JPS63276720A - Optical disk device - Google Patents

Optical disk device

Info

Publication number
JPS63276720A
JPS63276720A JP62110520A JP11052087A JPS63276720A JP S63276720 A JPS63276720 A JP S63276720A JP 62110520 A JP62110520 A JP 62110520A JP 11052087 A JP11052087 A JP 11052087A JP S63276720 A JPS63276720 A JP S63276720A
Authority
JP
Japan
Prior art keywords
current
high frequency
circuit
laser
frequency current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62110520A
Other languages
Japanese (ja)
Inventor
Toshimitsu Kaku
敏光 賀来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62110520A priority Critical patent/JPS63276720A/en
Publication of JPS63276720A publication Critical patent/JPS63276720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To reduce a laser noise by making variable a high frequency superposing current according to the reproducing power of an optical disk. CONSTITUTION:An HF module 17 overlaps a high frequency current with a laser driving current from a laser driving circuit 16 through a capacitor 175. By a PIN diode control current from an ON/OFF circuit 18, the ON/OFF action of the high frequency current and a current value variable action are executed. In the circuit 18, the PIN diode control current is determined by the base current of a TR2 as a constant current source and changed by making variable a resistance string 181 and with a WRGATE signal which is a control signal at the time of recording/erasing from a controller 14, a transistor TR1 is switched and the PIN diode control current comes to be ON/OFF. A resistance string 163 and the resistance train 181 in the circuit 18, by data from the controller 14, make variable a resistance value and switch a power high frequency current. Thus, a modulation factor can be optimized and the reduction of a laser noise can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光源に半導体レーザを用い、半導体レーザが発
生するレーザノイズを低減するために高周波重畳電流法
を採用した光ディスク装置に係り。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical disc device that uses a semiconductor laser as a light source and employs a high frequency superimposed current method to reduce laser noise generated by the semiconductor laser.

特にディスクの再生パワーが変化しても常にノイズ低減
に最適な変調度が得られる様にした光ディスク装置に関
する。
In particular, the present invention relates to an optical disc device that can always obtain the optimum modulation degree for noise reduction even if the disc reproduction power changes.

〔従来技術〕[Prior art]

半導体レーザが発生するモードホップノイズ。 Mode hop noise generated by semiconductor lasers.

戻シ光ノイズなど各種レーザノイズの低減法として特公
昭59−9086号に記載のように半導体レーザの直流
駆動電流に高周波電流を重畳してパルス発振させること
によりレーザの発振縦モードを単−モードから多モード
に変化させる方法がある。
As described in Japanese Patent Publication No. 59-9086, a method for reducing various types of laser noise such as backlight noise is to superimpose a high-frequency current on the DC drive current of a semiconductor laser to cause pulse oscillation, thereby converting the laser's longitudinal oscillation mode into a single mode. There is a way to change from to multiple modes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、直流電流に高周波電流を重畳させて半
導体レーザをパルス発振させる手法について記載されて
いるが、同一装置で再生パワーの異なる光ディスクを再
生する場合や温度などによって半導体レーザの発振特性
が変化した場合などの様に駆動電流が変化する場合につ
いて配慮されておらず、レーザノイズ低減に最適な変調
度を実現できないという問題がめった。ここで変調度と
は、高周波電流をN畳しない時のレーザの直流出力と重
畳した時の直流出力の比を言う。
The above conventional technology describes a method of superimposing a high-frequency current on a direct current to cause a semiconductor laser to oscillate in pulses, but the oscillation characteristics of the semiconductor laser may vary depending on the temperature, etc., or when optical discs with different playback powers are played back using the same device. No consideration was given to the case where the drive current changes, such as when the drive current changes, and there was a frequent problem that the optimum modulation degree for reducing laser noise could not be achieved. Here, the degree of modulation refers to the ratio of the DC output of the laser when the high-frequency current is not N multiplied to the DC output when the high-frequency current is superimposed.

本発明の目的は、再生パワーや温度などの外部条件が変
化しても常に最適な変調度を実現することにある。
An object of the present invention is to always achieve an optimal modulation degree even if external conditions such as reproduction power and temperature change.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、高周波重畳電流を光ディスクの再生パワー
に応じて可変することにより達成される。
The above object is achieved by varying the high frequency superimposed current in accordance with the reproduction power of the optical disc.

