JPS63275846A - Belt non-stage transmission - Google Patents

Belt non-stage transmission

Info

Publication number
JPS63275846A
JPS63275846A JP62107020A JP10702087A JPS63275846A JP S63275846 A JPS63275846 A JP S63275846A JP 62107020 A JP62107020 A JP 62107020A JP 10702087 A JP10702087 A JP 10702087A JP S63275846 A JPS63275846 A JP S63275846A
Authority
JP
Japan
Prior art keywords
oil
belt
movable conical
continuously variable
servo mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62107020A
Other languages
Japanese (ja)
Other versions
JP2788633B2 (en
Inventor
Torao Hattori
服部 虎男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP62107020A priority Critical patent/JP2788633B2/en
Priority to EP88106845A priority patent/EP0289024A3/en
Priority to CA000565532A priority patent/CA1289387C/en
Priority to US07/187,858 priority patent/US4871343A/en
Publication of JPS63275846A publication Critical patent/JPS63275846A/en
Application granted granted Critical
Publication of JP2788633B2 publication Critical patent/JP2788633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To improve the variation performance of the radius of a belt winding surface with a simple structure and a little controlling energy by controlling the sliding of a movable cone plate with a servo mechanism connected hydraulically or mechanically to two movable cone plates placed on the opposite side. CONSTITUTION:A fixed cone plate 20 formed in one unit with an input shaft is to form a cylinder wall 21 on a movable cone plate 21 together with the partition wall 23 fixed on an input shaft to partition an oil pressure chamber 23a, and valves 26, 40 and a pressure oil supply pipe 62 are to be fixed in hollow portion 69. A pulley K on the driven side is to be composed of a fixed cone plate 50 and a movable cone plate 51,and pressure oil chamber 53a, a pressure oil supply pipe 64 and controlling valves 56, 45 are to be provided thereto. A servo mechanism P is also to be provided to obtain the displacement quantity responsing to a speed change signal, and connection members 42, 47 connecting the servo mechanism P and controlling valves 40, 45 are to be secured. The variation performance of the radius of the belt winding surface can consequently be carried out satisfactorily with a little control signal energy and a simple structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両等に装着されるベルト無段変速機、特に入
力軸上の駆動プーリーと出力軸上の被駆動プーリにVベ
ルトを捲回し駆動、被駆動プーリのベルト捲回面の回転
半径を制御する事により入出力軸の変速比を無段階に制
御する構成を有するベルト無段変速機の変速比制御方法
および装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a continuously variable belt transmission mounted on a vehicle, etc., and in particular to a V-belt wound around a drive pulley on an input shaft and a driven pulley on an output shaft. The present invention relates to a gear ratio control method and apparatus for a continuously variable belt transmission having a configuration for steplessly controlling the gear ratio of an input/output shaft by controlling the rotation radius of the belt winding surfaces of the driving and driven pulleys.

(従来の技術と問題点) かかるベルト無段変速機においては、トルクの有効な伝
達のため流体圧力によりベルトに側圧を与える等ベルト
に伝達トルクに応じた張力を与える必要があり、変速比
を変えるためベルト捲回面の半径を制御する場合もベル
ト張力を維持しつつ行う必要がある。
(Prior art and problems) In such a continuously variable belt transmission, in order to effectively transmit torque, it is necessary to apply tension to the belt according to the transmitted torque, such as by applying lateral pressure to the belt using fluid pressure. Even when controlling the radius of the belt winding surface in order to change the belt tension, it is necessary to maintain the belt tension.

特開昭55−65755号公報、特開昭60−1254
50号公報にはポンプよりの油圧を駆動プーリの回転数
と変速比をファクターとして調圧し、その油圧を駆動プ
ーリの回転数(エンジン回転数)とスロットル開度によ
り制御されるスライドバルブを介して駆動プーリを構成
する可動円錐板を軸方向に摺動せしめる油圧シリンダに
供給する事により、調圧された油圧によりベルトの側圧
を維持しつつ駆動プーリのベルト捲回面の半径を制御す
る構造が開示されている。
JP-A-55-65755, JP-A-60-1254
Publication No. 50 states that the oil pressure from the pump is regulated using the rotation speed of the drive pulley and the gear ratio as factors, and the oil pressure is controlled by the rotation speed of the drive pulley (engine rotation speed) and the throttle opening through a slide valve. By supplying the movable conical plate that makes up the drive pulley to a hydraulic cylinder that slides in the axial direction, the regulated hydraulic pressure is used to control the radius of the belt winding surface of the drive pulley while maintaining the side pressure of the belt. Disclosed.

この413造においては、被駆動プーリの可動円錐板の
油圧シリンダはその有効面積が駆動プーリのそれよりも
小に設定されており、変速比を高速側へスライドする場
合は、駆動プーリの径変化に伴うベルトの張力により被
駆動プーリの可動円錐板を側圧に抗して摺動せしめて被
駆動プーリのベルト捲回面の半径の制御がなされる。従
ってベルトに不要の負荷が作用しベルトの耐久性に好ま
しくない影響を及ぼす。また、変速比を低速側へスライ
ドする場合は駆動プーリの側圧を油圧シリンダの排油に
より解除し、被駆動プーリの側圧により同様のベルト捲
回面半径の制御が行われるが、この場合駆動プーリの側
圧が必要以下に小となる事があり得る。
In this 413 construction, the effective area of the hydraulic cylinder of the movable conical plate of the driven pulley is set smaller than that of the driving pulley, and when sliding the gear ratio toward the high speed side, the diameter of the driving pulley changes. The resulting belt tension causes the movable conical plate of the driven pulley to slide against the lateral pressure, thereby controlling the radius of the belt winding surface of the driven pulley. Therefore, an unnecessary load is applied to the belt, which has an unfavorable effect on the durability of the belt. In addition, when sliding the gear ratio to a lower speed side, the lateral pressure on the driving pulley is released by draining oil from the hydraulic cylinder, and the lateral pressure on the driven pulley is used to control the belt winding surface radius in the same way. The lateral pressure may be lower than necessary.

一方、米国特許第3600961号明細書には一定圧の
高圧油と変速比等により調圧される低圧油を得、低圧油
により駆動プーリ、被駆動プーリの側圧を達成し、変速
時には高圧油をベルト捲凹面半径の大となるプーリの油
圧シリンダに供給する事により制御する構造が開示され
ている。
On the other hand, U.S. Patent No. 3,600,961 discloses that high-pressure oil at a constant pressure and low-pressure oil whose pressure is regulated by the gear ratio, etc. are obtained, and the side pressure of the driving pulley and driven pulley is achieved by the low-pressure oil, and the high-pressure oil is used during gear shifting. A structure is disclosed in which control is performed by supplying the belt to a hydraulic cylinder of a pulley with a large concave radius.

しかし、この構造においても変速領域によっては必要側
圧よりも高い側圧を使用せねばならず、圧力損失が大と
い等の不利がある。
However, even in this structure, it is necessary to use a side pressure higher than the required side pressure depending on the speed change region, and there are disadvantages such as a large pressure loss.

(発明の目的) 本発明は上述した従来技術の問題を解決すべく、伝達ト
ルクに対応する圧力流体を駆動プーリ及び被駆動プーリ
に供給し、ベルト張力を維持しつつ変速可能なベルト無
段変速機の制御方法と制御装置を提供する事を目的とす
る。
(Object of the Invention) In order to solve the problems of the prior art described above, the present invention provides a belt continuously variable transmission system that supplies pressure fluid corresponding to the transmitted torque to a driving pulley and a driven pulley, and enables speed change while maintaining belt tension. The purpose is to provide a control method and a control device for the machine.

