより、pH調整機構3で通常p
H6〜8の中性領域にある被検液が実質的に希釈される
ことな(p H3〜5の酸性領域に連続的に調整され、
遊離塩素が全てHOCflに移行した後、このH○CΩ
濃度が電極装置4で検出される。従って1本装置によれ
ば、被検液中の遊離塩素濃度を簡便かつ確実に連続測定
し得るものである。
When the free available chlorine concentration in a test liquid is continuously measured using the above-described apparatus, the pump 2 is operated to cause the test liquid to flow through the flow pipe 1. This allows the pH adjustment mechanism 3 to
The test solution in the neutral range of pH 6 to 8 is not substantially diluted (continuously adjusted to the acidic range of pH 3 to 5,
After all the free chlorine has been transferred to HOCfl, this H○CΩ
The concentration is detected with an electrode device 4. Therefore, with this device, the free chlorine concentration in the test liquid can be easily and reliably continuously measured.

なお、この場合上記と同様の電極装置をp H調整機構
3の上流側において流通管1に介装することにより、p
H調整前における被検液中のHOCfl濃度を求め、こ
のpH調整前のHOCR濃度と上述したようにして検出
したP Fr調整後のHO(、Q!3度とから演算によ
ってpH調整前の被検液の0CQ−濃度を求めることが
できる。
In this case, by interposing an electrode device similar to the above in the flow pipe 1 on the upstream side of the pH adjustment mechanism 3, the p.
The HOCfl concentration in the test liquid before pH adjustment is determined, and the HOCfl concentration before pH adjustment is calculated from the HOCR concentration before pH adjustment and the HO(,Q!3 degrees) after PFr adjustment detected as described above. The 0CQ-concentration of the test solution can be determined.

本発明において、上記pH調整機構の構成に特に制限は
なく1例えば塩酸蒸気等の酸性ガスを被検液中にバブリ
ングするようにしたもの、シリコーン膜や微多孔性のP
TFE膜チューブ等のイオン非浸透性でかつ酸性試薬を
透過させる膜を用い。
In the present invention, there are no particular limitations on the configuration of the pH adjustment mechanism, such as one in which acidic gas such as hydrochloric acid vapor is bubbled into the test liquid, a silicone membrane or a microporous P
Use a membrane that is impermeable to ions and permeable to acidic reagents, such as a TFE membrane tube.

この膜を通してサンプルを実質的に希釈することなくそ
の中に酸性試薬を添加するようにしたもの等の公知の機
構を採用することもできるが、陽イオン交換膜からなる
チューブを用いたpH調整機構を用いることが特に好ま
しい。
Although a known mechanism such as one in which an acidic reagent is added to the sample without substantially diluting the sample through this membrane can be adopted, a pH adjustment mechanism using a tube made of a cation exchange membrane can be adopted. It is particularly preferable to use

即ち、第2図は上記陽イオン交換膜チューブを用いたp
H調節機構3の一例を示すもので1図中5は試薬容器、
6はこの容器5内に注入された酸性試薬である。この試
薬6中には被検液流通管1に介装された陽イオン交換膜
チューブ7が浸漬されており、被検液が上記チューブ7
内を流れる間に試薬6中の水素イオンがチューブ7の陽
イオン交換膜からなる周壁を通って被検液中に移行し、
これにより被検液が実質的に希釈されることなく最小限
の使用試薬量で確実にp H3〜5に調整されるもので
ある。
That is, FIG. 2 shows the p
This figure shows an example of the H adjustment mechanism 3, in which 5 is a reagent container;
6 is an acidic reagent injected into this container 5. A cation exchange membrane tube 7 inserted into the test liquid flow tube 1 is immersed in this reagent 6, and the test liquid is supplied to the tube 7.
While flowing through the reagent 6, hydrogen ions in the reagent 6 pass through the peripheral wall made of a cation exchange membrane of the tube 7 and migrate into the test liquid.
Thereby, the pH of the test solution can be reliably adjusted to 3 to 5 with the minimum amount of reagent used without substantially diluting the test solution.