〔作用〕[Effect]

高周波重畳電流を可変する方法としては、(1)あらか
しめ測定しておいた再生パワーと重畳電流の関係をもと
に、各再生パワー毎にマニュアル的に重畳電流を可変す
る。(2)再生パワーを半導体レーザの後方モニタある
いは光学系中に設けた前方モニタを用いて検出し、高周
波電流ON/OFF時の各モニタ出力の出力比から変調
度を算出し、変調度が最適となる様に自動的に高周波電
流を可変するものがある。各々の方法においても再生パ
ワーに対して最適変調度が得られるのでレーザノイズ低
減能力が低下することはない。
As a method for varying the high frequency superimposed current, (1) the superimposed current is manually varied for each reproduction power based on the pre-measured relationship between the reproduction power and the superimposed current; (2) Detect the reproduction power using the rear monitor of the semiconductor laser or the front monitor installed in the optical system, calculate the modulation degree from the output ratio of each monitor output when the high-frequency current is ON/OFF, and find the optimal modulation degree. There are devices that automatically vary the high frequency current so that In each method, the optimal modulation degree can be obtained for the reproduction power, so the laser noise reduction ability is not degraded.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図によ#)説明する。半
導体レーザ1から出た光はカッブリングレンズ2により
平行光となシ、プリズム3へ入射スる。プリズム3で反
射される光は半導体レーザ1の出射光を直接受光する光
検出器へ入射する。この光検出器は半導体レーザのパワ
ーを観測できることから前方モニタ4と呼ぶ。プリズム
3を透過する光はガルバノミラ−5を通り、絞シ込みレ
ンズ6によりディスク状の記録媒体7上に1μm程度の
スポットとして絞シ込まれる。記録媒体7で反射した光
は再び絞り込みレンズ6、ガルバノミラ−5を通シ、プ
リズム3で光路を分離される。
An embodiment of the present invention will be described below with reference to FIG. The light emitted from the semiconductor laser 1 is converted into parallel light by the coupling lens 2, and then enters the prism 3. The light reflected by the prism 3 enters a photodetector that directly receives the light emitted from the semiconductor laser 1. This photodetector is called the front monitor 4 because it can observe the power of the semiconductor laser. The light passing through the prism 3 passes through a galvanometer mirror 5 and is focused by a focusing lens 6 onto a disk-shaped recording medium 7 as a spot of about 1 μm. The light reflected by the recording medium 7 passes through the aperture lens 6 and the galvano mirror 5 again, and is separated into optical paths by the prism 3.

分離された光は自動焦点(AF)、)ラック追跡(r 
R)を行なうためのサーボ光学系、及び情報信号を検出
する信号検出光学系へ導かれる。サーボ光学系、信号検
出光学系として各徨光学系が考案されているが1本発明
では主要部分ではないので、レンズ8と光検出器9で代
表して説明する。
The separated light is autofocus (AF), ) rack tracking (r
R) and a signal detection optical system for detecting the information signal. Although various optical systems have been devised as a servo optical system and a signal detection optical system, they are not the main parts of the present invention, so the lens 8 and the photodetector 9 will be explained as representatives.

光検出器9で検出されたAFおよびTR誤差信号はサー
ボ回路10で演算および位相補償され駆動回路11を通
ってAF倍信号絞り込みレンズ6を上下動するためのボ
イスコイル12を駆動し。
The AF and TR error signals detected by the photodetector 9 are calculated and phase compensated by a servo circuit 10, and then passed through a drive circuit 11 to drive a voice coil 12 for vertically moving the AF multiplier signal focusing lens 6.

T几信号は回転に伴う記録媒体のトラック偏心にスポッ
トを追跡させるためにガルバノミラ−5を1駆動する。
The T signal drives the galvanometer mirror 5 by 1 in order to track the spot on the track eccentricity of the recording medium as it rotates.

また同様に光検出器9で受光された情報信号は信号処理
回路13で増幅された後パルス化されてコントローラ1
4へ導かれる。
Similarly, the information signal received by the photodetector 9 is amplified by the signal processing circuit 13 and then pulsed by the controller 1.
Leads to 4.