(発明の構成および作用) 上記目的を達成するため、本発明においては、入力軸上
の駆動プーリと出力軸上の被駆動プーリ間にベルトを捲
回し、該ベルトの張力を維持するための伝達トルクに対
応した圧油を前記両プーリの可動円錐板に設けられた油
圧シリンダに供給し、可動円錐板を摺動せしめて、プー
リのベルト捲回面半径を拡大又は縮少して変速を行うベ
ルト無断変速機において、 変速比に対応する両プーリの可動円錐板の摺動画と等し
い穆動量を出力するサーボ機構として変速信号発生機構
を構成する。即ち、車両走行パラメータ又はエンジンパ
ラメータに対応する油圧信号により摺動するパイロット
弁と、油圧室を画成するピストンとシリンダの一方を摺
動可能にし、該摺動可能なピストン又はシリンダに油圧
室との連通口を設け、該連通口をパイロット弁に刻設す
る排油口又は圧油供給口と接続する事により、パイロッ
ト弁の摺動と同方向、同量だけ摺動可能なピストン又は
シリンダが摺動し得るいわゆるならい機構に構成する。
(Structure and operation of the invention) In order to achieve the above object, in the present invention, a belt is wound between a driving pulley on an input shaft and a driven pulley on an output shaft, and a transmission is provided to maintain the tension of the belt. A belt that supplies pressure oil corresponding to the torque to a hydraulic cylinder provided on a movable conical plate of both pulleys, causes the movable conical plate to slide, and expands or contracts the radius of the belt winding surface of the pulley to change speed. In the continuously variable transmission, the speed change signal generation mechanism is configured as a servo mechanism that outputs an amount of movement equal to the sliding motion of the movable conical plates of both pulleys corresponding to the speed change ratio. That is, a pilot valve that slides in response to a hydraulic signal corresponding to a vehicle running parameter or an engine parameter, and one of a piston and a cylinder defining a hydraulic chamber are made slidable, and the slidable piston or cylinder is provided with a hydraulic chamber. By providing a communication port and connecting the communication port to the oil drain port or pressure oil supply port carved into the pilot valve, a piston or cylinder that can slide in the same direction and amount as the pilot valve can be created. It is constructed into a so-called tracing mechanism that can slide.

更に前記変速信号発生機構の摺動部材に両プーリの可動
円錐板を油圧的又はm械的に連結して一体に摺動せしめ
る事により変速信号発生機構の穆勤全に等しい摺動量を
プーリの可動円錐板に与えベルト捲回面半径の制御を行
う。
Furthermore, by hydraulically or mechanically connecting the movable conical plates of both pulleys to the sliding member of the speed change signal generating mechanism and making them slide together, the sliding amount of the pulleys is equal to the total movement of the speed change signal generating mechanism. It is applied to the movable conical plate to control the radius of the belt winding surface.

更に本発明においては、上記変速信号発生機構であるサ
ーボ機構とプーリの可動円錐板を一体に摺動する構造と
して変速信号発生機構と連結されて一体に摺動するシフ
ト弁に伝達トルクに対応する圧油を供給する供給口と、
排油口を設け、該圧油供給口又は排油口を、可動円錐板
と一体に摺動し可動円錐板の油圧シリンダに常時連通ず
る連通口を有する摺動弁の該連通口に選択的に接続する
事によりスライド弁と可動円錐板をならい構造として一
体に摺動するよう構成する。
Furthermore, in the present invention, the servo mechanism, which is the speed change signal generation mechanism, and the movable conical plate of the pulley are configured to slide together, and the shift valve, which is connected to the speed change signal generation mechanism and slides together, corresponds to the transmitted torque. A supply port for supplying pressure oil;
An oil drain port is provided, and the pressure oil supply port or the oil drain port is selectively connected to the communication port of a sliding valve that slides integrally with the movable conical plate and constantly communicates with the hydraulic cylinder of the movable conical plate. By connecting the slide valve to the movable conical plate, the slide valve and the movable conical plate are configured to slide together as a parallel structure.

(本発明の実施例) 以下本発明の好適な一実施例を図面に基づき具体的に説
明する。
(Embodiment of the present invention) A preferred embodiment of the present invention will be specifically described below based on the drawings.

第1図は本発明によるベルト無段変速機を車両に塔載し
た場合の動力伝達経路を示す概略図で、第2図はその詳
細構造を示す。
FIG. 1 is a schematic diagram showing a power transmission path when a continuously variable belt transmission according to the present invention is mounted on a vehicle, and FIG. 2 shows its detailed structure.

第1図においてエンジンAの出力トルクは出力φ+h 
Bから周知のトルクコンバータCを介してトルクコンバ
ータ出力軸りによりベルト無段変速機に人力される。入
力ギアEは前進クラッチにより入力軸Gと接断されるギ
アFと噛合しており、該クラッチが接合されると駆動プ
ーリHにトルクが伝達され、ベルト■により出力M J
上の被駆動プーリKに及ぶゎ出力軸Jのトルクは減速機
構し、差動機構Mを介して車輪を駆動する。
In Figure 1, the output torque of engine A is output φ + h
Power is supplied from B to a belt continuously variable transmission via a well-known torque converter C via a torque converter output shaft. Input gear E meshes with gear F, which is connected to and disconnected from input shaft G by a forward clutch. When the clutch is engaged, torque is transmitted to drive pulley H, and output M J is generated by belt ■.
The torque of the output shaft J, which is applied to the upper driven pulley K, acts as a deceleration mechanism and drives the wheels via the differential mechanism M.

一方、人力ギアEはイドルギアを介して後進用クラッチ
Nにより出力軸Jと接断される後進ギアと噛合しており
、後進時は前進クラッチを解除し、後進クラッチNを接
続する事により車輪は後進する。
On the other hand, the human gear E is meshed with the reverse gear which is connected to and disconnected from the output shaft J by the reverse clutch N via the idle gear.When traveling backward, the wheels are rotated by releasing the forward clutch and connecting the reverse clutch N. Go backwards.

第2図において、(第1図に対応する部分は同一符号で
示す)エンジン出力軸Bはドルコンバータカバー1と結
合され、該カバー1と結合されるポンプインペラー3の
支持部材2と一体に回転する。タービンインペラー4は
ドルコンバータ出力軸りと一体に結合され、該出力軸り
と共に回転する変速機の人カギ・ヤEにより伝達トルク
が変速機に入力される。尚6は公知のロックアツプクラ
ッチ、5はステータでワンウェイクラッチ8を介し軸に
支持される。ドルコンバータ出力軸りの後端の凹所9に
はライン圧を調圧するための伝達トルり信号を得るトル
ク検知機構10のカバー11がベアリングを介し嵌装さ
れている。
In FIG. 2, an engine output shaft B (portions corresponding to those in FIG. 1 are indicated by the same reference numerals) is coupled to a dollar converter cover 1, and rotates integrally with a support member 2 of a pump impeller 3 coupled to the cover 1. do. The turbine impeller 4 is integrally connected to the dollar converter output shaft, and the transmitted torque is inputted to the transmission by the transmission's human gear E rotating together with the output shaft. 6 is a known lock-up clutch, and 5 is a stator which is supported by a shaft via a one-way clutch 8. A cover 11 of a torque detection mechanism 10 for obtaining a transmission torque signal for regulating line pressure is fitted into the recess 9 at the rear end of the dollar converter output shaft via a bearing.