この場合、酸性試薬6の種類に限定はなく、酸性の液で
あればいずれのものも使用し得るが、特に酢酸、プロピ
オン酸等を用いることが好ましく、かつ高純度のものを
用いることが有効である。
In this case, the type of acidic reagent 6 is not limited, and any acidic liquid can be used, but it is particularly preferable to use acetic acid, propionic acid, etc., and it is effective to use a highly purified one. It is.

また、陽イオン交換膜チューブの種類も制限されない。Furthermore, the type of cation exchange membrane tube is not limited either.

具体的には、イオン交換基としてSo、H基を有するフ
ッ素樹脂性のNajion膜チューブ(デュポン社製)
等を好適に使用し得るが、この場合5o3H基のみでは
水分親和性が高く、被検液と試薬との間の濃度差に基づ
く浸透圧によって被検液が逆に試薬中に若干流入するこ
とがある。このため、本発明においては、So、H基を
有する陽イオン交換膜に水分親和性のないC○OH基を
有する陽イオン交換膜を積層するなどした複合陽イオン
交換チューブを用いることが特に好ましく、このように
SO2F基とC0OH栽とを複合的に配した陽イオン交
換膜を用いることにより、被検液が試薬中に流入し、試
薬が希釈されることを確実に防止することができる。
Specifically, a fluororesin Najion membrane tube (manufactured by DuPont) having So and H groups as ion exchange groups was used.
However, in this case, the 5o3H group alone has a high affinity for water, and the test solution may slightly flow into the reagent due to the osmotic pressure based on the concentration difference between the test solution and the reagent. There is. For this reason, in the present invention, it is particularly preferable to use a composite cation exchange tube in which a cation exchange membrane having So and H groups is laminated with a cation exchange membrane having C○OH groups with no water affinity. By using a cation exchange membrane in which SO2F groups and COOH groups are arranged in a composite manner as described above, it is possible to reliably prevent the test liquid from flowing into the reagent and diluting the reagent.

なお、このように陽イオン交換膜チューブを用いて被検
液のpHを調整する場合、チューブを試薬溶液中に浸漬
する方法の他、チューブを試薬の蒸気中に配置する方法
も有効に採用し得、これにより被検液から試薬中への水
分透過を最小限に抑えることができる。
In addition, when adjusting the pH of a test solution using a cation exchange membrane tube in this way, in addition to the method of immersing the tube in the reagent solution, it is also effective to use a method of placing the tube in the vapor of the reagent. As a result, water permeation from the test liquid into the reagent can be minimized.

また、本発明において、次亜塩素酸濃度測定用電極の構
成は特に限定されず、例えば電極本体内に電解液が封入
されると共に、7ノード及びカソードが収納され、かつ
その検出端に次亜塩素酸を透過する隔膜が配設された公
知のもの等を好適に使用し得る。
In addition, in the present invention, the configuration of the electrode for measuring hypochlorous acid concentration is not particularly limited. For example, an electrolyte is sealed in the electrode body, seven nodes and a cathode are housed, and the detection end is hypochlorous acid. Known devices equipped with a diaphragm that permeates chloric acid can be suitably used.

次いで、実験例により本発明の効果を具体的に示す。Next, the effects of the present invention will be concretely demonstrated through experimental examples.

大蓼狙1 第1図に示す装置に被検液を長期的に連続的に流してp
H調整を行ったときのp I−I安定性を調べた。この
場合、pH調整機構としては第2図に示したものを使用
した。結果を第3図及び第4図に示す。
Daitai Aim 1: Pour the test liquid continuously over a long period of time into the device shown in Figure 1.
The p II-I stability was investigated when H adjustment was performed. In this case, the pH adjustment mechanism shown in FIG. 2 was used. The results are shown in FIGS. 3 and 4.

第3図は陽イオン交換膜チューブとして長さ200WI
IのN ajion膜チューブを用い、試薬として酢W
!(蒸気)を用いた場合の結果である。なお、被検液流
量は2.5all/minとした。
Figure 3 shows a cation exchange membrane tube with a length of 200 WI.
Using a Najion membrane tube of I, add vinegar W as a reagent.
! This is the result when using (steam). Note that the flow rate of the test liquid was 2.5all/min.