半導体レーザ1の出力パワーを一足に保つ自動パワーコ
ントロール(APC)のためのパワー検出手段として前
方モニタ用の光検出器4の出力または半導体レーザ1の
同一バックージ内に収納されている後方モニタ用の光検
出器15の出力を利用する。これらの出力は半導体レー
ザ駆動回路16へ導かれ、どちらか一方をAPC動作に
利用し、他方を例えばパワー異常検出に利用する。さら
にAPC動作の他に、レーザ駆動部が含まれ、半導体レ
ーザ1のDC駆動電流と記録/消去時のパルス電流を加
算し、半導体レーザ1を駆動する。
As a power detection means for automatic power control (APC) to keep the output power of the semiconductor laser 1 constant, the output of the photodetector 4 for the front monitor or the output of the photodetector 4 for the rear monitor housed in the same baggage of the semiconductor laser 1 is used. The output of the photodetector 15 is used. These outputs are led to the semiconductor laser drive circuit 16, and one of them is used for APC operation, and the other is used, for example, for power abnormality detection. Furthermore, in addition to the APC operation, a laser driving section is included, which adds the DC driving current of the semiconductor laser 1 and the pulse current during recording/erasing to drive the semiconductor laser 1.

半導体レーザは一般的にモードホップノイズや戻り光に
よる誘起雑音が発生し、情報信号の信号対錐音比が低下
するという問題が発生する。この問題を解決する有効策
として特公昭59−9086号記載の半導体レーザの直
流駆動電流に500MHz以上の高周波電流を重畳して
パルス発振させることによりレーザの発振縦モードを単
一モードから多モードに変化させる方法がある。この方
法を実現するために高周波発撮器を搭載した高周波重畳
モジュール(HFモジュールと呼ぶ)17を設け。
Semiconductor lasers generally suffer from mode hop noise and induced noise due to returned light, resulting in a reduction in the signal-to-cone ratio of the information signal. An effective measure to solve this problem is to superimpose a high-frequency current of 500 MHz or more on the DC drive current of a semiconductor laser to generate pulse oscillation, as described in Japanese Patent Publication No. 59-9086, thereby converting the longitudinal oscillation mode of the laser from a single mode to multiple modes. There are ways to change it. In order to realize this method, a high frequency superimposition module (referred to as an HF module) 17 equipped with a high frequency oscillator is provided.

半導体レーザ駆動回路16からのレーザ駆動電流にHF
モジュール17で高周波電流を重畳した後。
HF to the laser drive current from the semiconductor laser drive circuit 16
After superimposing high frequency current in module 17.

半導体レーザ1を駆動することに工りレーザノイズ全低
減することができる。この)fFモジュール17で重畳
する電流値としては直流パワー出力と高周波重畳時の直
流平均パワー出力の比を変調度とすれば、この変調度が
130〜150%程度の時レーザノイズ低減効果が良好
ということから。
By driving the semiconductor laser 1, laser noise can be completely reduced. Assuming that the modulation degree is the ratio of the DC power output and the DC average power output when high frequency is superimposed as the current value superimposed by this) fF module 17, the laser noise reduction effect is good when the modulation degree is about 130 to 150%. From that.

変調度が例えば、151となる様にする。高周波電流を
正弦波と仮定して一般式で表わすと、変調度をM、Lき
い値電流を超える直流電流と重畳電流の波高値の比をm
とすれば次式となる。
For example, the modulation degree is set to 151. Assuming that the high frequency current is a sine wave and expressing it in a general formula, the modulation degree is M, and the ratio of the peak value of the DC current exceeding the L threshold current and the superimposed current is m.
Then, the following formula is obtained.

ω3−・ (1)+V〈−2t π 従って変調度M=150%とすれば、を流比m′=i3
となる。たとえば半導体レーザの微分童子効率to、5
mW/mA、発光パワーを3mWとすれば、しきい値を
超える直流電流は6mAとなるので、高周波゛電流の波
高値は18mAとなる。この状態で記録/消去時にさら
にパルスを重畳すると情報パルスの波高値はパルスに高
周波電流が重畳されることになるのでレーザの許容最大
出力を超えるおそれがあり、寿命力比の原因となる。そ
こで、記録/消去時には高周波電流の重畳を停止するO
N/OFF回路18を設け、レーザの保護を行なう。ま
たこのON/OFF回路18は1重畳する高周波電流の
波高値を可変できる様にしてあシ。
ω3−・ (1)+V〈−2t π Therefore, if the modulation degree M=150%, the flow ratio m′=i3
becomes. For example, the differential Doji efficiency of a semiconductor laser to, 5
If mW/mA and emission power are 3 mW, the DC current exceeding the threshold value will be 6 mA, so the peak value of the high frequency current will be 18 mA. If a pulse is further superimposed during recording/erasing in this state, the peak value of the information pulse may exceed the allowable maximum output of the laser because a high-frequency current is superimposed on the pulse, causing a shortened lifetime power ratio. Therefore, when recording/erasing, the superimposition of high-frequency current is stopped.
An N/OFF circuit 18 is provided to protect the laser. Further, this ON/OFF circuit 18 is designed to be able to vary the peak value of the superimposed high frequency current.