人力ギアEはベルト無段変速機の入力軸G上に回転自在
に支持されるギアFと常時噛合っており、ギアFの回転
は前進クラッチ12により入力申出Gにイ云達される。
The manual gear E is always in mesh with a gear F rotatably supported on the input shaft G of the continuously variable belt transmission, and the rotation of the gear F is transmitted to the input request G by the forward clutch 12.

前進クラッチ12は周知の多板クラッチで入力軸Gに固
定されるクラッチハウジング12a内に油圧室12fを
ピストン12bにより画成し、油路12d1ボート12
eにより供給される圧油により、ピストン12bを摺動
し、クラッチハウジング12aに固定される摩擦プレー
トと、ギアFと一体に固定される摩擦板とを押圧し、ギ
アFのトルクを入力軸Gに伝達する。12cはクラッチ
スプリングである。
The forward clutch 12 is a well-known multi-disc clutch, and has a hydraulic chamber 12f defined by a piston 12b in a clutch housing 12a fixed to an input shaft G.
With the pressure oil supplied by to communicate. 12c is a clutch spring.

入力軸Gには駆動プーリHが一体に回転するよう設けら
れる。駆動プーリHは入力軸Gと一体に形成された固定
円錐板20及び軸上に軸方向に摺動可能に支持される可
動円錐板21より構成され、出力!FIIIJ上の同様
の構成から成る被駆動プーリにとの間に無端ベルトIが
捲回されている。
A drive pulley H is provided on the input shaft G so as to rotate together therewith. The drive pulley H is composed of a fixed conical plate 20 formed integrally with the input shaft G and a movable conical plate 21 supported on the shaft so as to be slidable in the axial direction. An endless belt I is wound between driven pulleys having the same structure as those on FIIIJ.

可動円錐板21は入力軸G上に固定される隔壁23と共
に油圧室23aを形成するシリンダ壁21aを有し、隔
壁23には油圧室23aへ圧油を供給排出する油路24
を設ける。22はシリンダカバーである。入力軸Gに穿
設された中空部29には、油圧室23aへの圧油供給排
出を制御するバルブ26.40及び圧油供給管62が嵌
装される。28は可動円錐板21の摺動を円滑にするた
めのボールベアリングである。
The movable conical plate 21 has a cylinder wall 21a that forms a hydraulic chamber 23a together with a partition wall 23 fixed on the input shaft G, and the partition wall 23 has an oil passage 24 for supplying and discharging pressure oil to the hydraulic chamber 23a.
will be established. 22 is a cylinder cover. A valve 26, 40 and a pressure oil supply pipe 62 for controlling the supply and discharge of pressure oil to the hydraulic chamber 23a are fitted into the hollow portion 29 formed in the input shaft G. 28 is a ball bearing for smooth sliding of the movable conical plate 21.

出力11ilhJには減速機構りを構成する小径ギア1
5が固定され、小径ギア15は大径ギア16と0v合し
差動機構Mに伝達される。
The output 11ilhJ has a small diameter gear 1 that constitutes a reduction mechanism.
5 is fixed, and the small diameter gear 15 and the large diameter gear 16 are connected at 0V and transmitted to the differential mechanism M.

出力軸J上に回転自在に支持される後進ギアNは図示し
ないアイドルギアを介して人力ギアEと噛合し、後進ク
ラッチ13によりその回転の出力軸Jへの伝達が接断さ
れる。
A reverse gear N rotatably supported on an output shaft J meshes with a human gear E via an idle gear (not shown), and transmission of its rotation to the output shaft J is disconnected by a reverse clutch 13.

後進クラッチ13は前進クラッチ12と同構成を有する
周知の多板クラッチでタラッチハウジング13a、ピス
トン13b、クラッチスプリング13C5油圧室13f
より成り、油圧室13fの圧油供給は出力軸Jに設けら
れた油路13d、クラッチハウジング13aのボート1
3eにより行われる。
The reverse clutch 13 is a well-known multi-disc clutch having the same configuration as the forward clutch 12, and includes a tarlatch housing 13a, a piston 13b, a clutch spring 13C5, and a hydraulic chamber 13f.
Pressure oil is supplied to the hydraulic chamber 13f through an oil passage 13d provided in the output shaft J and a boat 1 in the clutch housing 13a.
3e.

出力軸Jには更に被駆動プーリKが一体に回動するよう
設けられる。被駆動プーリには固定円錐板50及び可動
円錐板51より構成され、可動円錐板51はシリンダ1
51aと一体に形成され、該シリンダ壁51aは出力軸
上に固定される隔壁53と共に油圧室53aを画成する
A driven pulley K is further provided on the output shaft J so as to rotate together with the output shaft J. The driven pulley is composed of a fixed conical plate 50 and a movable conical plate 51, and the movable conical plate 51 is connected to the cylinder 1.
51a, and the cylinder wall 51a defines a hydraulic chamber 53a together with a partition wall 53 fixed on the output shaft.

隔壁53と可動円錐板51間には数個のスプリング60
を装着する。58は可動円錐板51の摺動を円滑にする
ためのボールベアリング、52はシリンダカバーである
Several springs 60 are installed between the partition wall 53 and the movable conical plate 51.
Attach. 58 is a ball bearing for smooth sliding of the movable conical plate 51, and 52 is a cylinder cover.

出力軸Jの可動円錐板51の摺動域に亘って中空部59
を穿設し、該中空部には圧油供給管64、制御バルブ5
6.45が嵌挿される。制御バルブ45.56からの圧
油はボート55、隔壁53に設けられる油路54により
油圧室53aに供給される。
The hollow portion 59 extends over the sliding area of the movable conical plate 51 of the output shaft J.
A pressure oil supply pipe 64 and a control valve 5 are installed in the hollow part.
6.45 is inserted. Pressure oil from the control valves 45 and 56 is supplied to the hydraulic chamber 53a through an oil passage 54 provided in the boat 55 and the partition wall 53.

次に変速信号に応答してm!riIJプーリH1プー動
プーリにのベルト捲回面半径を制御する構造について第
2図、第3図により説明する。
Next, m! in response to the gear shift signal! The structure for controlling the radius of the belt winding surface of the riIJ pulley H1 movable pulley will be explained with reference to FIGS. 2 and 3.

Pは変速信号に対応する変位量を得るためのサーボ機構
でパイロット弁37と、変速機ケースに固定されるサー
ボピストン36と、該ピストンと共に油圧室36cを画
成し、パイロット弁37の穆勤景だけ固定ピストン上を
軸方向に摺動するサーボシリンダ35と、で構成され、
該サーボシリンダ35には駆動プーリHの制御弁40を
移動させるための連結部材42がボルト44により固定
され、被駆動プーリにの制御弁45を移動させる連結部
材47がボルト49により固定される。即ち制御弁40
.45はサーボ機構Pのサーボシリンダと一体に移動す
るよう構成される。
P is a servo mechanism for obtaining a displacement amount corresponding to a shift signal, and includes a pilot valve 37, a servo piston 36 fixed to the transmission case, and together with the piston, a hydraulic chamber 36c is defined, It consists of a servo cylinder 35 that slides in the axial direction on a fixed piston,
A connecting member 42 for moving the control valve 40 of the drive pulley H is fixed to the servo cylinder 35 by a bolt 44, and a connecting member 47 for moving the control valve 45 to the driven pulley is fixed by a bolt 49. That is, the control valve 40
.. 45 is configured to move together with the servo cylinder of the servo mechanism P.