また、第4図は陽イオン交換膜チューブとしてSO,H
基を持つ交換膜とC○○H基を持つ交換膜とを積層した
長さ130mの複合陽イオン交換膜チューブを用い、試
薬として酢酸を用いた場合の結果である。なお、被検液
流量は1.1d/minとした。
In addition, Figure 4 shows SO, H as a cation exchange membrane tube.
The results were obtained using a composite cation exchange membrane tube with a length of 130 m in which an exchange membrane having groups and an exchange membrane having C○○H groups were laminated, and acetic acid was used as a reagent. Note that the flow rate of the test liquid was 1.1 d/min.

第3図及び第4図の結果より、第2図の示した機構によ
れば被検液のpHを長期に亘って3〜Sの範囲に安定に
調整し得ることが認められる。
From the results shown in FIGS. 3 and 4, it is recognized that the mechanism shown in FIG. 2 allows the pH of the test liquid to be stably adjusted in the range of 3 to S over a long period of time.

なお、第3図のNajionチューブの場合は長期間連
続して被検液を流すと、浸透圧によって被検液から試薬
中に水分が入り込み、試薬が若干希釈されるためにp■
−■に0.5程度のずれを生じるが、P Hは3〜5の
範囲に入っているので実用上何ら問題はない。
In addition, in the case of the Najion tube shown in Figure 3, if the test solution is continuously flowed for a long period of time, water will enter the reagent from the test solution due to osmotic pressure and the reagent will be slightly diluted.
-■ A deviation of about 0.5 occurs, but since PH is within the range of 3 to 5, there is no practical problem.

これに対し、第4図の複合陽イオン交換膜チューブの場
合はP Hは10日間を通して3.75と殆ど変わらな
い。これは、イオン交換膜の複合化により水分の透過が
抑制され、試薬が希釈されないためであると考えられる
。なお、10日間における酢酸の被検液中への流出量は
わずか9mQであり、第2図の機構によれば被検液を実
質的に希釈することなく最小限の試薬量でpHを良好に
調整し得ることが確認された。
On the other hand, in the case of the composite cation exchange membrane tube shown in FIG. 4, the pH remained almost unchanged at 3.75 throughout the 10 days. This is thought to be because the ion exchange membrane is complex, which suppresses water permeation and prevents the reagent from being diluted. The amount of acetic acid that leaked into the test solution over 10 days was only 9 mQ, and according to the mechanism shown in Figure 2, the pH could be adjusted to a good level with the minimum amount of reagent without substantially diluting the test solution. It was confirmed that it can be adjusted.

実験例2 実験例1と同様の装置によって被検液中の遊離有効塩素
濃度を測定した。このときのHOCQ電極の検量線の一
例を第5図に示す。また、HOCQ電極の出力が被検液
のPHによってどのように変化するかを示したのが第6
図である。
Experimental Example 2 The free available chlorine concentration in the test liquid was measured using the same device as in Experimental Example 1. An example of the calibration curve of the HOCQ electrode at this time is shown in FIG. In addition, the sixth chapter shows how the output of the HOCQ electrode changes depending on the pH of the test liquid.
It is a diagram.

第5図の結果より、上記装置によって残留塩素濃度を良
好に測定し得ることが認められる。また、第6図の結果
より、pH2以下になるとHOCQ→CΩ2になる反応
で塩素が生じるため指示は異常になるが、pH3〜5の
間では遊離有効塩素の全てがHOCQ gとして安定し
ているので指示が安定であることが分かる。
From the results shown in FIG. 5, it is recognized that the residual chlorine concentration can be measured satisfactorily with the above device. Additionally, from the results in Figure 6, when the pH drops below 2, the indication becomes abnormal because chlorine is produced in the reaction from HOCQ to CΩ2, but between pH 3 and 5, all free available chlorine is stable as HOCQ g. Therefore, it can be seen that the instructions are stable.