半導体レーザの特性バラツキ、HFモジュールの発振特
性のバラツキ、さらには再生パワーを変化させた時にも
対応し、常にレーザノイズ低減に最適な変調度を得るこ
とができる。以下具体的i実施例について説明する。
It can deal with variations in the characteristics of semiconductor lasers, variations in oscillation properties of HF modules, and even when changing the reproduction power, and can always obtain the optimum modulation degree for laser noise reduction. A specific example will be described below.

第2図は各再生パワー毎に高周波電流を可変し。In Figure 2, the high frequency current is varied for each reproduction power.

変調度の最適化を図る第1の実施例を示し、特に本発明
の主要部分である半導体レーザ駆動回路16、)(Fモ
ジュール17お工び高周波′電流のON/OFF回路1
8について具体的に示す。レーザ駆動回路16はレーザ
のDC駆動電流と記録/消去時のパルス電流を加算する
レーザ駆動部161とAPCサーボ回路162を含む。
A first embodiment for optimizing the degree of modulation is shown, in particular, a semiconductor laser drive circuit 16, which is the main part of the present invention, (F module 17) and a high frequency current ON/OFF circuit 1.
8 will be specifically shown. The laser drive circuit 16 includes a laser drive section 161 that adds a laser DC drive current and a pulse current during recording/erasing, and an APC servo circuit 162.

APC動作は後方モニタ15を用いた例について図示し
てめるが、前方モニタ4t−使用しても良い。後方モニ
タ15は抵抗列163により目標パワー値を設定する。
Although the APC operation is illustrated using the rear monitor 15, the front monitor 4t may also be used. The rear monitor 15 sets a target power value using a resistor array 163.

これはAPCサーボ回路162内にある基準電圧に対し
てモニタ出力を一定にする様にAPC動作が働くので抵
抗列の値を大きくすると。
This is because the APC operation works to keep the monitor output constant with respect to the reference voltage in the APC servo circuit 162, so if you increase the value of the resistor string.

後方モニタ出力が小さくなるために再生パワーは小さく
なシ、逆に抵抗値を小さくすると後方モニタ出力が大き
くなるために再生パワーは大きくなる。前方モニタ4の
出力はレーザ駆動回路16内の異常検出回路164へ導
かれ、レーザ異常を検出する。
Since the rear monitor output becomes small, the reproduction power becomes small. Conversely, when the resistance value is made small, the rear monitor output becomes large and the reproduction power becomes large. The output of the front monitor 4 is guided to an abnormality detection circuit 164 in the laser drive circuit 16 to detect a laser abnormality.

HFモジュール17は例えばトランジスタなどを用いた
高周波発振器171(発振周波数500〜800MHz
 ) 、 P I Nダイオード172.インダクタ/
ス173.コンデンサ174,175などで構成された
厚膜ICとなっておシ、ンーザ駆動回路16からのレー
ザ駆動電流に高周波電流をコンデンサ175を通して重
畳する。PINダイオード172は高周波帯域において
高周波+7 =アリティが良いのでPINダイオード1
72に流す制御電流を可変するとアッテネータとして働
く。
The HF module 17 includes, for example, a high frequency oscillator 171 (oscillation frequency 500 to 800 MHz) using a transistor or the like.
), PIN diode 172. Inductor/
S173. The high-frequency current is superimposed on the laser drive current from the laser drive circuit 16 through the capacitor 175 as a thick film IC composed of capacitors 174 and 175. The PIN diode 172 has a high frequency +7 = good arity in the high frequency band, so the PIN diode 1
When the control current flowing through 72 is varied, it functions as an attenuator.

この特徴を利用してON/OFF回路18からのPIN
ダイオード制御電流により高周波電流のON/OFF動
作と電流値可変動作を行なう。
Using this feature, the PIN from the ON/OFF circuit 18
The diode control current performs high frequency current ON/OFF operation and current value variable operation.