41.46は連結部材42.47の制御弁側の固定部を
示す。
Reference numeral 41.46 indicates a fixed portion of the connecting member 42.47 on the control valve side.

入力軸G1出力軸Jの中空部29.59に嵌装される制
御弁の構造について説明する。
The structure of the control valve fitted into the hollow portion 29.59 of the input shaft G1 and the output shaft J will be explained.

制御弁は可動円錐板21.51と共に摺動するピン27
.57により連結される第1スライド弁26.56と該
スライド弁の内方に挿入されサーボシリンダ35と一体
に摺動する第2スライド弁40.45より成る。第1ス
ライド弁26.56は可動円錐板21.51の油圧室2
3a、53aの圧油ボート25゜55と常に連通する油
溝26a、56aと、該油溝26a、56aと連通し、
内面に穿設されるボート26b、56bを有する。第2
スライド弁40.45はライン圧油油路61から圧油供
給管62.64によりボート63.65を介してそれぞ
れライン圧油を供給される油溝40d、45dと、該油
溝40d。
The control valve has a pin 27 sliding with a movable conical plate 21.51.
.. 57, and a second slide valve 40.45 inserted inside the slide valve and sliding integrally with the servo cylinder 35. The first slide valve 26.56 is the hydraulic chamber 2 of the movable conical plate 21.51.
Oil grooves 26a, 56a always communicating with the pressure oil boats 25° 55 of 3a, 53a, and communicating with the oil grooves 26a, 56a,
It has boats 26b, 56b bored on the inner surface. Second
The slide valves 40.45 have oil grooves 40d and 45d, each of which is supplied with line pressure oil from a line pressure oil passage 61 via a boat 63.65 via a pressure oil supply pipe 62.64, and the oil groove 40d.

45dと連通ずるボート40c、45cと、摺動により
第1スライド弁26.56のボート26b、56bと連
通しライン圧油な供給する供給側油溝40a、45aと
を有し、更に摺動により第1スライド弁26.56のボ
ー)−26b。
45d, and supply side oil grooves 40a, 45a that communicate with the boats 26b, 56b of the first slide valve 26.56 by sliding and supply line pressure oil. Bow of the first slide valve 26.56)-26b.

56bと連通し、可動円錐板21.51の油圧室23a
、53aを排油路43.48それぞれに接続する排油側
油溝40b、45bと排油ボート40e、45eを有す
る。
56b, the hydraulic chamber 23a of the movable conical plate 21.51
, 53a to the oil drain passages 43, 48, respectively, and oil drain side oil grooves 40b, 45b and oil drain boats 40e, 45e.

第4図は本発明のベルト無段変速機の変速比を制御する
油圧回路を示す。
FIG. 4 shows a hydraulic circuit for controlling the gear ratio of the continuously variable belt transmission of the present invention.

手動バルブTを操作して図のし位置にスライドするとオ
イルリザーバ101からポンプ100により送出される
ライン圧油は調圧弁Qにより調圧され油路105により
手動バルブTを経て前進クラッチ12に至り、該クラッ
チによりトルクコンバータCの出力トルクを入力軸Gに
伝達し、従って駆動プーリHが回転する。
When the manual valve T is operated and slid to the illustrated position, the line pressure oil sent from the oil reservoir 101 by the pump 100 is regulated by the pressure regulating valve Q, and reaches the forward clutch 12 via the manual valve T through the oil passage 105. The clutch transmits the output torque of the torque converter C to the input shaft G, so that the drive pulley H rotates.

調圧弁Qはベルト無段変速機で伝達されるトルクに応じ
て最適なベルト側圧を得られるよう油圧を調圧するもの
で図の実施例においては、排油路118の排油量を制御
するスライド弁121の一端にスプリング124を介し
てスライド弁121を左方に負勢する凸子123に変速
比に応動するレバー126を当接させ、更に入力軸トル
クに応動するレバー128を凸子122に当接させ、ス
プリング125を介してスライド弁121を付勢するよ
う構成される。これにより入力軸トルクと変速比に比例
する油圧に調圧する。
The pressure regulating valve Q regulates the oil pressure so as to obtain the optimum belt side pressure according to the torque transmitted by the continuously variable belt transmission. A lever 126 that responds to the gear ratio is brought into contact with a protrusion 123 that biases the slide valve 121 to the left via a spring 124 at one end of the valve 121, and a lever 128 that responds to input shaft torque is brought into contact with the protrusion 122. The slide valve 121 is configured to be brought into contact with the slide valve 121 via the spring 125. This adjusts the oil pressure to be proportional to the input shaft torque and gear ratio.

第5図にその詳細を示す如く、トルク検知機4か10に
より、トルクに比例する変位をレバー128に与える。
As shown in detail in FIG. 5, a torque detector 4 or 10 applies a displacement to the lever 128 that is proportional to the torque.

トルク検知機構はトルクコンバータの出力軸りの端部に
入力ギアEをボールベアリング14等により軸方向に摺
動容易に支持し、人力ギヤEはハス歯ギアとして構成さ
れている。
The torque detection mechanism supports an input gear E at the end of the output axis of the torque converter so as to be easily slidable in the axial direction by means of a ball bearing 14, etc., and the human power gear E is configured as a helical gear.

入力ギヤEのトルクに応じ、そのスラスト力によってギ
アEが軸方向に8動する変位を、スプリング16°によ
りニードルベアリングを介してギアEに当接する部材1
5′、ピン129によりレバー128に伝達する。11
はカバーである。
In response to the torque of the input gear E, the thrust force causes the gear E to move 8 times in the axial direction.
5', and is transmitted to lever 128 by pin 129. 11
is the cover.

変速比応動レバー126はロッド127によりサーボ機
構Pのサーボシリンダ35に連結される。
The gear ratio responsive lever 126 is connected to the servo cylinder 35 of the servo mechanism P by a rod 127.

本発明における調圧弁構造は実施例に示すもののみであ
るとは限らない。ベルト無段変速機の伝達トルクに応す
る油圧を得るものであればよい。
The pressure regulating valve structure in the present invention is not limited to that shown in the embodiments. Any device that can obtain hydraulic pressure corresponding to the transmission torque of the continuously variable belt transmission may be used.

例えば公知のトルクセンサ等により電気信号としてトル
ク信号を得、7M、 6nバルブにより調圧してもよい
し、前記公知例の如くエンジン回転数信号と変速比信号
により調圧されてもよい。
For example, a torque signal may be obtained as an electric signal using a known torque sensor or the like, and the pressure may be regulated using a 7M or 6n valve, or the pressure may be regulated using an engine rotation speed signal and a gear ratio signal as in the above-mentioned known example.