更に、残留塩素濃度が一定(約2 、5 ppi+)で
p I−1が種々異なる被検液を調製し、この被検液の
残留塩素J良度をそのp )Iを調整することなく測定
した場合、第2図の機構によりpH3〜5に調整した後
測定した場合及びp H5の緩衝液によりpHを調整し
た後の電極出力を調べた。結果の一例を第7図に示す。
Furthermore, test solutions with a constant residual chlorine concentration (approximately 2,5 ppi+) and different p I-1 were prepared, and the residual chlorine J quality of these test solutions was measured without adjusting the p ) I. In this case, the electrode output was measured when the pH was adjusted to 3 to 5 using the mechanism shown in FIG. 2, and after the pH was adjusted using a pH 5 buffer. An example of the results is shown in FIG.

なお、第7図においてAはPH9の被検液をそのまま測
定した場合、Bはこの被検液のpHを第2図のV&構に
よって肩整した場合、Cはp H5の、t1衝液によっ
て調整した場合を示す。
In addition, in Fig. 7, A is when the test liquid with pH 9 is measured as it is, B is when the pH of this test liquid is adjusted by the V& structure in Fig. 2, and C is when the pH of the test liquid is adjusted with t1 buffer solution with pH 5. Indicates the case where

第7図の結果より、pH9のときは出力が小さいが、こ
れをp H調整チューブに通すとp Hが3〜5に調整
され、p I−I 5の緩衝液で調整した被検液の示す
標準出力に復帰し、従って上記装置によれば全遊離有効
塩素濃度を安定して測定し得ることが認められる6 発明の詳細 な説明したように、本発明に係る残留塩素測定装置は、
簡便かつ正確に全遊離有効塩素(次亜塩素酸十次亜塩素
酸イオン)を測定し得ると共に。
From the results shown in Figure 7, the output is small when the pH is 9, but when it is passed through the pH adjustment tube, the pH is adjusted to 3 to 5, and the test solution adjusted with a p I-I 5 buffer solution. Therefore, it is recognized that the total free available chlorine concentration can be stably measured with the above device.6 As described in detail of the invention, the residual chlorine measuring device according to the present invention has the following features:
Total free available chlorine (hypochlorous acid tenth chlorite ion) can be measured simply and accurately.

その構造も簡易で安価に製作できるため、実用的価値が
極めて大きいものである。
Since its structure is simple and can be manufactured at low cost, it has extremely great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る残留塩素測定装置を示
す概略図、第2図は同側のp■■調が機構を示す概略図
、第3図及び第4図はそれぞれ上記pH調整機構によっ
て被検液のpHを長期間に亘って調整した状態を示すグ
ラフ、第5図は上記測定装置による検量線の一例を示す
グラフ、第6図は上記装置の電極出力とp Hとの関係
を示すグラフ、第7図は被検液のP Hを変化させなが
らその残留塩素濃度を測定した時の電極出力変化を示す
グラフである。 3・・・pH調整機構、4・・・電極装置出願人  電
気化学計器 株式会社 代理人  弁理士 小 島 隆 司 第2図
Fig. 1 is a schematic diagram showing a residual chlorine measuring device according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing the mechanism of the pH adjustment on the same side, and Figs. 3 and 4 are respectively A graph showing the state in which the pH of the test liquid is adjusted over a long period of time by the adjustment mechanism, FIG. FIG. 7 is a graph showing the change in electrode output when the residual chlorine concentration is measured while changing the pH of the test liquid. 3...pH adjustment mechanism, 4...Electrode device Applicant: Electrochemical Instrument Co., Ltd. Agent, Patent Attorney Takashi Kojima Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、次亜塩素酸が透過する隔膜を備え、その検出端を被
検液に浸漬して上記隔膜を透過する被検液中の次亜塩素
酸を検出するようにした次亜塩素酸濃度測定用電極と、
被検液を実質的に希釈することなくこの被検液のpHを
調整するpH調整機構とを具備し、上記pH調整機構に
より被検液のpHを3〜5に調整すると共に、この被検
液中の次亜塩素酸濃度を上記次亜塩素酸濃度測定用電極
により測定するようにしたことを特徴とする残留塩素測
定装置。
1. Hypochlorous acid concentration measurement, which is equipped with a diaphragm through which hypochlorous acid permeates, and whose detection end is immersed in the test liquid to detect hypochlorous acid in the test liquid that passes through the diaphragm. electrode for
and a pH adjustment mechanism that adjusts the pH of the test liquid without substantially diluting the test liquid, and the pH adjustment mechanism adjusts the pH of the test liquid to 3 to 5, and A residual chlorine measuring device, characterized in that the hypochlorous acid concentration in the liquid is measured by the hypochlorous acid concentration measuring electrode.
JP61171023A 1986-07-21 1986-07-21 Apparatus for measuring residual chlorine Pending JPS6327745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171023A JPS6327745A (en) 1986-07-21 1986-07-21 Apparatus for measuring residual chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171023A JPS6327745A (en) 1986-07-21 1986-07-21 Apparatus for measuring residual chlorine