ON/OFF回路18においてPINダイオード制御電
流は定電流源としてのトランジスタTR2のベース電圧
により決定され、エミッタ抵抗をRoとすれば、ベース
電圧をR,で割ったものとなる。ベース電圧は抵抗列1
81の抵抗値を可変することにより変化し、またコント
ローラ14からの記録/消去時の制御信号であるWRG
ATE信号によりトランジスタTRIをスイッチングし
In the ON/OFF circuit 18, the PIN diode control current is determined by the base voltage of the transistor TR2 as a constant current source, and if the emitter resistance is Ro, then the base voltage is divided by R. Base voltage is resistor string 1
WRG is a control signal for recording/erasing from the controller 14.
The transistor TRI is switched by the ATE signal.

PINダイオード制御電流をON/OFFする。Turns on/off the PIN diode control current.

レーザパワー設定用の抵抗列163とON 10FF回
路内の高周波電流制御用の抵抗列181は2°R12’
 R,、・・・2aRなる順列となっておシ、それぞれ
の抵抗列にアナログスイッチなどのスイッチ列165.
182′t−設け、コントローラ14がらのnビットの
データにより、抵抗値を可変し、パワー、高周波電流を
切換える。これらデータはあらかじめ、各ヘッド毎に測
定してコントローラ内のRAM領域に記憶しておき、装
置立上げ時にアナログスイッチ列にデータを送出するこ
とにょシ行なう。こうすることによジ、変調度t−最適
化でき。
The resistance string 163 for laser power setting and the resistance string 181 for high frequency current control in the ON 10FF circuit are 2°R12'.
R, .
182't- is provided, and the resistance value is varied according to n-bit data from the controller 14, and the power and high frequency current are switched. These data are measured for each head and stored in a RAM area in the controller in advance, and the data is sent to the analog switch array when the device is started up. By doing this, the modulation degree t can be optimized.

レーザノイズ低減が実現できる。Laser noise reduction can be achieved.

第3図にON/OFF回路18において抵抗列の代りに
D/A変換器183とオペアンプ184を用いた定電流
源による方法を示す。コントローラ14からのnピット
のデータをD/A変換してアナログ電圧とし、この電圧
に応じた電流をTR2に流すもので、第2図に示した抵
抗列を用いた場合と同様の効果が得られる。
FIG. 3 shows a method using a constant current source in the ON/OFF circuit 18 using a D/A converter 183 and an operational amplifier 184 instead of a resistor string. The n-pit data from the controller 14 is converted into an analog voltage by D/A conversion, and a current corresponding to this voltage is passed through TR2, and the same effect as when using the resistor string shown in Figure 2 can be obtained. It will be done.

第4図に自動的に再生パワーに応じて変調度を一定に保
つ第2の実施例について示す。レーザパワーはすでにレ
ーザ駆動回路16において設定されているものとし、装
置立上げ時などの装置が上位コントローラに選択されて
いない時間を利用して変調度が一定となる様に高周波電
流を調整する。
FIG. 4 shows a second embodiment in which the degree of modulation is automatically kept constant according to the reproduction power. It is assumed that the laser power has already been set in the laser drive circuit 16, and the high frequency current is adjusted so that the degree of modulation is constant using the time when the device is not selected by the host controller, such as when the device is started up.

変調度測定用にTEST GATE信号発生用のパルス
発振回路19を設け1通常のWRGATEとTEST 
GATEを切換えるアナログスイッチ20によp、TE
STGATE  を選択し、この信号をON10 F 
F回路18とレーザ駆動回路16内のAPCサーボ回路
162へ導く。TESTGATEにより高周波電流をO
N/OFFすると後方モニタ出力または前方モニタ出力
にはON/OFFに応じた波形が得られる。ON時のレ
ベルとOFF時のレベルの比が変調度となるので、これ
らモニタ出力をサンプルホールド回路21.22へ導キ
A pulse oscillation circuit 19 for generating TEST GATE signals is provided for modulation measurement.1 Normal WRGATE and TEST
p, TE by the analog switch 20 that changes GATE.
Select STGATE and turn this signal ON10 F
It leads to the F circuit 18 and the APC servo circuit 162 in the laser drive circuit 16. High frequency current is turned off by TESTGATE.
When it is N/OFF, a waveform corresponding to ON/OFF is obtained in the rear monitor output or the front monitor output. Since the ratio of the level when ON and the level when OFF is the modulation degree, these monitor outputs are led to sample and hold circuits 21 and 22.