調圧されたライン圧油は、前進クラッチを作動すると同
時に、油路10B、107により被駆動プーリの供給管
64に、油路108により駆動プーリの供給管62に送
油される。一方分岐路109によるライン圧油は油路1
10によりサーボ機構Pの圧油ボート36aに至り、又
油路111によりガバナ弁Rに供給される。ガバナ弁R
は自動変速機等に使用されている周知の遠心力による油
圧制御弁で、出力軸により駆動されて車速に比例するガ
バナ圧油を得る。ガバナ圧油は油路112によりサーボ
機#Ff Pのパイロット弁37の端部に形成される油
室38にボート39を介して導入され車速信号として変
速制御に用いられる。
The regulated line pressure oil is sent to the supply pipe 64 of the driven pulley through the oil passages 10B and 107 and to the supply pipe 62 of the driving pulley through the oil passage 108 at the same time as the forward clutch is actuated. On the other hand, the line pressure oil from the branch passage 109 is supplied to the oil passage 1.
10 leads to the pressure oil boat 36a of the servo mechanism P, and is also supplied to the governor valve R through the oil path 111. Governor valve R
is a well-known centrifugal force hydraulic control valve used in automatic transmissions, etc., and is driven by an output shaft to obtain governor pressure oil proportional to vehicle speed. The governor pressure oil is introduced into the oil chamber 38 formed at the end of the pilot valve 37 of the servo machine #FfP through the oil passage 112 via the boat 39, and is used as a vehicle speed signal for speed change control.

更にガバナ圧油は分岐路113によりトルクコンバータ
のロックアツプクラッチを制御する弁Sに信号圧として
供給される。
Further, the governor pressure oil is supplied as a signal pressure to a valve S that controls a lock-up clutch of a torque converter through a branch path 113.

調圧弁Qよりの一方の油路114は、分岐路116によ
りトルクコンバータにライン圧油を供給し、更に、制御
弁Sにより油路115を介してロックアツプクラッチの
油圧室に導入される。油路117はトルクコンバータの
戻り油路で、102はチェック弁、103はクーラーで
ある。
One oil passage 114 from the pressure regulating valve Q supplies line pressure oil to the torque converter through a branch passage 116, and is further introduced into the hydraulic chamber of the lock-up clutch via an oil passage 115 by a control valve S. The oil passage 117 is a return oil passage of the torque converter, 102 is a check valve, and 103 is a cooler.

サーボ機構Pのパイロット弁37は前述した如くその一
端の油圧室に車速信号圧即ちガバナ圧、が供給されるが
、他端はレバー33によりエンジンのスロットル開度に
比例する力により負勢される。
As described above, the pilot valve 37 of the servo mechanism P has the hydraulic chamber at one end supplied with the vehicle speed signal pressure, that is, the governor pressure, but the other end is negatively biased by the lever 33 with a force proportional to the throttle opening of the engine. .

スロットル開度検知機構Uは変速機ケースに取付けられ
る支持部材30に嵌装される。
The throttle opening detection mechanism U is fitted into a support member 30 attached to the transmission case.

第6図に示す如く、スロットル開度検知機構Uは円筒部
材130と該円筒部材130の両端部に軸方向に摺動可
能に挿入される摺動部材131゜132)両店動部材間
のスプリング133より構成される。
As shown in FIG. 6, the throttle opening detection mechanism U includes a cylindrical member 130 and sliding members 131 and 132 inserted into both ends of the cylindrical member 130 so as to be slidable in the axial direction. Consists of 133.

アクセルペダル又はエンジンのスロットルと連動するロ
ッド135とリンクを介して連結されるレバー134に
よりスロットル開度に比例する変位を摺動部材131に
与えると、スプリングを介して摺動部材132が変位し
、レバー31を回動させ、リンク136によりパイロッ
ト弁37に当接するレバー334C伝達される。尚、ス
プリング133はスロットル開度と変速特性の関係から
スプリングの荷重と変位量の関係を決定する必要があり
、不等ピッチのコイルスプリング等を用いて、適切なバ
ネレートのスプリングに構成する必要がある。
When a lever 134 connected via a link to a rod 135 that is linked to an accelerator pedal or an engine throttle applies a displacement proportional to the throttle opening to the sliding member 131, the sliding member 132 is displaced via a spring, The lever 31 is rotated, and the lever 334C that contacts the pilot valve 37 is transmitted by the link 136. Note that the relationship between the spring load and the amount of displacement of the spring 133 must be determined based on the relationship between the throttle opening degree and the speed change characteristics, and it is necessary to configure the spring 133 with an appropriate spring rate using coil springs with unequal pitches, etc. be.

又、レバー33を直接サーボ機構Pのパイロ・ント弁3
7に当接せしめたため、スロットル開度検知機構Uの変
位量はパイロット弁37の8動によっても影響され、サ
ーボ弁37は車速信号、スロットル開度信号、変速比信
号によって制御される事となる。
In addition, the lever 33 can be directly connected to the pyront valve 3 of the servo mechanism P.
7, the displacement amount of the throttle opening detection mechanism U is also influenced by the 8 movement of the pilot valve 37, and the servo valve 37 is controlled by the vehicle speed signal, throttle opening signal, and gear ratio signal. .

第3図において、手動レバーの操作により前進クラッチ
が作動し、駆動プーリH1比駆動ブーリK、出力軸Jに
トルクが伝達され車両が発進し、車速が増加すると、パ
イロット弁37の油圧室38のガバナ圧が昇圧してパイ
ロット弁37を右方へ摺動せしめ、パイロット弁37の
圧油供給溝37aとサーボシリンダの油路35cが接続
し、ボート36aに供給されるライン圧油は固定ピスト
ン36に穿設された油路36b及びサーボシリンダ35
に穿設された油路35a、35bを経て油圧室36cに
供給され、サーボシリンダ35を右方へ移動せしめる。
In FIG. 3, the forward clutch is actuated by operating the manual lever, torque is transmitted to the drive pulley H1 ratio drive pulley K and output shaft J, the vehicle starts, and when the vehicle speed increases, the hydraulic chamber 38 of the pilot valve 37 opens. The governor pressure increases and the pilot valve 37 is slid to the right, and the pressure oil supply groove 37a of the pilot valve 37 and the oil passage 35c of the servo cylinder are connected, and the line pressure oil supplied to the boat 36a is connected to the fixed piston 36. Oil passage 36b and servo cylinder 35 drilled in
The oil is supplied to the oil pressure chamber 36c through oil passages 35a and 35b drilled in the oil pressure chamber 36c, and moves the servo cylinder 35 to the right.

車速が増加し、パイロット弁37が右方に8動をつづけ
るとパイロット弁37の移動士だけサーボシリンダ35
も右方へ移動をつづける。即ちならい機構となっている
When the vehicle speed increases and the pilot valve 37 continues to move eight times to the right, only the pilot valve 37 is moved by the servo cylinder 35.
continues to move to the right. In other words, it is a tracing mechanism.

車速に対しアクセルペダルをふみ込む事によりスロット
ル開度を大きくするとレバー33によりパイロット弁3
7は左方に移動し、排油ボート37cと連通ずる排油溝
37′bがサーボシリンダ35のボート35eと連接し
、圧油供給溝37aとサーボシリンダの油路35cの接
続は断たれるため、油圧室36cの圧油は油路35dを
経て排出され、サーボシリンダ35も左方へ8勅する。
When the throttle opening is increased by depressing the accelerator pedal relative to the vehicle speed, the pilot valve 3 is activated by the lever 33.
7 moves to the left, the oil drain groove 37'b communicating with the oil drain boat 37c connects with the boat 35e of the servo cylinder 35, and the connection between the pressure oil supply groove 37a and the oil path 35c of the servo cylinder is cut off. Therefore, the pressure oil in the hydraulic chamber 36c is discharged through the oil passage 35d, and the servo cylinder 35 is also moved to the left.