Publications (1)

Publication Number Publication Date
JPS6327745A true JPS6327745A (en) 1988-02-05

Family

ID=15915655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171023A Pending JPS6327745A (en) 1986-07-21 1986-07-21 Apparatus for measuring residual chlorine

Country Status (1)

Country Link
JP (1) JPS6327745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128184A2 (en) * 2000-02-11 2001-08-29 Capital Controls Company, Inc. Method of measuring chlorine content in aqueous solution
WO2021060138A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Space purification device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127298A (en) * 1976-04-16 1977-10-25 New Cosmos Electric Co Measuring apparatus for residual free chlorine
JPS53110592A (en) * 1977-03-07 1978-09-27 Orion Research Ph regulating method for flow of sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127298A (en) * 1976-04-16 1977-10-25 New Cosmos Electric Co Measuring apparatus for residual free chlorine
JPS53110592A (en) * 1977-03-07 1978-09-27 Orion Research Ph regulating method for flow of sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128184A2 (en) * 2000-02-11 2001-08-29 Capital Controls Company, Inc. Method of measuring chlorine content in aqueous solution
EP1128184A3 (en) * 2000-02-11 2002-09-11 Capital Controls Company, Inc. Method of measuring chlorine content in aqueous solution
US6627450B1 (en) 2000-02-11 2003-09-30 Severn Trent Water Purifications, Inc. Method of measuring chlorine content in aqueous solution
WO2021060138A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Space purification device

Similar Documents

Publication Publication Date Title
JP3028131B2 (en) Amperometric titration method
EP0897538B1 (en) Method and apparatus for the measurement of dissolved carbon in deionized water
JPS6291861A (en) On-line calibrating apparatus for chemical monitor
Bell et al. In situ determination of total dissolved inorganic carbon by underwater membrane introduction mass spectrometry
CN112305035B (en) Method and measuring point for correcting two measured values from different analytical measuring devices
Durst Continuous determination of free cyanide by means of membrane diffusion of gaseous HCN and an electrode indicator technique
US4581121A (en) Free chlorine gas analyzer
US3611790A (en) Method and apparatus for quantitative analysis
WO2009055093A1 (en) Electrochemical methods for selective detection of free chlorine, monochloramine and dichloramine
US6066249A (en) Method for calibrating an instrument for measuring electrolytes and metabolites by analysis of blood gases
US6723216B2 (en) Method and apparatus for detection of a bubble in a liquid
US6472223B1 (en) Method and system for continuously monitoring and controlling a process stream
JPS6327745A (en) Apparatus for measuring residual chlorine
US4018563A (en) Analysis of low ion contents
US20210033590A1 (en) Method for determining a chemical intake capacity of a process medium in a measuring point and measuring point for determining a chemical intake capacity of a process medium
JP3533573B1 (en) Automatic chlorine concentration measuring device and chlorine concentration measuring method
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
EP0466303B1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
JP2954174B1 (en) Constant potential electrolytic gas sensor
KR102464351B1 (en) System for measuring residual chlorine concentration of ballast water
JP2004333280A (en) Concentration-measuring device
KR100366954B1 (en) automatic chlorine supplier
Whittle et al. Chlorine
Ben-Yaakov Halogen analysis by membrane covered polarographic sensors
JP3835761B2 (en) Treatment liquid measuring device