TEST ()ATE をタイミング回路23.24を
通してON時のレベルとOFF時のレベルをホールドす
る。サンプルホールド回路21.22の出力は割算器2
5へ導かれ、変調度に比例した出力が得られる。この出
力はレベル補正回路26を通った後A/Di換器27で
nビットのディジタルデータとしてコントローラ14へ
送出され記憶される。さらにコントローラ14からこれ
らディジタルデータをON/OFF回路18へ送出し、
第3図に示したのと同じON/OFF回路の構成をとる
ことによF)、D/に変換器183の出力で高周波電流
を制御して最適な変調度を得ることができる。この様に
割算器25を用いて変調度に関するディジタルデータを
発生させることにより、第1の実施例の様にヘッド毎に
再生パワーと高周波電流の関係を測定することなく自動
的にこれらの関係が得られる%似かめる。
The ON level and OFF level of TEST ()ATE are held through timing circuits 23 and 24. The output of the sample and hold circuits 21 and 22 is the divider 2.
5, and an output proportional to the modulation degree is obtained. After passing through the level correction circuit 26, this output is sent to the controller 14 as n-bit digital data by the A/Di converter 27 and stored therein. Furthermore, these digital data are sent from the controller 14 to the ON/OFF circuit 18,
By adopting the same ON/OFF circuit configuration as shown in FIG. 3, it is possible to control the high frequency current using the output of the D/converter 183 and obtain an optimum modulation degree. By generating digital data regarding the modulation degree using the divider 25 in this way, the relationship between the reproduction power and the high-frequency current can be automatically calculated without having to measure the relationship between the reproduction power and high-frequency current for each head as in the first embodiment. % resemblance obtained.

以上説明した様に再生パワーに応じて重畳する高周波電
流の値を可変し、変調度を一定に保つことができるので
レーザノイズ低減が図れる。
As explained above, since the value of the superimposed high-frequency current can be varied according to the reproduction power and the degree of modulation can be kept constant, laser noise can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば再生パワーに対する変調度の値を一定に
保つことができるのでレーザノイズ低減の効果を十分発
揮することができる。
According to the present invention, since the value of the modulation degree with respect to the reproduction power can be kept constant, the effect of laser noise reduction can be sufficiently exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する図、第2図は本発
明の第1の実施例を説明する図、第3図は第1の実施例
を補足説明するための図、第4図は第2の実施例を説明
する図である。 1・・・半導体レーザ、4・・・前方モニタ、15・・
・後方モニタ、16・・・レーザ駆動回路、17・・・
HFモジュール、18・・・ON/OFF回路、19・
・・パルス発振回路、21.22・・・サンプルホール
ド回路。 23.24・・・タイミング回路、25・・・割算器。 26・・・レベル補正回路、27・・・A/D変換器。
FIG. 1 is a diagram for explaining one embodiment of the present invention, FIG. 2 is a diagram for explaining the first embodiment of the present invention, FIG. 3 is a diagram for supplementary explanation of the first embodiment, and FIG. FIG. 4 is a diagram explaining the second embodiment. 1... Semiconductor laser, 4... Front monitor, 15...
- Rear monitor, 16... Laser drive circuit, 17...
HF module, 18...ON/OFF circuit, 19.
...Pulse oscillation circuit, 21.22...Sample and hold circuit. 23.24...Timing circuit, 25...Divider. 26...Level correction circuit, 27...A/D converter.

Claims (1)