サーボシリンダ35の移動は連結部材42.47により
駆動プーリH1被駆動プーリにの第2スライド弁40.
45を移動せしめる。
The movement of the servo cylinder 35 is caused by connecting the drive pulley H1 to the second slide valve 40.47 to the driven pulley by a connecting member 42.47.
45 is moved.

図示の無段変速機の状態は駆動プーリHのベルト捲回面
半径が最小、被駆動プーリにのそれが最大で、変速比が
最大(LOW)の状態である。
The state of the illustrated continuously variable transmission is such that the drive pulley H has the minimum belt winding surface radius, the driven pulley has the maximum radius, and the gear ratio is maximum (LOW).

車速が上昇し、サーボシリンダ35の移動により駆動側
の第2スライド弁40が上方に移動し、圧油供給溝40
aが第1スライド弁26のボート26bと連通し、ライ
ン圧油が油圧室23aに供給される。
As the vehicle speed increases, the second slide valve 40 on the driving side moves upward due to the movement of the servo cylinder 35, and the pressure oil supply groove 40
a communicates with the boat 26b of the first slide valve 26, and line pressure oil is supplied to the hydraulic chamber 23a.

つづいて被駆動側の第2スライド弁45の排油路48と
連通する排油溝45bが第1スライド弁56のボート5
6bと連接し、油圧室53aの圧油が排出され可動円錐
板2.1.51が共に摺動しはじめる。
Subsequently, the oil drain groove 45b communicating with the oil drain path 48 of the second slide valve 45 on the driven side is connected to the boat 5 of the first slide valve 56.
6b, the pressure oil in the hydraulic chamber 53a is discharged, and the movable conical plate 2.1.51 begins to slide together.

可動円錐板と共に第1スライド弁25.5’6が摺動す
るため、上記のボートの連通関係は第2スライド弁のし
動がつづく開度らず、信号によりサーボシリンダ37の
移動が止ると、第1スライド弁26.56の摺動により
上記の連通関係が断たれ可動円錐板は停止する。可動円
錐板21゜51の摺動により駆動側のベルト捲回半径は
大へ、被駆動側のそれは小の方に制御され、変速比が小
の高速段へ変速される。
Since the first slide valve 25.5'6 slides together with the movable conical plate, the above-mentioned boat communication relationship is such that the second slide valve does not continue to open and when the servo cylinder 37 stops moving due to the signal. By sliding the first slide valve 26.56, the above-mentioned communication relationship is severed and the movable conical plate stops. By sliding the movable conical plate 21.degree. 51, the winding radius of the belt on the driving side is increased and that on the driven side is controlled to be small, and the speed is changed to a high speed gear with a small gear ratio.

サーボ機構Pのパイロット弁37の移動によりL/バー
33を介しスロットル開度検知機構Uのスプリング13
3は圧縮される。変速比最小(HIGH)の状態からス
ロットル開度を大にするとパイロット弁37が左方に移
動じ、サーボシリンダ35と一体に第2スライド弁40
.45も移動し、まず被駆動側の第2スライド弁45の
圧油供給溝45aがボート56bと接続して油圧室53
aにライン圧油が供給され、続いて駆動側の第2スライ
ド弁40の排油11が40bがボート26bと連通して
油圧)E 23 aの圧油が排出され、両可動円錐板2
1.51は変速孔大の方向へ摺動しはじめる。
Due to the movement of the pilot valve 37 of the servo mechanism P, the spring 13 of the throttle opening detection mechanism U is activated via the L/bar 33.
3 is compressed. When the throttle opening is increased from the minimum gear ratio (HIGH) state, the pilot valve 37 moves to the left, and the second slide valve 40 moves integrally with the servo cylinder 35.
.. 45 also moves, and first, the pressure oil supply groove 45a of the second slide valve 45 on the driven side connects with the boat 56b, and the hydraulic chamber 53 is connected to the boat 56b.
Line pressure oil is supplied to a, and then the drain oil 11 of the second slide valve 40 on the driving side communicates with the boat 26b, and the pressure oil of the hydraulic pressure) E 23 a is discharged, and the pressure oil of the second slide valve 40 on the drive side is connected to the boat 26b, and the pressure oil of the two movable conical plates 2
1.51 begins to slide in the direction of the gear change hole size.

第1スライド弁40.45は一体に移動し、該スライド
弁40.45と第2スライド弁40゜45は一体に移動
し、該スライド弁40.45と可動円錐板21.51は
ならい機構により一体に移動する構造となっているため
、ベルト捲回面半径が大の方向へ摺動するブーりの油圧
室へ圧油供給しても可動円錐板は摺動せず、ベルト捲回
面半径を小側に摺動するプーリの油圧室が排油路と接続
した、即ち排油と、供給の両条件が成立して始めて両可
動円錐板は摺動し始める。従って第2スライド弁40.
45の供給溝と排油溝の配列を供給側から接続し、次に
排油側の接続により可動円錐板を摺動しはじめるよう構
成する事により、可及的にベルト張力を維持しつつ変速
が可能となる。更に排油路に絞りをもうけ供給油路より
も小断面積にすると尚効果がある。
The first slide valve 40.45 moves together, the slide valve 40.45 and the second slide valve 40.45 move together, and the slide valve 40.45 and the movable conical plate 21.51 move together by a following mechanism. Because it has a structure that moves in one piece, even if pressure oil is supplied to the hydraulic chamber of the boob, which slides in the direction where the belt winding surface radius is large, the movable conical plate does not slide, and the belt winding surface radius increases. Both movable conical plates begin to slide only when the hydraulic chamber of the pulley that slides to the small side is connected to the oil drain path, that is, when both oil drain and oil supply conditions are satisfied. Therefore, the second slide valve 40.
By connecting the arrangement of 45 supply grooves and oil drain grooves from the supply side, and then connecting the oil drain side to start sliding the movable conical plate, it is possible to change speed while maintaining belt tension as much as possible. becomes possible. Furthermore, it is more effective to provide a restriction in the oil drain path and make it smaller in cross-sectional area than the oil supply path.

第7図に駆動側、被駆動側の油圧室ボートと第2スライ
ド弁の供給溝、と排油溝との位置関係を模式的に示す。
FIG. 7 schematically shows the positional relationship between the hydraulic chamber boat on the driving side and the driven side, the supply groove of the second slide valve, and the oil drain groove.

図においてaは駆動側油圧室ボート、bは被駆動側油圧
室ボートであり、Sl。
In the figure, a is a driving side hydraulic chamber boat, b is a driven side hydraulic chamber boat, and Sl.

Elはそれぞれ駆動側第2スライド弁の供給溝、排油溝
、S2.E2は被駆動側第2スライド弁の供給溝、排油
溝である。
El are the supply groove, oil drain groove, and S2 of the second slide valve on the driving side, respectively. E2 is a supply groove and an oil drain groove of the second slide valve on the driven side.

1〜3図は高速段側ヘスライドする経過を示すもので、
第2スライド弁は図の右方に移動する。
Figures 1 to 3 show the progress of sliding toward the high-speed stage side.
The second slide valve moves to the right in the figure.

1図においてまず駆動側油圧室ボートaが圧油供給溝S
1と連通を開始しライン圧油の供給が開始される。しか
し、被駆動側油圧室の排油はまだ行われず可動円錐板は
摺動し得ない。第2スライド弁が更に右動して2図の位
置に至ると被駆動側油圧室ボートbがE2と連通を開始
し、3図に至って排油される量に相当する可動円錐板の
摺動が行われる。
In Figure 1, first, the drive side hydraulic chamber boat a is connected to the pressure oil supply groove S.
1 and the supply of line pressure oil is started. However, the oil in the driven side hydraulic chamber has not yet been drained and the movable conical plate cannot slide. When the second slide valve further moves to the right and reaches the position shown in Fig. 2, the driven side hydraulic chamber boat b starts communicating with E2, and the sliding of the movable conical plate corresponds to the amount of oil drained as shown in Fig. 3. will be held.

第2スライド弁をこの位置で停止すると、可動円錐板と
一体に摺動する第1スライド弁の右動により4図に示す
如く被駆動側油圧室ボートbとE2との連通が断たれ、
可動円錐板は停止する。
When the second slide valve is stopped at this position, the communication between the driven side hydraulic chamber boat b and E2 is cut off due to the rightward movement of the first slide valve, which slides integrally with the movable conical plate, as shown in Fig. 4.
The movable conical plate stops.

駆動側油圧室ボートaはSlとの連通を継続したままで
もよい。
The drive-side hydraulic chamber boat a may continue to communicate with Sl.

次に第2スライド弁を左勤即ち変速比を大の方向へ穆勤
すると5図に示す如く駆動側油圧室ボートaの31の連
通が断たれつづいて被駆動側油圧室ボートbがS2と接
続してライン圧が供給されるが、油圧室ボートaがEl
と連通して駆動側油圧室の排油が行われるまでは可動円
錐板の左方への摺動は行われない。
Next, when the second slide valve is shifted to the left, i.e., the gear ratio is shifted toward a higher gear ratio, as shown in Fig. 5, the communication between the driving side hydraulic chamber boat a and 31 continues to be cut off, and the driven side hydraulic chamber boat b becomes connected to S2. Although the line pressure is supplied by connecting, the hydraulic chamber boat a is
The movable conical plate will not slide to the left until the drive-side hydraulic chamber is drained.

尚、本発明は実施例に示すオ11造に限定されるもので
はなく、実施例のサーボ機構に替えて、電気的信号にi
る変速指令に応答するモーターによってスライド弁を駆
動してもよく、又駆動プーリ被駆動プーリの可動円錐板
をi成約に連結して一体摺動するようにし、油圧室への
ライン圧の供給排出を電tn弁を用いて行い、変速信号
によりベルト捲回面半径の拡大するプーリーの供給を先
に行い、つづいてベルト捲回面半径の縮小するプーリー
の油圧室の排油を行うよう構成しても同線の効果が得ら
れる。
Note that the present invention is not limited to the O-11 structure shown in the embodiment, and instead of the servo mechanism of the embodiment, an i
The slide valve may be driven by a motor that responds to a speed change command, and the movable conical plates of the driving pulley and driven pulley are connected to each other so that they slide together, and the line pressure is supplied to and discharged from the hydraulic chamber. is carried out using an electric TN valve, and the system is configured to first supply oil to a pulley whose belt winding surface radius is expanded based on a speed change signal, and then drain oil from the hydraulic chamber of a pulley whose belt winding surface radius is reduced. The same effect can be obtained even if

(発明の効果) 以上説明した如く、本発明においては、ベルト無断変速
機の駆動プーリ被駆動プーリの可動円iit板を、変速
信号を出力するサーボ機構により一体に摺動せしめるの
で、ベルトに不要な負荷が作用せず、伝達トルクに対応
する側圧を常に維持しつつプーリのベルト捲回面半径の
拡大縮少が可能であり、更に変速信号発生機溝として、
ならい構造を有するサーボwt描としたので簡単な構造
により、可動円錐板の摺動量と等しいわwJ量の出力を
得る事が出来、比較的小さな信号圧により又は小エネル
ギーの信号により大ぎ作動力を得る事が出来る。
(Effects of the Invention) As explained above, in the present invention, the movable circular IIT plates of the drive pulley and driven pulley of the belt continuously variable transmission are slid together by the servo mechanism that outputs the speed change signal, so the belt is not required. It is possible to expand or reduce the radius of the belt winding surface of the pulley while always maintaining the side pressure corresponding to the transmitted torque without applying any heavy load.
Since the servo wt has a tracing structure, it is possible to obtain an output of the amount wJ, which is equal to the sliding amount of the movable conical plate, with a simple structure, and a relatively small signal pressure or a small energy signal can be used to generate an output with a large actuation force. can be obtained.

尚、本発明は実施例に示す構造に限定されるものではな
くサーボ機構の作動油をプーリ側圧用圧油とは異なる高
圧油な用い、サーボ機構の摺動体によりブーりの可動円
錐板を機械的に摺動させてもよく、又、パイロット弁の
駆動は油圧信号によらず、リニアソレノイド等の電気信
号による摺動弁に替えてもよい。
It should be noted that the present invention is not limited to the structure shown in the embodiment, and the hydraulic oil of the servo mechanism is high pressure oil different from the pressure oil for pulley side pressure, and the sliding body of the servo mechanism is used to mechanically move the movable conical plate of the boot. Alternatively, the pilot valve may be driven by a sliding valve driven by an electric signal such as a linear solenoid instead of being driven by a hydraulic signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第6図はこの発明の一実施例にかかるベルト
無段変速機を示し、第1図が動力伝達系の骨組図、第2
図が機構断面図、第3図が機構要部の拡大断面図、第4
図が油圧回路図、第5図および第6図が一部拡大断面図
である。 A・・・エンジン H・・・駆動プーリ    ゛ ■・・・ベルト K・・・被駆動プーリ 20.50・・・固定円錐板 21.51・・・可動円錐板 23a、53a・・・油圧室 26.40,45.56・・・スライド弁特 許 出、
願 人  本田技研工業株式会社代理人  弁理士  
 下  1) 容一部間    弁理士    大  
橋  邦  度量   弁理士   小  山    
右同    弁理士    野  1)     茂手
 元売 ネ山 jE & (自発) 昭和62年 5月11日 41F、j’l庁長官 黒田明雄 殿 昭和62年4月30日提出の特許願(4)2)発明の名
称 ベルト無段変速機 3、補正をする者 211件との関係  特許出願人 (53・2)本田技研工業株式会社 4、代理人 5、補正命令の日付  自発 6、補正の対象   明細書の発明の詳細な説明の欄7
、補正の内容
1 to 6 show a belt continuously variable transmission according to an embodiment of the present invention, in which FIG. 1 is a schematic diagram of the power transmission system, and FIG.
The figure is a sectional view of the mechanism, Figure 3 is an enlarged sectional view of the main parts of the mechanism, and Figure 4 is a sectional view of the mechanism.
The figure is a hydraulic circuit diagram, and FIGS. 5 and 6 are partially enlarged sectional views. A... Engine H... Drive pulley ゛ ■... Belt K... Driven pulley 20.50... Fixed conical plate 21.51... Movable conical plate 23a, 53a... Hydraulic chamber 26.40, 45.56...Slide valve patent issued,
Patent attorney representing Honda Motor Co., Ltd.
1) Part 1 Patent Attorney University
Kuni Hashi Patent Attorney Koyama
Patent Attorney No. 1) Mote Motouri Neyama JE & (Voluntary) May 11, 1988 41F, J'l Agency Director Akio Kuroda Patent application filed on April 30, 1986 (4) 2 ) Name of the invention Belt continuously variable transmission 3, Relationship with the person making the amendment 211 cases Patent applicant (53.2) Honda Motor Co., Ltd. 4, Agent 5, Date of amendment order Voluntary 6, Subject of amendment Details Column 7 for detailed explanation of the invention
, content of correction