【特許請求の範囲】 1、光源と上記光源から出た光を情報記録媒体まで導く
光学系と上記情報記録媒体から反射した光を上記光学系
から分離して光電変換を行なう情報検出回路とから成る
光ディスク装置において、上記光源として半導体レーザ
を用い、上記半導体レーザに高周波電流を重畳するため
の高周波重畳回路を設け、上記情報記録媒体の再生パワ
ーに応じて上記高周波電流を可変することを特徴とする
光ディスク装置。 2、上記再生パワーを検出する出力検出回路を設け、上
記出力検出回路の出力により上記高周波電流を制御する
ことを特徴とする特許請求の範囲第1項記載の光ディス
ク装置。 3、上記高周波重畳回路に高周波電流のON/OFF機
能を有することを特徴とする特許請求の範囲第1項記載
の光ディスク装置。 4、上記出力検出回路の検出手段として半導体レーザと
同一パッケージ内に収納されている後方モニタまたは上
記光学系から直接分離された光束を検出する前方モニタ
を利用することを特徴とする特許請求の範囲第1項記載
の光ディスク装置。
[Scope of Claims] 1. A light source, an optical system that guides the light emitted from the light source to an information recording medium, and an information detection circuit that separates the light reflected from the information recording medium from the optical system and performs photoelectric conversion. The optical disc device is characterized in that a semiconductor laser is used as the light source, a high frequency superimposition circuit is provided for superimposing a high frequency current on the semiconductor laser, and the high frequency current is varied in accordance with the reproduction power of the information recording medium. optical disk device. 2. The optical disc device according to claim 1, further comprising an output detection circuit for detecting the reproduction power, and the high frequency current is controlled by the output of the output detection circuit. 3. The optical disc device according to claim 1, wherein the high frequency superimposing circuit has a high frequency current ON/OFF function. 4. Claims characterized in that a rear monitor housed in the same package as the semiconductor laser or a front monitor that detects a light beam directly separated from the optical system is used as the detection means of the output detection circuit. The optical disc device according to item 1.
JP62110520A 1987-05-08 1987-05-08 Optical disk device Pending JPS63276720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110520A JPS63276720A (en) 1987-05-08 1987-05-08 Optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110520A JPS63276720A (en) 1987-05-08 1987-05-08 Optical disk device

Publications (1)

Publication Number Publication Date
JPS63276720A true JPS63276720A (en) 1988-11-15

Family

ID=14537879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110520A Pending JPS63276720A (en) 1987-05-08 1987-05-08 Optical disk device

Country Status (1)

Country Link
JP (1) JPS63276720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193332A (en) * 1989-01-23 1990-07-31 Nikon Corp Semiconductor laser driving circuit
CN100397733C (en) * 2003-07-28 2008-06-25 Tdk株式会社 Laser diode module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111057A (en) * 1983-11-21 1985-06-17 Hitachi Ltd Solenoid-operated type fuel injection valve
JPS61139939A (en) * 1984-12-12 1986-06-27 Canon Inc Optical information recording and reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111057A (en) * 1983-11-21 1985-06-17 Hitachi Ltd Solenoid-operated type fuel injection valve
JPS61139939A (en) * 1984-12-12 1986-06-27 Canon Inc Optical information recording and reproducing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193332A (en) * 1989-01-23 1990-07-31 Nikon Corp Semiconductor laser driving circuit
CN100397733C (en) * 2003-07-28 2008-06-25 Tdk株式会社 Laser diode module

Similar Documents

Publication Publication Date Title
CN101971443B (en) Short-pulse source device, laser driving method, optical pickup, and optical disc apparatus
US4819242A (en) Semiconductor laser driver circuit
US5070496A (en) Laser reproducing apparatus
US5712839A (en) Laser light power control system having reflected light detector
JPH0589465A (en) Method and device for optical information recording and reproduction
US7406012B2 (en) Semiconductor laser driving device, optical head device, optical information processing device, and optical recording medium
US8149661B2 (en) Short-pulse light source, laser light emission method, optical device, optical disc device, and optical pickup
JP2756820B2 (en) Semiconductor laser drive circuit
US5627813A (en) Optical information recording and/or reproducing apparatus and method with auto power control function for two light sources
US4967417A (en) Laser driving device provided with two reference signal sources, and optical information recording apparatus using the same device
JPS63276720A (en) Optical disk device
JPS60239925A (en) Semiconductor laser driving circuit
JPH0737265A (en) Optical information recorder
US7623435B2 (en) Optical pickup device, and information recording and reproduction device
JP2003059083A (en) Optical head and optical disk playing-back device
JP2731237B2 (en) Optical information recording / reproducing device
JP2731223B2 (en) Optical disk drive
JPH0810777B2 (en) Laser life judgment method
JPS63251946A (en) Optical pickup device
JPS6089836A (en) Tracking control circuit of disc record reproducer
JPS63146232A (en) Servo device for optical disk information recording/ reproducing device
JPH07262560A (en) Recording and reproducing device
JPH01232543A (en) Optical information recording/reproducing device
JPH06168475A (en) Optical information recording and reproducing device
JPS63255840A (en) Light quantity controller in optical recording and reproducing device