Claims (4)

【特許請求の範囲】[Claims] (1)固定円錐板と可動円錐板よりなるプーリを入力軸
、出力軸上に設け、その間にベルトを捲回し、可動円錐
板を軸上を摺動させてベルト捲回面半径を拡大縮少せし
めて変速比を制御するベルト無断変速機において、2つ
の可動円錐板を同側に配置し、該2つの可動円錐板と油
圧的又は機械的に連結されたサーボ機構により可動円錐
板の摺動を制御することを特徴とするベルト無断変速機
(1) Pulleys consisting of a fixed conical plate and a movable conical plate are provided on the input and output shafts, the belt is wound between them, and the movable conical plate is slid on the shaft to expand or reduce the radius of the belt winding surface. In a belt continuously variable transmission that at least controls the gear ratio, two movable conical plates are arranged on the same side, and the movable conical plates are slid by a servo mechanism hydraulically or mechanically connected to the two movable conical plates. A belt continuously variable transmission characterized by controlling.
(2)特許請求の範囲第1項記載のベルト無断変速機に
おいて、プーリの可動円錐板の摺動を制御するサーボ機
構は油圧室を画成する一方が固定され、他方が摺動する
ピストンとシリンダ、ピストンとシリンダの同一軸心を
有する中空部に摺動可能に嵌挿されたパイロット弁より
成り、前記ピストン又はシリンダの摺動する部材に作動
油源と常時連通する供給口と油圧室と常時連通する排油
口を設け、パイロット弁には前記摺動部材の供給口と接
続し油圧室に作動油を供給する供給溝と、排油口と接続
し油圧室を排油路に連通する排油溝を有する、サーボ機
構を備えることを特徴とするベルト無段変速機。
(2) In the belt continuously variable transmission according to claim 1, the servo mechanism that controls the sliding of the movable conical plate of the pulley has one fixed piston and the other sliding piston that defines the hydraulic chamber. A cylinder, a piston and a pilot valve that are slidably inserted into a hollow part having the same axis as the cylinder, and a supply port and a hydraulic chamber that constantly communicate with a hydraulic oil source in the sliding member of the piston or cylinder. An oil drain port is provided that communicates at all times, and the pilot valve has a supply groove that connects with the supply port of the sliding member and supplies hydraulic oil to the hydraulic chamber, and a supply groove that connects with the oil drain port and communicates the hydraulic chamber with the oil drain path. A continuously variable belt transmission characterized by having a servo mechanism and having an oil drainage groove.
(3)特許請求の範囲第2項記載のベルト無段変速機サ
ーボ機構において、ピストンを変速機ケースに固定し、
該ピストン外周に共に油圧室を画成するシリンダを軸方
向に摺動自在に設けパイロット弁を嵌挿し、シリンダに
プーリの可動円錐板を摺動せしめる連結材を固定したサ
ーボ機構を備えることを特徴とするベルト無段変速機。
(3) In the belt continuously variable transmission servo mechanism according to claim 2, the piston is fixed to the transmission case,
A servo mechanism is provided on the outer periphery of the piston, in which a cylinder, which together defines a hydraulic chamber, is slidable in the axial direction, a pilot valve is fitted therein, and a connecting member for sliding a movable conical plate of a pulley is fixed to the cylinder. Continuously variable belt transmission.
(4)特許請求の範囲第2項記載のベルト無段変速機に
おいて、ピストンとシリンダの同一軸心中空部に嵌挿さ
れるパイロット弁の一端部に油室を設けて信号圧油を導
入し、他端を車両又はエンジンパラメータに対応して移
動する凸子にて押圧するサーボ機構を備えることを特徴
とするベルト無段変速機。
(4) In the belt continuously variable transmission according to claim 2, an oil chamber is provided at one end of the pilot valve that is inserted into the hollow part of the piston and the cylinder on the same axis, and signal pressure oil is introduced; A continuously variable belt transmission characterized by comprising a servo mechanism that presses the other end with a convex element that moves in accordance with vehicle or engine parameters.
JP62107020A 1987-04-30 1987-04-30 Belt continuously variable transmission Expired - Fee Related JP2788633B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62107020A JP2788633B2 (en) 1987-04-30 1987-04-30 Belt continuously variable transmission
EP88106845A EP0289024A3 (en) 1987-04-30 1988-04-28 Belt-and-pulley type continuously variable transmission
CA000565532A CA1289387C (en) 1987-04-30 1988-04-29 Belt-and-pulley type continuously variable transmission
US07/187,858 US4871343A (en) 1987-04-30 1988-04-29 Belt-and-pulley type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107020A JP2788633B2 (en) 1987-04-30 1987-04-30 Belt continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS63275846A true JPS63275846A (en) 1988-11-14
JP2788633B2 JP2788633B2 (en) 1998-08-20

Family

ID=14448477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107020A Expired - Fee Related JP2788633B2 (en) 1987-04-30 1987-04-30 Belt continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2788633B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646152A (en) * 1979-09-12 1981-04-27 Bosch Gmbh Robert Controller for stepless power transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646152A (en) * 1979-09-12 1981-04-27 Bosch Gmbh Robert Controller for stepless power transmission

Also Published As

Publication number Publication date
JP2788633B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JP2790627B2 (en) Control method and control device for belt continuously variable transmission
US5088352A (en) System for controlling hydraulic fluid pressure for V-belt type automatic transmission
KR19980080526A (en) Control device of toroidal continuously variable transmission
KR19990023711A (en) Control device of toroidal continuously variable transmission
CA1296549C (en) Method of and apparatus for controlling the transmission ratio of continuously variable transmission
CA2656874C (en) Vehicular belt-driven continuously variable transmission and control method thereof
JP3726685B2 (en) Clutch device
US4871343A (en) Belt-and-pulley type continuously variable transmission
JPH0526981B2 (en)
JPS63275846A (en) Belt non-stage transmission
JP4066920B2 (en) Testing equipment for toroidal type continuously variable transmissions
JP2001271896A (en) Belt-type continuously variable transmission
JP2003185003A (en) Toroidal continuously variable transmission
JP2881506B2 (en) Control device for belt type continuously variable transmission
JP2766646B2 (en) V-belt type continuously variable transmission
JPH02176249A (en) Lubricating oil distributing device in automatic transmission for vehicle
JP2001099285A (en) Accumulator control type accumulator device
JPH0478365A (en) Control device for continuously variable transmission
JPS6148658A (en) Speed-change controller for continuously variable transmission
KR830001589B1 (en) Throttle / Failsafe Valves for Automatic Transmissions
JPS6069362A (en) Direct-coupled controller of fluid transmission in automatic speed changer for car
JPH0238824B2 (en)
JPH0319419B2 (en)
JPH0222262B2 (en)
JPH04191557A (en) Belt type continuously variable transmission

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees